Potential of South African entomopathogenic nematodes to control the leaf miner, Holocacista capensis (Lepidoptera: Heliozelidae)

  • L.A.I. Steyn Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University
  • P. Addison Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University http://orcid.org/0000-0002-8227-339X
  • A.P. Malan Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University http://orcid.org/0000-0002-9257-0312

Abstract

The Cape grapevine leafminer, Holocacista capensis, a sporadic pest of economic importance, is found in South African table and wine grape vineyards. The cocoon casings, constructed by the final instar larvae, can be found attached to grape bunches, posing a phytosanitary risk for table grape export markets. The current study aimed to determine the susceptibility of leaf-mining H. capensis larvae to
seven entomopathogenic nematode (EPN) species belonging to Steinernematidae and Heterorhabditidae.  To determine nematode virulence occupied leaf-mining galleries were extracted from infested leaves and inoculated with 200 infective juveniles (IJs) in 50 μl of distilled water, for each of the EPNs screened.
Concentration assays were conducted and and lethal dose was determined for the three most virulent species (Heterorhabditis baujardi, H. indica and H. noenieputensis), using concentrations of 0, 25, 50, 100, 200, and 400 IJs/leaf-mining larva. High mortality of leaf-mining larvae was obtained with H. baujardi
(92%), H. noenieputensis (85%) and H. indica (83%). Almost double the number of H. noenieputensis (34 nematodes/insect) penetrated the insect larvae, in comparison with the other two EPNs. However, the relative potency of H. baujardi was 3.56 times higher than for H. indica, whilst that of H. indica was 2.57times higher than it was for H. noenieputensis. The results obtained in the laboratory were found to be encouraging, especially with regard to the nematodes’ ability to penetrate the leaf-mining galleries, and to infect the larvae successfully.

Downloads

Download data is not yet available.

Author Biographies

L.A.I. Steyn, Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University
Conservation Ecology and Entomology, post doc
P. Addison, Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University
Conservation Ecology and Entomology
A.P. Malan, Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University
Conservation Ecology and Entomology

References

Abate, B.A., Slippers, B., Wingfield, M.J., Malan, A.P. & Hurley, B.P. 2018. Diversity of entomopathogenic nematodes and their symbiotic bacteria in South African plantations and indigenous forests. Nematology 20, 355 – 371. doi:10.1163/15685411-00003144

Allsopp, E., Barnes, B.N., Blomefield, T.L. & Pringle, K.L. 2015. Grapevine. In: Prinsloo, G.L. & Uys, V.M. (eds). Insects of Cultivated Plants and Natural Pastures in Southern Africa, Entomological Society of Southern Africa, Cape Town. pp. 420 – 437.

Bastidas, B., Portillo, E. & San-Blas, E. 2014. Size does matter: the life cycle of Steinernema spp. in micro-insect hosts. J. Invertebr. Pathol. 121, 46 – 55. doi:10.1016/j.jip.2014.06.010

Batalla-Carrera, L., Morton, A. & García-Del-Pino, F. 2010. Efficacy of entomopathogenic nematodes against the tomato leafminer Tuta absoluta in laboratory and greenhouse conditions. BioControl 55, 523 – 530. doi:10.1007/s10526-010-9284-z

Beattie, G.A.C., Somsook, V., Watson, D.M., Clift, A.D. & Jiang, L. 1995. Field evaluation of Steinernema carpocapsae (Weiser) (Rhabditida: Steinernematidae) and selected pesticides and enhancers for control of Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae). Aust. J. Entomol. 34, 335 – 342. doi:10.1111/j.1440-6055.1995.tb01351.x

De Waal, J.Y., Malan, A.P. & Addison, M.F. 2013. Effect of humidity and a superabsorbent polymer formulation on the efficacy of Heterorhabditis zealandica (Rhabditida: Heterorhabditidae) to control codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Biocontrol Sci. Techn. 23, 62 – 78. doi:10.1080/09583157.2012.736472

Dlamini, T.M. 2018. Prospects for using entomopathogenic nematodes as a biocontrol agent against western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae). MSc thesis, Stellenbosch University, Private Bag X1, 7602 Matieland (Stellenbosch), South Africa.

Ehlers, R.U., Niemann, I., Hollmer, S., Strauch, O., Jende, D., Shanmugasundaram, M. et al. 2000. Mass production potential of the bacto-helminthic biocontrol complex Heterorhabditis indica – Photorhabdus luminescens. Biocontrol Sci. Techn. 10: 607 – 616. doi:10.1080/095831500750016406

Ferreira, T. & Malan, A.P. 2014. Potential of entomopathogenic nematodes for the control of the banded fruit weevil, Phlyctinus callosus (Schönherr) (Coleoptera: Curculionidae). J. Helminthol. 88, 293 – 301. doi:10.1017/S0022149X13000175

Finney DJ. 1952. Probit Analysis. Cambridge University Press, London.

Gözel, Ç. & Kasap, İ. 2015. Efficacy of entomopathogenic nematodes against the tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in tomato field. Turk. Entomol. Derg. 39, 229 – 237. doi:10.16970/ted.84972

Griffin, C.T., Boemare, N.E. & Lewis, E.E. 2005. Biology and behaviour. In: Grewal, P.S., Ehlers, R.-U. & Shapiro-Ilan, D.I. (eds). Nematodes as Biocontrol Agents, CABI Publishing, Wallingford. pp. 47 – 64.

Hagler, J.R. 2000. Biological control of insects. In: Rechcigl, J.E. & Rechcigl, N.A. (eds). Insect Pest Management: Techniques for Environmental Protection, CRC Press LLC, Florida. pp. 207 – 242.

James, M., Addison, P. & Malan, A.P. 2018. Surveying and screening South African entomopathogenic nematodes for the control of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). Crop Prot. 105, 41 – 48. doi:10.1016/j.cropro.2017.11.008

Kamali, S., Karimi, J. & Koppenhöfer, A.M. 2017. New insight into the management of the tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae) with entomopathogenic nematodes. J. Econ. Entomol. 111, 112 – 119. doi:10.1093/jee/tox332

Katumanyane, A., Ferreira, T. & Malan, A.P. 2018. Potential use of local entomopathogenic nematodes to control Bradysia impatiens (Diptera: Sciaridae) under laboratory conditions. Afr. Entomol. 26, 337 – 349. doi:10.4001/003.026.0337

Kaya, H.K. & Stock, S.P. 1997. Techniques in insect nematology. In: Lacey, L.A. (ed). Manual of Techniques in Invertebrate Pathology, Academic Press, San Diego, California. pp. 281 – 324.

Lacey, L.A. & Georgis, R. 2012. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J. Nematol. 44, 218 – 225.

LeOra Software. 1987. POLO-PC: A user's guide to probit or logit analysis. LeOra Software. Lounsbury CP, 1898.

Le Vieux, P.D. & Malan, A.P. 2013. An overview of the vine mealybug (Planococcus ficus) in South African vineyards and the use of entomopathogenic nematodes as potential biocontrol agent. S. Afr. J. Enol. Vitic. 34, 108 – 118.

Malan, A.P. & Ferreira, T. 2017. Entomopathogenic nematodes. In: Fourie, H., Spaull, V.W., Jones, R.K., Daneel, M.S. & De Wale, D. (eds). Nematology in South Africa: a view from the 21st Century, Springer International, Berlin. pp. 459 – 480.

Malan, A.P. & Hatting, J.L. 2015. Entomopathogenic nematode exploitation: case studies in laboratory and field applications from South Africa In: Campos-Herrera, R. (ed). Nematode Pathogenesis of Insects and Other Pests, Springer International Publishing, Basel. pp. 477 – 508.

Malan, A.P., Knoetze, R. & Moore, S.D. 2011. Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth. J. Invertebr. Pathol 108, 115 – 125. doi:10.1016/j.jip.2011.07.006

Malan, A.P., Knoetze, R. & Tiedt, L.R. 2014. Heterorhabditis noenieputensis n. sp. (Rhabditida: Heterorhabditidae), a new entomopathogenic nematode from South Africa. J. Helminthol. 88, 139 – 151. doi:10.1017/S0022149X12000806

Malan, A.P., Knoetze, R. & Tiedt, L.R. 2016. Steinernema jeffreyense n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from South Africa. J. Helminthol. 90, 262 – 278. doi:10.1017/S0022149X15000097

Malan, A.P. & Moore, S.D. 2016. Evaluation of local entomopathogenic nematodes for the control of false codling moth, Thaumatotibia leucotreta (Meyrick, 1913), in a citrus orchard in South Africa. Afr. Entomol. 24, 489 – 501. doi:10.4001/003.024.0489

Malan, A.P., Nguyen, K. & Addison, M. 2006. Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from the southwestern parts of South Africa. Afri. Plant Prot. 12, 65 – 69.

Mutegi, D.M., Kilalo, D., Kimenju, J.W. & Waturu, C. 2017. Pathogenicity of selected native entomopathogenic nematodes against tomato leaf miner (Tuta absoluta) in Kenya. World J. Agric. Res. 5, 233 – 239. doi:10.12691/wjar-5-4-5

Platt, T., Stokwe, N.F. & Malan, A.P. 2018. Potential of local entomopathogenic nematodes for control of the vine mealybug, Planococcus ficus. S. Afr. J. Enol. Vitic. 39, 208 – 215. doi: 10.21548/39-2-3158

Platt, T., Stokwe, N.F. & Malan, A.P. 2019. Foliar application of Steinernema yirgalemense to control Planococcus ficus: assessing adjuvants to improve efficacy. S. Afr. J. Enol. Vitic. 40. doi:10.21548/40-1-2920

Portman, S.L., Krishnankutty, S.M. & Reddy, G.V.P. 2016. Entomopathogenic nematodes combined with adjuvants presents a new potential biological control method for managing the wheat stem sawfly, Cephus cinctus (Hymenoptera: Cephidae). PLoS ONE 11. doi:10.1371journal.pone.0169022.

Steyn, V.M. 2019. Integrated control of false codling moth, Thaumatotibia leucotreta, on stone fruit and table grapes. PhD thesis, Stellenbosch University, Private Bag X1, 7602 Matieland (Stellenbosch), South Africa.

Stock, S.P. & Hunt, D.J. 2005. Morphology and systematics of nematodes used in biocontrol. In: Grewal, P.S., Ehlers, R.-U. & Shapiro-Ilan, D.I. (eds). Nematodes as Biocontrol Agents, CABI, Wallingford. pp. 3 – 43.

Torrance, L.A.I. 2016. The bio-ecology of the Cape grapevine leafminer, Holocacista capensis (Lepidoptera: Heliozelidae), in the Western Cape. MSc thesis, Stellenbosch University, Private Bag X1, 7602 Matieland (Stellenbosch), South Africa.

Van Damme, V.M., Beck, B.K.E.G., Berckmoes, E., Moerkens, R., Wittemans, L., De Vis, R. et al. 2015. Efficacy of entomopathogenic nematodes against larvae of Tuta absoluta in the laboratory. Pest Manag. Sci. 72, 1702 – 1709. doi:10.1002/ps.4195

Van Niekerk, S. & Malan, A.P. 2015. Adjuvants to improve aerial control of the citrus mealybug Planococcus citri (Hemiptera: Pseudococcidae) using entomopathogenic nematodes. J. Helminthol. 89, 189 – 195. doi:10.1017/S0022149X13000771

Van Nieukerken, E.J. & Geertsema, H. 2015. A new leafminer on grapevine and Rhoicissus (Vitacea) in South Africa within an expanded generic concept of Holocacista (Insecta, Lepidoptera, Heliozelidae). ZooKeys 507, 41 – 97. doi:10.3897/zookeys.507.9536

White, G.F. 1927. A method for obtaining infective nematode larvae from cultures. Science 66, 302 – 303.

Wright, D., Peters, A., Schroer, S. & Fife, J. 2005. Application technology. In: Grewal, P.S., Ehlers, R.-U. & Shapiro-Ilan, D.I. (eds). Nematodes as Biocontrol Agents, CABI, Wallingford. pp. 91 – 106.

Published
2019-08-19
Section
Articles