Laboratory Bioassays on the Susceptibility of Trimen’s False Tiger Moth, Agoma trimenii (Lepidoptera: Agaristidae), to Entomopathogenic Nematodes and Fungi

  • C. Morris Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch
  • A.P. Malan Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch
  • J.Y. De Waal Corteva Agriscience, Block A, 2nd Floor, Lakefield Office Park, 272 West Avenue, De Howes, Centurion, Gauteng 0157
  • S. Johnson Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch

Abstract

Trimen’s false tiger moth, Agoma trimenii (Lepidoptera: Agaristidae), recently developed as a pest of grapevine in the Northern Cape and Limpopo (Groblersdal area) provinces of South Africa. Little is known about the biology of A. trimenii and control options are lacking. The aim of this study was to test the susceptibility of A. trimenii larvae and pupae to two locally isolated entomopathogenic nematodes (EPNs), Steinernema yirgalemense and Heterorhabditis noenieputensis, and two commercially available entomopathogenic fungi (EPF), Metarhizium anisopliae and Beauveria bassiana, under laboratory conditions. Larvae and pupae were screened for pathogenicity of the two nematode species, using a
concentration of 100 infective juveniles (IJs)/50 μl of water. After 48 h, 100% mortality of the larval stage was found. However, no pupae were infected with EPNs. Larvae and pupae were screened for pathogenicity
of the two EPF isolates by means of a dipping test, at a concentration of 0.2 ml/500 ml water and 0.5 g/500 ml water, respectively. Five days post-treatment, 100% larval mortality was recorded in comparison with
no deaths in the controls. Overt mycosis was only observed in the case of M. anisopliae. However, in the case of pupae, no mortality was observed for both the nematode and the fungal applications. In future
studies, the prepupal soil stage of A. trimenii should be screened for susceptibility to EPNs and EPF. The results of this study indicate the excellent potential of EPNs and EPF as biological control agents against
the larvae of A. trimenii, especially for application to small areas with high infestation, without disrupting an integrated pest management programme.

Downloads

Download data is not yet available.

References

Anand, R., Prasad, B. & Tiwary, B.N., 2009. Relative susceptibility of Spodoptera litura pupae to selected entomopathogenic fungi. BioControl 54, 85-92.

Anbesse, S.A., Adge, B.J. & Gebru, W.M., 2008. Laboratory screening for virulent entomopathogenic nematodes (Heterorhabditis bacteriophora and Steinernema yirgalemense) and fungi (Metarhizium anisopliae and Beauveria bassiana) and assessment of possible synergistic effects of combined use against grubs of the barley chafer Coptognathus curtipennis. Nematology 10, 701-709.

Ansari, M.A., Vestergaard, S., Tirry, L. & Moens, M., 2004. Selection of a highly virulent fungal isolate, Metarhizium anisopliae CLO 53, for controlling Hoplia philanthus. J. Invertebr. Pathol, 85, 89-96.

Barta, M.A.R.E.K., 2010. Pathogenicity assessment of entomopathogenic fungi infecting Leptoglossus occidentalis (Heteroptera: Coreidae). Czech. Mycol. 62, 67-78.

Bidochka, M.J. & Small, C., 2005. Phylogeography of metarhizium, an insect pathogenic fungus, In: Vega, F.E. & Blackwell, M. (eds.). Insect-fungal associations. Oxford University Press, New York. pp. 28 – 49.

Boucias, D. & Latgé, J.P., 1988. Fungal elicitors of invertebrate cell defense system. In: Drouhet, E., Cole, G.T., de Repentigny, L., Latgé, J.-P. & Dupont, B. (eds.). Fungal antigens: Isolation, purification, and detection. Springer, Boston. pp. 121 – 137.

Coombes, C.A., 2012. Entomopathogenic fungi for control of soil-borne life stages of false codling moth, Thaumatotibia leucotreta (Meyrick) (1912) (Lepidoptera: Tortricidae). M.Sc. thesis, Rhodes University, Drosty Road, Grahamstown, 6139, South Africa.

Dlamini, B.E., Malan, A.P. & Addison, P., 2019. Control of the banded fruit weevil, Phlyctinus callosus (Schönherr) (Coleoptera: Curculionidae) using entomopathogenic nematodes. Austral Entomol. 58, 687-695. DOI: 10.1111/aen.12386

Dunn, M.D. Belur, P. & Malan, A.P., 2020. In vitro liquid culture and optimization of Steinernema jeffreyense, using shake flasks. BioControl 65, 223-233. https://doi.org/10.1007/s10526-019-09977-7

Ehlers, R., 2001. Mass production of entomopathogenic nematodes for plant protection. Appl. Microb. Technol. 56, 623-633.

Ferreira, T. & Malan, A.P., 2014. Potential of entomopathogenic nematodes for the control of the banded fruit weevil, Phlyctinus callosus (Schönherr) (Coleoptera: Curculionidae). J. Helminthol. 88, 293-301 (doi:10.1017/S0022149X13000175)

Ferreira, T., Addison, M.F. & Malan, A.P., 2016. Development and population dynamics of Steinernema yirgalemense (Rhabditida: Steinernematidae) and growth characteristics of its associated Xenorhabdus indica symbiont in liquid culture. J. Helminthol. 90, 364-371.

Ferron, P., 1978. Biological control of insect pests by entomogenous fungi. Annu. Rev. Entomol. 23, 409-442.

Goettel, M.S., Eilenberg, J. & Glare, T., 2005. Entomopathogenic fungi and their role in regulation of insect populations. In: Gilbert, L.I., Iatrou, K. & Gill, S.S. (eds.). Comprehensive molecular insect science. Elsevier, Amsterdam. pp. 361 – 406.

Griffin, C.T., Boemare, N.E. & Lewis, E.E., 2005. Biology and behaviour. In: Grewal, P.S., Ehlers, R.-U. & Shapiro-Ilan, D.I. (eds.). Nematodes as biocontrol agents. CABI, Wallingford. pp. 47 – 75.

Hafez, M., Zaki, F.N., Moursy, A. & Sabbour, M., 1997. Biological effects of the entomopathogenic fungus, Beauveria bassiana on the potato tuber moth Phthorimaea operculella (Seller). Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz. 70, 158-159.

Hatting, J., Stock, S.P. & Hazir, S., 2009. Diversity and distribution of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae) in South Africa. J. Invertebr Pathol. 102, 120-128.

Hatting, J.L. & Malan, A.P. 2017. Status of entomopathogenic nematodes in integrated pest management strategies in South Africa. In: Biocontrol agents: Entomopathogenic and slug parasitic nematodes, Abd-Elgawad, M.M.M, Askary, T.H. & Coupland, J. (Eds.). CABI, Wallington, UK pp. 409-428.

Hatting, J.L., Moore, S.D. & Malan, A.P. 2019. Microbial control of phytophagous invertebrate pests in South Africa: Current status and future. J. Invertebr. Pathol. 165, 54-66. https://doi.org/10.1016/j.jip.2018.02.004

Inglis, G.D., Goettel, M., Butt, T. & Strasser, H., 2001. Use of hyphomycetous fungi for managing insect pests. In: Butt, T.M., Jackson, C.W. & Magan, N. (eds.). Fungi as biocontrol agents: Progress, problems and potential. CABI, Wallingford. pp. 23 – 70.

James, M., Addison, P. & Malan, A.P., 2018. Surveying and screening South African entomopathogenic nematodes for the control of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). Crop Protection 105, 41-28. doi.org/10.1016/j.cropro.2017.11.008

Kaya, H.K. & Hara, A.H., 1980. Differential susceptibility of lepidopterous pupae to infection by the nematode Neoaplectana carpocapsae. J. Invertebr. Pathol. 36, 389-393.

Kaya, H.K. & Lacey, L.A., 2007 (2nd ed.). Introduction to microbial control (Chapter 1). In: Lacey, L.A. & Kaya, H.K. (eds.). Field manual of techniques in invertebrate pathology. Springer, Dordrecht. pp. 3 – 7.

Kaya, H.K. & Stock, S.P., 1997. Techniques in insect nematology. In: Lacey, L. (ed.). Manual of techniques in insect pathology. pp. 281 – 324.

Lacey, L.A. & Georgis, R., 2012. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J. Nematol. 44, 218-225.

Malan, A.P., Nguyen, K.B. & Addison, M.F., 2006. Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from the southwestern parts of South Africa. Afr. Plant Prot. 12, 65-69.

Malan, A.P., Knoetze, R. & Moore, S.D., 2011. Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth. J. Invertebr. Pathol. 108, 115-125.

Malan, A.P., Knoetze, R. & Tiedt, L., 2014. Heterorhabditis noenieputensis n. sp. (Rhabditida: Heterorhabditidae), a new entomopathogenic nematode from South Africa. J. Helminthol. 88, 139-151. DOI:10.1017/=S0022149X12000806

Malan, A.P. & Hatting, J.L., 2015. Entomopathogenic nematode exploitation: Case studies in laboratory and field applications from South Africa. In: Campos-Harrera, R. (ed.). Nematode pathogenesis of insects and other pests: Ecology and applied technologies for sustainable plant and crop protection. Springer, Cham. pp. 477 – 508.

Malan, A.P. & Moore, S.D., 2016. Evaluation of local entomopathogenic nematodes for the control of false codling moth, Thaumatotibia leucotreta (Meyrick, 1913), in a citrus orchard in South Africa. African Entomology 24, 489–501. DOI: http://dx.doi.org/10.4001/003.024.0489

Malan, A.P. & Ferreira, T., 2017. Entomopathogenic nematodes. In: Fourie, H., Spaull, V.W., Jones, R., Daneel, M.S. & De Waele, D. (eds.). Nematology in South Africa: A view from the 21st century. pp. 459 – 480. Springer, Cham.

Morris, C.A, Johnson, S.A., Waal, J.Y. & Malan, A.P., 2020. Review of Trimen’s false tiger moth, Agoma trimenii (Lepidoptera: Agaristidae): Seasonal biology, monitoring and control options. S. Afri. J, Enol Vitic. (In Press).

Navon, A. & Ascher, K.R.S., 2000. (eds.). Bioassays of entomopathogenic microbes and nematodes. CABI, Wallingford. pp. 229 – 324.

Nguyen, K.B., Tesfamariam, M., Gozel, U., Gaugler, R. & Adams, B.J., 2004. Steinernema yirgalemense n. sp. (Rhabditida: Steinernematidae) from Ethiopia. Nematology 6, 839-856.

Nguyen, N.T., Borgemeister, C., Poehling, H.M. & Zimmermann, G., 2007. Laboratory investigations on the potential of entomopathogenic fungi for biocontrol of Helicoverpa armigera (Lepidoptera: Noctuidae) larvae and pupae. Biocontr. Sci. Tech. 17, 853-864.

Oliveira, I., Pereira, J.A., Lino-Neto, T., Bento, A. & Baptista, P., 2012. Fungal diversity associated to the olive moth, Prays oleae Bernard: A survey for potential entomopathogenic fungi. Microbiol. Ecol. 63, 964-974.

Shapiro-Ilan, D.I., Han, R. & Dolinksi, C., 2012. Entomopathogenic nematode production and application technology. J. Nematol. 44, 206-217.

Shapiro-Ilan, D.I., Mizell III, R.F. & Campbell, J.F., 2002. Susceptibility of the plum curculio, Conotrachelus nenuphar, to entomopathogenic nematodes. J Nematol. 34, 246-249.

Simoes, N. & Rosa, J.S., 1996. Pathogenicity and host specificity of entomopathogenic nematodes. Biocontrol Sci. Tech. 6, 403-412.

Sitch, J.C. & Jackson, C.W., 1997. Pre-penetration events affecting host specificity of Verticillium lecanii. Mycol. Res. 101, 535-541.

Steyn, W.P, Daneel, M.S. & Malan, A.P. 2019a. Control of Thaumatotibia leucotreta in South African avocado, litchi and macadamia orchards, using entomopathogenic nematodes.

BioControl 64, 401-411. DOI:10.1007/s10526-019-09943-3

Steyn, V.M., Malan, A.P. & Addison, P. 2019b. Control of false codling moth, Thaumatotibia leucotreta (Lepidoptera: Tortricidae), using in vitro-cultured Steinernema jeffreyense and S. yirgalemense. Biological Control (In press).

https://doi.org/10.1016/j.biocontrol.2019.104052.

Wraight, S.P., Jackson, M.A. & De Kock, S.L., 2007. Formulation of fungal biocontrol agents. In: Butt, T.M., Jackson, C. & Magan, N. (eds.). Fungi as biocontrol agents: Progress, problems and potential. Wiley, Wallingford. p. 253 – 284.

Zimmermann, G., 2007a. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci. Technol. 17, 553-596.

Zimmermann, G., 2007b. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 17, 879-920.

Published
2020-11-04
Section
Articles