Biological Deacidification Strategies for White Wines

Abstract

Traditionally, the use of malolactic fermentation gives rise to microbiologically stable wines. However, malolactic fermentation is not free from possible collateral effects that can take place under specific scenarios. The present work tests the influence of different biological deacidification strategies on the volatile and non-volatile components of white must from Germany. The study compared mixed cultures of Lachancea thermotolerans and Schizosaccharomyces pombe and a pure culture of Sc. pombe to the classical biological deacidification process performed by lactic acid bacteria. Strains of Oenococcus oeni and Lactiplantibacillus plantarum were co- or sequentially inoculated with S. cerevisiae to carry out malolactic fermentation. Different fermentation treatments took place at a laboratory scale of 0.6 L in vessels of 0.75 L. The instrumental techniques Fourier-transform mid-infrared spectroscopy (FT-MIR), high performance liquid chromatography (HPLC) and gas chromatography–mass spectrometry (GC-MS) were used to evaluate different chemical parameters in the final wines. The results showed the ability of Sc. pombe to consume malic acid in combination with L. thermotolerans without using S. cerevisiae or lactic acid bacteria. Fermentations involving Sc. pombe consumed all the malic acid, although they reduced the concentrations of higher alcohols, fatty acids and acetic acid. Simultaneous alcoholic and malolactic fermentations reduced malic acid by about 80%, while classical malolactic fermentation reduced it by 100%. Fermentations involving L. thermotolerans produced the highest lactic acid, ester and glycerol concentrations.

Author Biographies

E. Gardoni
Department of Microbiology and Biochemistry, Hochschule Geisenheim University
S. Benito, Polytechnic University of Madrid
Chemistry and Food Technology Departement Professor Department of Chemistry and Food Technology, Polytechnic University of Madrid
S. Scansani
Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Germany
S. Brezina
Department of Microbiology and Biochemistry, Hochschule Geisenheim University
S. Fritsch
Department of Microbiology and Biochemistry, Hochschule Geisenheim University
D. Rauhut
Department of Microbiology and Biochemistry, Hochschule Geisenheim University

References

Benito, S., 2018b. The impacts of Lachancea thermotolerans yeast strains on winemaking. Appl. Microbiol. Biotechnol. 102(16), 6775-6790.

Benito, S., 2019a. The impacts of Schizosaccharomyces on winemaking. Appl. Microbiol. Biotechnol. 103(11), 4291-4312.

Benito, S., 2020. Combined Use of Lachancea thermotolerans and Schizosaccharomyces pombe in Winemaking: A Review. Microorganisms 8(5), 655.

Benito, S., Hofmann, T., Laier, M., Lochbühler, B., Schüttler, A., Ebert, K., Fritsch, S., Röcker, J. & Rauhut, D., 2015b. Effect on quality and composition of Riesling wines fermented by sequential inoculation with non-Saccharomyces and Saccharomyces cerevisiae. Eur. Food Res. Technol. 241(5), 707-717.

du Plessis, H., du Toit, M., Nieuwoudt, H., Van der Rijst, M., Hoff, J. & Jolly, N., 2019. Modulation of wine flavor using Hanseniaspora uvarum in combination with different Saccharomyces cerevisiae, lactic acid bacteria strains and malolactic fermentation strategies. Fermentation 5(3), 64.

du Plessis, H., du Toit, M., Nieuwoudt, H., van der Rijst, M., Kidd, M. & Jolly, N., 2017a. Effect of Saccharomyces, non-Saccharomyces yeasts and malolactic fermentation strategies on fermentation kinetics and flavor of Shiraz wines. Fermentation 3(4), 64.

du Plessis, H.W., du Toit, M., Hoff, J.W., Hart, R.S., Ndimba, B.K. & Jolly, N.P., 2017b. Characterisation of Non-Saccharomyces yeasts using different methodologies and evaluation of their compatibility with malolactic fermentation. S. Afr. J. Enol. Vitic. 38(1), 46-63.

Dutraive, O., Benito, S., Fritsch, S., Beisert, B., Patz, C.-D. & Rauhut, D., 2019. Effect of sequential inoculation with non-Saccharomyces and Saccharomyces yeasts on riesling wine chemical composition. Fermentation 5(3), 79-95.

Jolly, N.P., Varela, C. & Pretorius, I.S., 2014. Not your ordinary yeast: Non-Saccharomycesyeasts in wine production uncovered. FEMS Yeast Res. 14(2), 215-237.

Kanter, J.-P., Benito, S., Brezina, S., Beisert, B., Fritsch, S., Patz, C.-D. & Rauhut, D., 2020. The impact of hybrid yeasts on the aroma profile of cool climate Riesling wines. Food Chem. 5, 100072.

Knoll, C., Fritsch, S., Schnell, S., Grossmann, M., Rauhut, D., & Du Toit, M., 2011. Influence of pH and ethanol on malolactic fermentation and volatile aroma compound composition in white wines. LWT-Food Sci. Technol. 44(10), 2077-2086.

Knoll, C., Fritsch, S., Schnell, S., Grossmann, M., Krieger-Weber, S., du Toit, M. & Rauhut, D., 2012. Impact of different malolactic fermentation inoculation scenarios on Riesling wine aroma. World J. Microbiol. Biotechnol. 28(3), 1143-1153.

Minnaar, P.P., du Plessis, H.W., Jolly, N.P., van der Rijst, M. & du Toit, M., 2019. Non-Saccharomyces yeast and lactic acid bacteria in Co-inoculated fermentations with two Saccharomyces cerevisiae yeast strains: A strategy to improve the phenolic content of Syrah wine. Food Chem. X 4, 100070.

Minnaar, P.P., du Plessis, H.W., Paulsen, V., Ntushelo, N., Jolly, N.P. & du Toit, M., 2017b. Saccharomyces cerevisiae, non-Saccharomyces yeasts and lactic acid bacteria in sequential fermentations: Effect on phenolics and sensory attributes of South African Syrah wines. S. Afr. J. Enol. Vitic. 38(2), 237-244.

Minnaar, P.P., Jolly, N.P., Paulsen, V., Du Plessis, H.W. & Van Der Rijst, M., 2017a. Schizosaccharomyces pombe and Saccharomyces cerevisiae yeasts in sequential fermentations: Effect on phenolic acids of fermented Kei-apple ( Dovyalis caffra L.) juice. Int. J. Food Microbiol. 257, 232-237.

Ruiz, J., Kiene, F., Belda, I., Fracassetti, D., Marquina, D., Navascués, E., Calderón, F., Benito, A., Rauhut, D., Santos, A. & Benito, S., 2019. Effects on varietal aromas during wine making: A review of the impact of varietal aromas on the flavor of wine. Appl. Microbiol. Biotechnol. 103(18), 7425-7450.

Scansani, S., Rauhut, D., Brezina, S., Semmler, H. & Benito, S., 2020. The Impact of Chitosan on the Chemical Composition of Wines Fermented with Schizosaccharomyces pombe and Saccharomyces cerevisiae. Foods 9(10), 1423.

Vilela, A., 2018. Lachancea thermotolerans, the Non-Saccharomyces yeast that reduces the volatile acidity of wines. Fermentation 4(3), 56-61.

Vilela, A., 2019. Use of nonconventional yeasts for modulating wine acidity. Fermentation 5(1), 27-42.

Published
2021-08-17
Section
Articles