Comparative Anatomy and Morphology of the Leaves of Grenache Noir and Syrah Grapevine Cultivars

  • P. Gago Misión Biológica de Galicia (MBG-CSIC), Consejo Superior de Investigaciones Científicas, Salcedo 36143, Pontevedra, Spain
  • G. Conejero 2Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de la Recherche Agronomique (INRA) Montpellier SupAgro, Histocytology & Plant Cell Imaging Platform (PHIV), UMR Ameliorat Genet & Adaptat Plantes, Montpellier, France
  • M.C. Martínez Misión Biológica de Galicia (MBG-CSIC), Consejo Superior de Investigaciones Científicas, Salcedo 36143, Pontevedra, Spain
  • P. This 3Institut National de la Recherche Agronomique (INRA), UMR 1334, AGAP, Equipe Divers Adaptat & Ameliorat Vigne, F-34060 Montpellier, France
  • J.L. Verdeil 2Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de la Recherche Agronomique (INRA) Montpellier SupAgro, Histocytology & Plant Cell Imaging Platform (PHIV), UMR Ameliorat Genet & Adaptat Plantes, Montpellier, France


Grenache Noir and Syrah are two of the grapevine (Vitis vinifera L.) cultivars used to a great extent worldwide.  They have very different leaf morphologies from an ampelographic (botanical) point of view. This might also be related to differences in the anatomy and micro-morphology of their leaves. The goal of the present work was to compare these cultivars’ leaf anatomy and morphology. Adult leaves from both cultivars were characterised using a range of microscopy techniques. Grenache Noir had a significantly smaller leaf surface area, but a significantly thicker leaf blade, than Syrah. It also had significantly larger stomata and a larger stomatal index than Syrah. The distribution of mesophyll tissues was similar in both cultivars, but the upper epidermis was significantly thicker in Grenache Noir, and the palisade parenchyma cells were longer in Syrah. The mesophyll tissues of both cultivars contained abundant idioblasts carrying crystals of
calcium oxalate and mucilage. This work reveals quantitative and qualitative differences in the anatomy and morphology of mature Grenache Noir and Syrah leaves. Further work is needed to determine how these anatomical and morphological differences may be connected with different responses at the functional level.


Anderson, K., Aryal, N.R., 2013. Database of Regional, National and Global Winegrape Bearing Areas by Variety, 2000 and 2010, Wine Economics Research Centre, University of Adelaide, December 2013 (first revision April 2014) (second revision May 2014) (third revision July 2014). On line http,// Accessed 04 November 2017.

Ben Salem-Fnayou, A., Bouamama, B., Ghorbel, A., Mliki, A., 2011. Investigations on the leaf anatomy and ultrastructure of grapevine (Vitis vinifera L.) under heat stress. Microsc Res Techniq 74(8), 756-762.

Boso, S., Alonso-Villaverde, V., Santiago, J.L., Gago, P., Dürrenberger, M., Düggelin, M., Kassemeyer, H.H., Martinez, M.C., 2010. Macro- and microscopic leaf characteristics of six grapevine cultivars (Vitis spp) with different susceptibilities to grapevine downy mildew. Vitis 49, 43-50.

Brown, S.L., Warwick, N.W.M., Prychid, C.J., 2013. Does aridity influence the morphology, distribution and accumulation of calcium oxalate crystals in Acacia (Leguminosae, Mimosoideae)?. Plant Physiol Bioch 73, 219-228.

Buffard-Morel, J., Verdeil, J., Pannetier, C., 1992. Embryogenèses somatique du cocotier (Cocos nucifera L) à partir de tissus foliaires, étude histologique. Can J Bot 70, 735–741.

Coupel-Ledru, A., Lebon, E., Christophe, A., Doligez, A., Cabrera-Bosquet, L., Pechier, P., Hamard, P., This, P., Simonneau, T., 2014. Genetic variation in a grapevine progeny (Vitis vinifera L cvs Grenache NoirxSyrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought. J Exp Bot 65(21), 6205-6218.

Coutinho, I.A.C., Francino, D.M.T., Meira, R.M.S.A., 2013. Leaf anatomical studies of Chamaecrista subsect Baseophyllum (Leguminosae, Caesalpinioideae), new evidence for the up-ranking of the varieties to the species level. Plant Syst Evol 299(9), 1709-1720.

D’Ambrogio de Argüeso, A., 1986. Manual de técnicas en Histología Vegetal. Ed Hemisferio Sur SA, Buenos Aires.

Doupis, G., Bosabalidis, A. M., Patakas, A., 2016. Comparative effects of water deficit and enhanced UV-B radiation on photosynthetic capacity and leaf anatomy traits of two grapevine (Vitis vinifera L) cultivars. Theor Exp Plant Phys 28, 131-141.

Ennajeh, M., Vadel, A.M., Cochard, H., Khemira, H., 2010. Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. J Hortic Sci Biotech 85(4), 289-294.

Fisher, D., 1968. Protein staining of ribboned epon sections for light microscopy. Histochemie 16, 92–96.

Franceschi, V.R., Nakata, P.A., 2005. Calcium Oxalate in Plants, Formation and Function. Annu Rev Plant Biol 56, 41-71.

Gago, P., Conejero, G., Martinez, M.C., Boso, S., This, P., Verdeil, J.L., 2016. Microanatomy of leaf trichomes, opportunities for improved ampelographic discrimination of grapevine (Vitis vinifera L) cultivars. Aust J Grape Wine R 22(3), 494-503.

Gerzon, E., Biton, I., Yaniv, Y., Zemach, H., Netzer, Y., Schwartz, A., Fait, A., Ben-Ari, G., 2015. Grapevine Anatomy as a Possible Determinant of Isohydric or Anisohydric Behavior. Am J Enol Viticult 66(3), 340-347.

Gómez-Del-Campo, M., Ruiz, C., Baeza, P., Lissarrague, J. R., 2003. Drought adaptation strategies of four grapevine cultivars (Vitis Vinifera L), modification of the properties of the leaf area J Int Sci Vigne Vin 37(3), 131-143.

He, H., Veneklaas, E.J., Kuo, J., Lambers, H., 2014. Physiological and ecological significance of biomineralization in plants. Trends Plant Sci 19, 166–174.

Hugalde, I.P., Vila, H.F., 2014. Comportamiento isohídrico o anisohídrico en vides…, ¿Una controversia sin fin?. Revista de Investigaciones Agropecuarias 40, 75-82.

Liu, Y., Li, X., Chen, G., Li, M., Liu, M., Liuy, D., 2015. Epidermal micromorphology and mesophyll structure of Populus euphratica heteromorphic leaves at different development stages. Plos One 10, e0141578.

Lovisolo, C., Perrone, I., Carra, A., Ferrandino, A., Flexas, J., Medrano, H., Schubert, A., 2010. Drought-induced changes in development and function of grapevine (Vitis spp) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level, a physiological and molecular update. Funct Plant Biol 37(2), 98-116.

Mishra, Y., Jankanpaa, H.J., Kiss, A.Z., Funk, C., Schroder, W.P., Jansson, S. 2012. Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components. BMC Plant Biol 12, 6.

Monteiro, A., Teixeira, G., Lopes, C.M., 2013. Comparative leaf micromorphoanatomy of Vitis vinifera SSP vinifera (Vitaceae) red cultivars. Ciencia e Tec Vitivinic 28 (1), 19-28

Pennisi, S.V., McConnell, D.B., 2001.Taxonomic relevance of calcium oxalate cuticular deposits in Dracaena Vand ex L. Hortscience 36, 1033–1036.

R Core Team, 2017. R, A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria https,//wwwR-projectorg/. Accessed 20 July 2017.

Rogiers, S.Y., Greer, D.H., Hutton, R.J., Landsberg, J.J., 2009. Does night-time transpiration contribute to anisohydric behaviour in a Vitis vinifera cultivar?. J Exp Bot 60(13), 3751-3763.

Rogiers, S.Y., Greer, D.H., Hatfield, J.M., Hutton, R.J., Clarke, S.J., Hutchinson, P.A., Somers, A., 2011. Stomatal response of anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. Tree Physiol 32, 249-261.

Santesteban, L.G., Miranda, C., Royo, J.B., 2009. Effect of water deficit and rewatering on leaf gas exchange and transpiration decline of excised leaves of four grapevine (Vitis vinifera L) cultivars. Sci Hortic 121, 434–439.

Scienza, A., Boselli, M., 1981. Fréquence et caractéristiques biométriques des stomates de certains porte-greffes de vigne. Vitis 20, 281-292.

Schultz, H.R., 2003. Differences in hydraulic architecture account for near isohydric and anisohydric behaviour of two field grown Vitis vinifera L cultivars during drought. Plant Cell Environ 26(8), 1393-1405.

Scharwies, J.D., Tyerman, S.D., 2017. Comparison of isohydric and anisohydric Vitis vinifera L cultivars reveals a fine balance between hydraulic resistances, driving forces and transpiration in ripening berries. Funct Plant Biol 44 (3), 324-338.

Tombesi, S., Nardini, A., Farinelli, D., Palliotti, A., 2014. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera. Physiol Plantarum 152(3), 453-464.

Tooulakou, G., Giannopoulos, A., Nikolopoulos, D., Bresta, P., Dotsika, E., Orkoula, M.G., Kontoyannis, C.G., Fasseas, C., Liakopoulos, G., Klapa, M.I., Karabourniotis, G., 2016. Alarm Photosynthesis, Calcium Oxalate Crystals as an Internal CO2 Source in Plants. Plant Physiol 171(4), 2577-2585.

Vezzulli, S., Troggio, M., Coppola, G., Jermakow, A., Cartwright, D., Zharkikh, A., Stefanini, M., Grando, M.S., Viola, R., Adam-Blondon, A.F., Thomas, M., This, P., Velasco, R., 2008. A reference integrated map for cultivated grapevine (Vitis vinifera L) from three crosses, based on 283 SSR and 501 SNP-based markers. Theor Appl Genet 117(4), 499-511.

Wilkinson, H., 1979. The plant surface. Pages 97-165 in, Metcalfe CR and Chalk L, eds. Anatomy of Dicotyledons (2nd ed) Volume 1, Systematic Anatomy of the Leaf and Stem. Clarendon Press, Oxford.