A Review of Tannin Determination Methods Using Spectrophotometric Detection in Red Wines and Their Ability to Predict Astringency

  • C. Wilhelmy Pontificia Universidad Catòlica de Chile
  • C. Pavez Pontificia Universidad Católica de Chile
  • E. Bordeu Pontificia Universidad Catòlica de Chile
  • N. Brossard Pontificia Universidad Catòlica de Chile

Abstract

Astringency is an important sensory attribute that influences red wine quality. The astringent sensation inside the mouth is caused by a group of molecules called tannins. These molecules can be quantified and analysed by several numbers of methods, such as the Bate Smith method, Adams Harbertson assay, and methylcellulose precipitation method. All these methods are colourimetric, however they differ on the principle on which they are based and, as well as on the tannin pool they are able to measure. In the literature, it is possible to find a wide range of concentrations of tannins for the main red wines varieties, which have been evaluated by the methods herein reviewed. For instance, higher tannin concentrations are obtained using the Bate Smith method (2.08-3.48 g/L tannin) compared with the Adams Harbertson assay (0.58-0.14 g/L tannin), which exhibit the lowest results. However, studies that directly compare results obtained with these methods are scarce. The aim of this work is to compare tannin concentrations in red wines and along with how sensory astringency correlates with tannin concentration measured by these three methods.

Downloads

Download data is not yet available.

Author Biographies

C. Wilhelmy, Pontificia Universidad Catòlica de Chile

Pontificia Universidad Catòlica de Chile, School of Agricultural and Forest Sciences, Department of Fruit Production and Enology

C. Pavez, Pontificia Universidad Católica de Chile

Ph. D., Investigator, Pontificia Universidad Catlica de Chile, School of Agricultural and Forest Sciences, Department of Fruit Production and Enology

E. Bordeu, Pontificia Universidad Catòlica de Chile

Ph. D., Professor. Pontificia Universidad Catòlica de Chile, School of Agricultural and Forest Sciences, Department of Fruit Production and Enology

N. Brossard, Pontificia Universidad Catòlica de Chile

Ph. D., Professor. Pontificia Universidad Catòlica de Chile, School of Agricultural and Forest Sciences, Department of Fruit Production and Enology

References

Aleixandre-Tudo, J. L., Nieuwoudt, H., Aleixandre, J. L. and Du Toit, W. J. (2015) “Robust Ultraviolet − Visible (UV − Vis) partial east-squares (PLS) models for tannin quantification in red wine,” J. Agric. Food Chem., 63(4), pp. 1088–1098. doi: 10.1021/jf503412t.

Aleixandre-Tudo, J. L., Nieuwoudt, H., Olivieri, A. and Luis, J. (2018) “Phenolic profiling of grapes , fermenting samples and wines using UV- Visible spectroscopy with chemometrics,” Food Control. Elsevier Ltd, 85, pp. 11–22. doi: 10.1016/j.foodcont.2017.09.014.

Aron, P.M. & Kennedy, J.A., 2008. “Flavan-3-ols: Nature, occurrence, and biological activity,” Mol. Nutr. Food Res. 52, 1, 79-104.

Bajec, M. R. and Pickering, G. J. (2008) “Astringency: mechanisms and perception,” Crit. Rev. Food Sci. Nutr., 48(9), pp. 858–875. doi: 10.1080/10408390701724223.

Boulet, J. C., Trarieux, C., Souquet, J. M., Ducasse, M. A., Caillé, S., Samson, A., Williams, P., Doco, T. and Cheynier, V. (2016) “Models based on ultraviolet spectroscopy, polyphenols, oligosaccharides and polysaccharides for prediction of wine astringency,” Food Chem. Elsevier Ltd, 190(1), pp. 357–363. doi: 10.1016/j.foodchem.2015.05.062.

Brooks, L., McCloskey, L., Mckesson, D. and Sylvan, M. (2008) “Adams-Harbertson protein precipitation-based wine tannin method found invalid,” J. AOAC Int., 91(5), pp. 1090–1094. doi: 10.5555/jaoi.91.5.1090.

Brossard, N., Cai, H., Osorio, F., Bordeu, E. and Chen, J. (2016) “‘Oral’ tribological study on the astringency sensation of red wines,” J. Texture Stud., 47(5), pp. 392–402. doi: 10.1111/jtxs.12184.

Cáceres-Mella, A., Peña-Neira, Á, Narváez-Bastias, J., Jara-Campos, C., López-Solís, R. and Canals, J. M. (2013) “Comparison of analytical methods for measuring proanthocyanidins in wines and their relationship with perceived astringency,” Int. J. Food Sci. Technol., 48(12), pp. 2588–2594. doi: 10.1111/ijfs.12253.

Cadahía, E., Hernández, M. T., Estrella, I. and Martinez, J. (2012) “Polyphenols in red wine aged in acacia (Robinia pseudoacacia) and oak (Quercus petraea) wood barrels,” Anal. Chim. Acta, 732, pp. 83–90. doi: 10.1016/j.aca.2012.01.061.

Casassa, L. F., Beaver, C. W., Mireles, M. S. and Harbertson, J. F. (2013) “Effect of extended maceration and ethanol concentration on the extraction and evolution of phenolics, colour components and sensory attributes of Merlot wines,” Aust. J. Grape Wine Res., 19(1), pp. 25–39. doi: 10.1111/ajgw.12009.

Casassa, L. F., Keller, M. and Harbertson, J. F. (2015) “Regulated deficit irrigation alters anthocyanins, tannins and sensory properties of Cabernet Sauvignon grapes and wines,” Molecules, 20(5), pp. 7820–7844. doi: 10.3390/molecules20057820.

Cortell, J.M.; Halbleib, M.; Gallagher, A.V.; Righetti, T.L.; Kennedy, J. A. (2005) “Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) and wine proanthocyanidins,” J. Agric. Food Chem., 53(14), pp. 5798–5808.

Czubinski, J. and Dwiecki, K. (2017) “A review of methods used for investigation of protein – phenolic compound interactions,” Food Sci. Technol., (52), pp. 573–585. doi: 10.1111/ijfs.13339.

Downey, M. (2010) “Tannin management in the vineyard.” Adelaide: Grape and Wine Research and Development Coporation. Available at: https://www.wineaustralia.com/getmedia/df422991-82ed-4125-b0f7-8395a63d438f/201005-tannin-management-in-the-vineyard.pdf.

Ferrer-Gallego, R., Hernández-Hierro, J. M., Rivas-Gonzalo, J. C. and Escribano-Bailón, M. T. (2014) “Sensory evaluation of bitterness and astringency sub-qualities of wine phenolic compounds: Synergistic effect and modulation by aromas,” Food Res. Int. Elsevier Ltd, 62, pp. 1100–1107. doi: 10.1016/j.foodres.2014.05.049.

Ferrer-Gallego, R., Brás, N. F., García-Estévez, I., Mateus, N., Rivas-Gonzalo, J. C., De Freitas, V. and Escribano-Bailón, M. T. (2016) “Effect of flavonols on wine astringency and their interaction with human saliva,” Food Chem., 209, pp. 358–364. doi: 10.1016/j.foodchem.2016.04.091.

García-Estévez, I., Pérez-Gregorio, R., Soares, S., Mateus, N. and Freitas, V. De (2017) “Oenological perspective of red wine astringency,” OENO One, 51(2), pp. 1–19. doi: http://dx.doi.org/10.20870/oeno-one.2017.51.2.1816.

Gawel, R., Francis, L. and Waters, E. J. (2007) “Statistical correlations between the in-mouth textural characteristics and the chemical composition of Shiraz wines,” J. Agric. Food Chem., 55(7), pp. 2683–2687. doi: 10.1021/jf0633950.

Gawel, R., Oberholster, A. and Francis, I. L. (2000) “A ‘Mouth-feel Wheel’: terminology for communicating the mouth-feel characteristics of red wine,” Aust. J. Grape Wine Res., 6(3), pp. 203–207. doi: 10.1111/j.1755-0238.2000.tb00180.x.

Harbertson, J. F., Mireles, M. S., Harwood, E. D., Weller, K. M. and Ross, C. F. (2009) “Chemical and sensory effects of saignée, water addition, and extended maceration on high brix must,” Am. J. Enol. Viticulture, 60(4), pp. 450–460.

Harbertson, J. F., Kilmister, R. L., Kelm, M. A. and Downey, M. O. (2014) “Impact of condensed tannin size as individual and mixed polymers on bovine serum albumin precipitation,” Food Chem. Elsevier Ltd, 160, pp. 16–21. doi: 10.1016/j.foodchem.2014.03.026.

Harbertson, J. F. and Downey, M. O. (2009) “Technical brief investigating differences in tannin levels determined by methylcellulose and protein precipitation,” Am. J. Enol. Viticulture, 60(2), pp. 246–249.

Harbertson, J. F., Kennedy, J. A. and Adams, D. O. (2002) “Tannin in skins and seeds of Cabernet Sauvignon, Syrah, and Pinot noir berries during ripening,” Am. J. Enol. Viticulture, 53(1), pp. 54–59.

Harbertson, J. F., Picciotto, E. A. and Adams, D. O. (2003) “Measurement of polymeric pigments in grape berry extracts and wines using a protein precipitation assay combined with bisulfite bleaching,” Am. J. Enol. Viticulture, 54(4), pp. 301–306.

Herderich, M. J. and Smith, P. a (2005) “Analysis of grape and wine tannins: methods, applications and challenges,” Aust. J. Grape Wine Res., 11(2), pp. 205–214. doi: 10.1111/j.1755-0238.2005.tb00288.x.

Jensen, J. S., Werge, H. H. M., Egebo, M. and Meyer, A. S. (2008) “Effect of wine dilution on the reliability of tannin analysis by protein precipitation,” Am. J. Enol. Viticulture, 59(1), pp. 103–105.

Kennedy, J., Ferrier, J., Harbertson, J. and Peyrot, C. (2006) “Analysis of tannins in red wine using multiple methods : correlation with perceived astringency,” Am. J. Enol. Viticulture, 57(4), pp. 481–485.

Kilmister, R. L., Faulkner, P., Downey, M. O., Darby, S. J. and Falconer, R. J. (2016) “The complexity of condensed tannin binding to bovine serum albumin – an isothermal titration calorimetry study,” Food Chem. Elsevier Ltd, 190, pp. 173–178. doi: 10.1016/j.foodchem.2015.04.144.

Koerner, J. L., Hsu, V. L., Lee, J. and Kennedy, J. A. (2009) “Determination of proanthocyanidin A2 content in phenolic polymer isolates by reversed-phase high-performance liquid chromatography,” J. Chromatogr. A, 1216, pp. 1403–1409. doi: 10.1016/j.chroma.2008.12.086.

Kuhnle, G.G.C. (2018). “Nutrition epidemiology of flavan-3-ols: the known unknowns,” Mol. Aspects Med., 61, 2-11.

Mateus, N., Pinto, R., Rua, P. and Freitas, V. De (2004) “Influence of the addition of grape seed procyanidins to Port wines in the resulting reactivity with human salivary proteins,” Food Chem., 84, pp. 195–200. doi: 10.1016/S0308-8146(03)00201-2.

Mercurio, M. D., Dambergs, R. G., Herderich, M. J. and Smith, P. A. (2007) “High throughput analysis of red wine and grape phenolics - Adaptation and validation of methyl cellulose precipitable tannin assay and modified somers colour assay to a rapid 96 well plate format,” J. Agric. Food Chem., 55(12), pp. 4651–4657. doi: 10.1021/jf063674n.

Mercurio, M. D. and Smith, P. A. (2008) “Tannin quantification in red grapes and wine: comparison of polysaccharide- and protein-based tannin precipitation techniques and their ability to model wine astringency,” J. Agric. Food Chem., 56(14), pp. 5528–5537. doi: 10.1021/jf8008266.

Mueller-Harvey, I. (2001) “Analysis of hydrolysable tannins,” Anim. Feed Sci. Technol., 91, pp. 3–20.

Oliveira, C. M., Ferreira, A. C. S., De Freitas, V. and Silva, A. M. S. (2011) “Oxidation mechanisms occurring in wines,” Food Res. Int. Elsevier Ltd, 44(5), pp. 1115–1126. doi: 10.1016/j.foodres.2011.03.050.

Pascal, C., Poncet-Legrand, C., Imberty, A., Gautier, C., Sarni-Manchado, P., Cheynier, V., & Vernhet, A. (2007). “Interactions between a non glycosylated human proline-rich protein and flavan-3-ols are affected by protein concentration and polyphenol/protein ratio,” J. Agric. Food Chem., 55(12), 4895–4901.

Ployon, S., Morzel, M., Belloir, C., Bonnotte, A., Bourillot, E., Briand, L., Lesniewska, E., Lherminier, J., Aybeke, E. and Canon, F. (2018) “Mechanisms of astringency : Structural alteration of the oral mucosal pellicle by dietary tannins and protective effect of bPRPs,” Food Chem. Elsevier, 253(February), pp. 79–87. doi: 10.1016/j.foodchem.2018.01.141.

Ren, M., Wang, X., Du, G., Tian, C., Zhang, J., Song, X. and Zhu, D. (2017) “Influence of different phenolic fractions on red wine astringency based on polyphenol / protein binding,” South African J. Enol. Vitic, 38(1), pp. 118–125.

Ribereau Gayon, P. and Stonestreet, E. (1966) “Le dosage des tannins du vin rouge et la détermination de leur structure,” Chim. Anal., 48, pp. 188–196.

Rinaldi, A., Gambuti, A., Moine-Ledoux, V. and Moio, L. (2010) “Evaluation of the astringency of commercial tannins by means of the SDS-PAGE-based method,” Food Chem. Elsevier Ltd, 122(4), pp. 951–956. doi: 10.1016/j.foodchem.2010.03.105.

Rinaldi, A., Gambuti, A., Moio, L. and Page, S. D. S. (2012) “Application of the SPI (Saliva Precipitation Index) to the evaluation of red wine astringency,” Food Chem. Elsevier Ltd, 135(4), pp. 2498–2504. doi: 10.1016/j.foodchem.2012.07.031.

Ropiak, H. M., Lachmann, P., Ramsay, A., Green, R. J. and Mueller-harvey, I. (2017) “Identification of structural features of condensed tannins that affect protein aggregation,” PLOS One, pp. 1–24. doi: 10.1371/journal.pone.0170768.

Sarneckis, C. J., Dambergs, R. G., Jones, P., Mercurio, M., Herderich, M. J. and Smith, P. A. (2006) “Quantification of condensed tannins by precipitation with methyl cellulose: Development and validation of an optimised tool for grape and wine analysis,” Aust. J. Grape Wine Res., 12(1), pp. 39–49. doi: 10.1111/j.1755-0238.2006.tb00042.x.

Sartini, E., Parpinello, G. P., Galassi, S. and Versari, A. (2011) “Characterization of UVA Longanesi red wine by selected parameters related to astringency,” Int. J. Food Prop., 14(5), pp. 1081–1089. doi: 10.1080/10942910903580934.

Schofield, P; Mbugua, D.M.; Pell, A. N. (2001) “Analysis of condensed tannins : a review,” Anim. Feed Sci. Technol., 91, pp. 21–40.

Schwarz, B. and Hofmann, T. (2008) “Is there a direct relationship between oral astringency and human salivary protein binding ?”, European Food Research and Technology, 227, pp. 1693–1698. doi: 10.1007/s00217-008-0895-x.

Scollary, G. R. (2010) Grape and Wine Research and Development Corporation Tannin Review.

Scollary, G. R., Pásti, G., Kállay, M., Blackman, J. and Clark, A. C. (2012) “Astringency response of red wines: potential role of molecular assembly,” Trends Food Sci. Technol., 27(1), pp. 25–36. doi: 10.1016/j.tifs.2012.05.002.

Seddon, T. J. and Downey, M. O. (2008) “Comparison of analytical methods for the determination of condensed tannins in grape skin,” Aust. J. Grape Wine Res., 14(1), pp. 54–61. doi: 10.1111/j.1755-0238.2008.00007.x.

Soares, S., Ferrer-Galego, R., Brandão, E., Silva, M., Mateus, N., & Freitas, V. De. (2016). “Contribution of human oral cells to astringency by binding salivary protein/tannin complexes,” J. Agric. Food Chem., 64(41), 7823–7828. https://doi.org/10.1021/acs.jafc.6b02659

Upadhyay, R., Brossard, N. and Chen, J. (2016) “Mechanisms underlying astringency: introduction to an oral tribology approach,” J. Phys. D. Appl. Phys. IOP Publishing, 49(10). doi: 10.1088/0022-3727/49/10/104003.

Versari, A., du Toit, W. and Parpinello, G. P. (2013) “Oenological tannins : a review,” Aust. J. Grape Wine Res., (19), pp. 1–10. doi: 10.1111/ajgw.12002.

Vidal, L., Giménez, A., Medina, K., Boido, E. and Ares, G. (2015) “How do consumers describe wine astringency?” Food Res. Int. Elsevier Ltd, 78, pp. 321–326. doi: 10.1016/j.foodres.2015.09.025.

Vidal, S., Francis, L., Noble, A., Kwiatkowski, M., Cheynier, V., & Waters, E. (2004). “Taste and mouth-feel properties of different types of tannin-like polyphenolic compounds and anthocyanins in wine,” Anal. Chim. Acta, 513(1), 57–65. https://doi.org/10.1016/j.aca.2003.10.017

Watrelot, A. A., Schulz, D. L. and Kennedy, J. A. (2017) “Wine polysaccharides influence tannin-protein interactions,” Food Hydrocoll. Elsevier Ltd, 63, pp. 571–579. doi: 10.1016/j.foodhyd.2016.10.010.

Werner, K. N. (2008) Changes in polysaccharides, tannin and total phenols throughout sur lies aging of Cabernet Sauvignon Wine. University of California Davis.

Published
2021-04-16
Section
Articles