The Effect of Pre-Harvest Application of Pectic Oligosaccharides and Abscisic Acid on Technological Ripening and Anthocyanin Profile of ‘Syrah’ Must and Grapes Grown in a Warm Climate

Abstract

The progressive increase of environmental temperature as a consequence of climate change is a challengefor the wine industry. Elevated temperatures during grape ripening affect the development of grape skincolor by inhibiting the synthesis of pigments and promoting their degradation, which causes an imbalancein the chromatic quality of must and red wine. The application of pectic oligosaccharides (POs) and abscisicacid (ABA) triggers the phenylpropanoid pathway and increases the color index in grapes. Since the atharvestpigments and phenolic compounds are determinant for wine quality, this work addressed the preharvestapplication of POs and ABA as an in-field strategy for improving the quality of Syrah must andgrapes grown in a warm climate. The color development, physicochemical parameters, phenolic content,and pigments in berries and must were evaluated. Results showed POs and ABA improved berry colordevelopment and anthocyanin content during ripening. Musts from POs-treated berries exhibited thehighest phenols concentration and the most intense color, related to higher chroma values and anthocyanincontent, particularly delphinidin, petunidin, and malvidin 3-glucosides, while ABA improved must tonalityby reducing the hue angle. In summary, POs and ABA application at veráison, differentially modulatedthe technological ripening of Syrah grapes and can be an alternative to conventional agrochemicals topreserve the quality of musts elaborated from grapes grown in warm climates, by increasing the content ofphenolic compounds and enhancing berry skin color development through the differential accumulationof anthocyanins.

Author Biographies

S.S. Sandoval-Silva, Centro de Investigación en Alimentación y Desarrollo, A.C.
Centro de Investigación en Alimentación y Desarrollo, A.C.
E. Aispuro-Hernández, Centro de Investigación en Alimentación y Desarrollo, A.C.
Centro de Investigación en Alimentación y Desarrollo, A.C.
C. Corrales-Maldonado, Centro de Investigación en Alimentación y Desarrollo, A.C.
Centro de Investigación en Alimentación y Desarrollo, A.C.
I. Vargas-Arispuro, Centro de Investigación en Alimentación y Desarrollo, A.C.
Centro de Investigación en Alimentación y Desarrollo, A.C.
M.A. Martínez-Téllez, Centro de Investigación en Alimentación y Desarrollo, A.C.
Centro de Investigación en Alimentación y Desarrollo, A.C.

References

Aith Barbará, J., Primieri Nicolli, K., Souza-Silva, É.A., Camarão Telles Biasoto, A., Welke, J.E. & Alcaraz Zini, C., 2020. Volatile profile and aroma potential of tropical Syrah wines elaborated in different maturation and maceration times using comprehensive two-dimensional gas chromatography and olfactometry. Food Chem. 308, 125552.

Álvarez, I., Aleixandre, J.L., García, M.J., Lizama, V. & Aleixandre-Tudó, J.L., 2009. Effect of the prefermentative addition of copigments on the polyphenolic composition of Tempranillo wines after malolactic fermentation. Eur. Food Res. Technol. 228(4), 501–510.

Bakker, J. & Clarke, R.J., 2011a. Basic taste and stimulant components. In: Wine flavour chemistry. Wiley-Blackwell, Oxford, UK. pp. 89–154.

Bakker, J. & Clarke, R.J., 2011b. Sherry, port and madeira. In: Wine flavour chemistry. Wiley-Blackwell, Oxford, UK. pp. 291–339.

Barbará, J.A., Silva, É.A.S., Biasoto, A.C.T., Gomes, A.A., Correa, L.C., Leão, P.C.S. & Zini, C.A., 2019. Maturation and maceration effects on tropical red wines assessed by chromatography and analysis of variance - principal component analysis. J. Braz. Chem. Soc. 30(7), 1357–1377.

Bimpilas, A., Panagopoulou, M., Tsimogiannis, D. & Oreopoulou, V., 2016. Anthocyanin copigmentation and color of wine: The effect of naturally obtained hydroxycinnamic acids as cofactors. Food Chem. 197, 39–46.

Canoura, C., Kelly, M.T. & Ojeda, H., 2018. Effect of irrigation and timing and type of nitrogen application on the biochemical composition of Vitis vinifera L. cv. Chardonnay and Syrah grapeberries. Food Chem. 241, 171–181.

Carlomagno, A., Novello, V., Ferrandino, A., Genre, A., Lovisolo, C. & Hunter, J.J., 2018. Pre-harvest berry shrinkage in cv ‘Shiraz’ (Vitis vinifera L.): Understanding sap flow by means of tracing. Sci. Hortic. 233, 394–406.

Carreño, J., Martínez, A., Almela, L. & Fernández-López, J.A., 1995. Proposal of an index for the objective evaluation of the colour of red table grapes. Food Res. Int. 28(4), 373–377.

Crupi, P., Alba, V., Masi, G., Caputo, A.R. & Tarricone, L., 2019. Effect of two exogenous plant growth regulators on the color and quality parameters of seedless table grape berries. Food Res. Int. 126, 108667.

Giacosa, S., Marengo, F., Guidoni, S., Rolle, L. & Hunter, J.J., 2015. Anthocyanin yield and skin softening during maceration, as affected by vineyard row orientation and grape ripeness of Vitis vinifera L. cv. Shiraz. Food Chem. 174, 8–15.

Goldner, M.C., Zamora, M.C., Lira, P.D.L., Gianninoto, H. & Bandoni, A., 2009. Effect of ethanol level in the perception of aroma attributes and the detection of volatile compounds in red wine. J. Sens. Stud. 24(2), 243–257.

Gordillo, B., Cejudo-Bastante, M.J., Rodríguez-Pulido, F.J., Jara-Palacios, M.J., Ramírez-Pérez, P., González-Miret, M.L. & Heredia, F.J., 2014. Impact of adding white pomace to red grapes on the phenolic composition and color stability of syrah wines from a warm climate. J. Agric. Food Chem. 62(12), 2663–2671.

Gouot, J.C., Smith, J.P., Holzapfel, B.P. & Barril, C., 2019. Grape berry flavonoid responses to high bunch temperatures post véraison: Effect of intensity and duration of exposure. Molecules 24(23), 4341.

Heredia, F.J., Francia-Aricha, E.M., Rivas-Gonzalo, J.C., Vicario, I.M. & Santos-Buelga, C., 1998. Chromatic characterization of anthocyanins from red grapes - I. pH effect. Food Chem. 63(4), 491–498.

Khoo, H.E., Azlan, A., Tang, S.T. & Lim, S.M., 2017. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 61(1), 1361779

Kliewer, W.M. & Torres, R.E., 1972. Effect of controlled day and night temperatures on grape coloration. Am. J. Enol. Vitic. 23(2), 71–77.

Koyama, R., Roberto, S.R., de Souza, R.T., Borges, W.F.S., Anderson, M., Waterhouse, A.L., Cantu, D., Fidelibus, M.W. & Blanco-Ulate, B., 2018. Exogenous abscisic acid promotes anthocyanin biosynthesis and increased expression of flavonoid synthesis genes in Vitis vinifera × Vitis labrusca table grapes in a subtropical region. Front. Plant Sci. 9, 323.

Leão, P.C. de S., Lima, M.A.C., Costa, J.P.D. & da Trindade, D.C.G., 2015. Abscisic acid and ethephon for improving red color and quality of crimson seedless grapes grown in a tropical region. Am. J. Enol. Vitic. 66(1), 37–45.

Lurie, S., Ovadia, R., Nissim-Levi, A., Oren-Shamir, M., Kaplunov, T., Zutahy, Y., Weksler, H. & Lichter, A., 2009. Abscisic acid improves colour development in “Crimson Seedless” grapes in the vineyard and on detached berries. J. Hortic. Sci. Biotechnol. 84(6), 639–644.

Malaj, N., Simone, B.C. De, Quartarolo, A.D. & Russo, N., 2013. Spectrophotometric study of the copigmentation of malvidin 3-O-glucoside with p-coumaric, vanillic and syringic acids. Food Chem. 141(4), 3614–3620.

Mazza, G., 1995. Anthocyanins in grapes and grape products. Crit. Rev. Food Sci. Nutr. 35(4), 341–371.

Moreno, B.L. & Oyola, Y.A.D., 2016. Caracterización de parámetros fisicoquímicos en frutos de mora (Rubus alpinus Macfad). Acta Agron. 65(2), 130–136.

Mucalo, A., Maletić, E. & Zdunić, G., 2020. Extended harvest date alter flavonoid composition and chromatic characteristics of plavac mali (Vitis vinifera L.) grape berries. Foods 9(9), 1155.

Ochoa-Villarreal, M., Vargas-Arispuro, I., Islas-Osuna, M.A., González-Aguilar, G. & Martínez-Téllez, M.Á., 2011. Pectin-derived oligosaccharides increase color and anthocyanin content in Flame Seedless grapes. J. Sci. Food Agric. 91(10), 1928–1930.

OIV - Compendium of International Methods of Analysis of Wines and Musts (2 vol.) 2019. Online: http://www.oiv.int/en/technical-standards-and-documents/methods-of-analysis/compendium-of-international-methods-of-analysis-of-wines-and-musts-2-vol [accessed 14 October 2020].

Pavić, V., Kujundžić, T., Kopić, M., Jukić, V., Braun, U., Schwander, F. & Drenjančević, M., 2019. Effects of defoliation on phenolic concentrations, antioxidant and antibacterial activity of grape skin extracts of the varieties Blaufränkisch and Merlot (Vitis vinifera L.). Molecules 24(13), 2444.

Peppi, M.C., Walker, M.A. & Fidelibus, M.W., 2008. Application of abscisic acid rapidly upregulated UFGT gene expression and improved color of grape berries.Vitis 47(1), 11–14.

Pérez-Magariño, S. & González-San José, M.L., 2006. Polyphenols and colour variability of red wines made from grapes harvested at different ripeness grade. Food Chem. 96(2), 197–208.

Pessenti, I.L., Ayub, R.A. & Botelho, R.V., 2019. Defoliation, application of S-ABA and vegetal extracts on the quality of grape and wine Malbec cultivar. Rev. Bras. Frutic. 41(3), e-018.

Rolle, L. & Guidoni, S., 2007. Color and anthocyanin evaluation of red winegrapes by CIE L*, a*, b* parameters. J. Int. des Sci. la Vigne du Vin 41(4), 193–201.

Sadras, V.O. & Moran, M.A., 2012. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust. J. Grape Wine Res. 18(2), 115–122.

Santos, J.A., Fraga, H., Malheiro, A.C., Moutinho-Pereira, J., Dinis, L.-T., Correia, C., Moriondo, M., Leolini, L., Dibari, C., Costafreda-Aumedes, S., Kartschall, T., Menz, C., Molitor, D., Junk, J., Beyer, M. & Schultz, H.R., 2020. A review of the potential climate change impacts and adaptation options for european viticulture. Appl. Sci. 10(9), 3092.

van Schalkwyk, H. & Archer, E., 2000. Optimum ripeness in wine grapes. WinelLand. Online: https://www.wineland.co.za/optimum-ripeness-in-wine-grapes/ [accessed 14 October 2020].

Shahab, M., Roberto, S.R., Ahmed, S., Colombo, R.C., Silvestre, J.P., Koyama, R. & de Souza, R.T., 2020. Relationship between anthocyanins and skin color of table grapes treated with abscisic acid at different stages of berry ripening. Sci. Hortic. 259, 108859.

Singleton, V.L. & Rossi, J.A., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16(3), 144–158.

Torskangerpoll, K. & Andersen, Ø.M., 2005. Colour stability of anthocyanins in aqueous solutions at various pH values. Food Chem. 89(3), 427–440.

Vera-Guzman, A.M., Lafuente, M.T., Aispuro-Hernandez, E., Vargas-Arispuro, I. & Martinez-Tellez, M.A., 2017. Pectic and galacturonic acid oligosaccharides on the postharvest performance of citrus fruits. HortScience 52(2), 264–270.

Villegas, D., Handford, M., Alcalde, J.A. & Perez-Donoso, A., 2016. Exogenous application of pectin-derived oligosaccharides to grape berries modifies anthocyanin accumulation, composition and gene expression. Plant Physiol. Biochem. 104, 125–133.

Yamamoto, L.Y., de Assis, A.M., Roberto, S.R., Bovolenta, Y.R., Nixdorf, S.L., García-Romero, E., Gómez-Alonso, S. & Hermosín-Gutiérrez, I., 2015. Application of abscisic acid (S-ABA) to cv. Isabel grapes (Vitis vinifera×Vitis labrusca) for color improvement: Effects on color, phenolic composition and antioxidant capacity of their grape juice. Food Res. Int. 77, 572–583.

Zhao, T., Wu, J., Meng, J., Shi, P., Fang, Y., Zhang, Z. & Sun, X., 2019. Harvesting at the right time: Maturity and its effects on the aromatic characteristics of cabernet sauvignon wine. Molecules 24(15), 2777.

Published
2021-04-16
Section
Articles