Characterisation of Thiol-releasing and Lower Volatile Acidityforming Intra-genus Hybrid Yeast Strains for Sauvignon blanc Wine

  • R.S. Hart Agricultural Research Council Infruitec-Nietvoorbij, Stellenbsoch National Agricultural Proteomics Research & Services Unit (NAPRSU), Department of Biotechnology, University of the Western Cape
  • B.K. Ndimba Agricultural Research Council Infruitec-Nietvoorbij, Stellenbsoch
  • N.P. Jolly Agricultural Research Council Infruitec-Nietvoorbij, Stellenbsoch

Abstract

A single Saccharomyces cerevisiae wine yeast strain produces a range of aroma and flavour metabolites (e.g. volatile thiols), as well as unfavourable metabolites (e.g. volatile acidity [VA]) during the alcoholic fermentation of white wine, especially Sauvignon blanc. The former contributes to the organoleptic quality of the final wine. Previous research showed that yeast derived enzymes (proteins) are involved in the release of wine quality enhancing or reducing metabolites during fermentation. Small-scale winemaking trials were initiated to evaluate protein expression and metabolite release of tropical fruit aroma wine producing S. cerevisiae hybrid yeasts. Commercial ‘thiol-releasing’ wine yeasts (TRWY) were included in winemaking trials as references. Improved hybrids were identified which showed enhanced thiol-releasing, specifically 3-mercaptohexanol (3MH), and lower VA formation during the production of Sauvignon blanc wines compared to some commercial TRWY references. It is noteworthy that the hybrid NH 56 produced wines with the second highest 3MH levels after hybrid NH 84, and lowest acetic acid of all strains included in this study. This yeast was also the only strain to have down-regulated proteins linked to amino acid biosynthesis, pentose phosphate pathway, glycolysis and fructose and galactose metabolism during the lag phase. Furthermore, differences in protein expression were reflected in the variation of metabolite release by different strains, thereby confirming that enzymes (proteins) are the final effectors for metabolite release.   

Downloads

Download data is not yet available.

References

Addinsoft (2013). XLSTAT software version 2013, Paris, France.

Blasco, L., Viñas, M. & Villa, T.G., 2011. Proteins influencing foam formation in wine and beer: the role of yeast. Intl. Microbiol. 14, 61-71. doi: 10.2436/20.1501.01.136 ISSN: 1139-6709

Borneman, A.R., Desany, B.A., Riches, D., Affourtit, J.P., Forgan, A.H., Pretorius, I.S., Egholm, M. & Chambers, P.J., 2012. The genome sequence of the wine yeast VIN 7 reveals an allotriploid hybrid genome with Saccharomyces cerevisiae and Saccharomyces kudriavzevii origins. FEMS Yeast Res. 12, 88–96.

Boutureira, O. & Bernardes, G.J.L., 2015. Advances in chemical protein modification Chem. Rev. 115, 2174–2195.

Bovo, B., Carlot, M., Fontana, F., Lombardi, A., Soligo, S., Giacomini, A. & Corich, V., 2015. Outlining a selection procedure for Saccharomyces cerevisiae isolated from grape marc to improve fermentation process and distillate quality. Food Microbiol. 46, 573–581.

Bowyer, P., Gourraud, C., Murat, M., & van der Westhuizen, T., 2008. Modulation of Sauvignon blanc aromas through yeast strain, nutrition and seasonal variation. [Online]: http://wineland.archive.shapeshift.co.za/archive/index.php?option=com_zine&view=article&id=156:modulation-of-sauvignon-blanc-aromas-through-yeast-strain-nutrition-and-seasonal-variation [accessed on 01 Jul 2016].

Chambers, P.J., Borneman, A.R., Schmidt, S.A., Hack. J.C., Varela, C., Mercurio, M., Curtin, C.D., Cozzolino, D., Ugliano, M., Herderich, M.J. & Pretorius, I.S., 2009. The dawn of a new paradigm for wine yeast strain development. Aust. NZ. Wine Indus. J. 24(3), 16–18.

Coetzee, C. & du Toit, W.J., 2012. A comprehensive review on Sauvignon blanc aroma with a focus on certain positive volatile thiols. Food Res. Int. 45, 287–298.

Coetzee, C. & du Toit, W.J., (2015). Sauvignon blanc wine: Contribution of ageing and oxygen on aromatic and non-aromatic compounds and sensory composition - a review. S. Afr. J. Enol. Vitic. 36, 347–365.

Dubourdieu, D., Tominaga, T., Masneuf, I., des Gachons, C.P. & Murat, M.L., 2006. The role of yeasts in grape flavor development during fermentation: The example of Sauvignon blanc. Am. J. Enol. Vitic. 57, 81–88.

Du Toit, M. & Pretorius, I.S., 2000. Microbial spoilage and preservation of wine: using weapons from nature's own arsenal - a review. S. Afr. J. Enol. Vitic. 21, 74–96.

Fedrizzi, B., Versini, G., Lavagnini, I., Nicolini, G. & Magno, F., 2007. Gas chromatography-mass spectrometry determination of 3-mercaptohexan-1-ol and 3-mercaptohexyl acetate in wine: a comparison of headspace solid phase microextraction and solid phase extraction methods. Anal. Chim. Acta. 596, 291–297.

Gómez-Pastor, R., Pérez-Torrado, R., Cabiscol, E., Ros, J. & Matallana, E., 2010. Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass. Microb. Cell Fact. 9, 9. doi:10.1186/1475-2859-9-9.

Hart, R.S. & Jolly, N.P., 2008. New wine yeasts for South African winemakers. Wineland, November, 20-24.

Hart, R.S., Jolly, N.P., Mohamed, G., Booyse, M. & Ndimba, B.K., 2016. Characterisation of Saccharomyces cerevisiae hybrid yeasts selected for low volatile acidity formation and the production of aromatic Sauvignon blanc wine. Afr. J. Biotech. 15, 2068–2081.

Harsch, M.J., Benkwitz, F., Frost, A., Colonna-Ceccaldi, B., Garner, R.C. & Salmon, J.M., 2013. New precursor of 3-mercaptohexan-1-ol in grape juice: thiol-forming potential and kinetics during early stages of must fermentation. J. Agr. Food Chem. 61, 3703.

Helwi, P., Guillaumie, S., Thibon, C., Keime, C., Habran, A., Hilbert, G., Gomes, E., Darriet, P., Delrot, S. & van Leeuwen, C., 2016. Vine nitrogen status and volatile thiols and their precursors from plot to transcriptome level. BMC Plant Biol. 16, 173. doi: 10.1186/s12870-016-0836-y

Henricsson, C., de Jesus Ferreira, M.C., Hedfalk, K., Elbing, K., Larsson, C., Bill, R.M., Norbeck, J., Hohmann, S. & Gustafsson, L., 2005. Engineering of a novel Saccharomyces cerevisiae wine strain with a respiratory phenotype at high external glucose concentrations. Appl. Environ. Microbiol. 71, 6185–6192.

Holt, S., Cordente, A.G., Williams, S.J., Capone, D.L., Jitjaroen, W., Menz, I.R., Curtin, C. & Anderson, P.A., 2011. Engineering Saccharomyces cerevisiae to release 3-mercaptohexan-1-ol during fermentation through overexpression of an S. cerevisiae gene, STR3, for improvement of wine aroma. App. Environ. Microbiol. 77, 3626–3632.

Howe, G., 2016. The new wine speak of Sauvignon blanc [Online]: http://www.durbanvillewine.co.za/blog/the-new-wine-speak-of-sauvignon-blanc [accessed on 07 Aug Mar 2016].

Howell, K.S., Cozzolino, D., Bartowsky, E., Fleet, G.H. & Henschke, P.A., 2006. Metabolic profiling as a tool for revealing Saccharomyces interactions during wine fermentation. FEMS Yeast Res. 6, 91–101.

Jackson, R.S., 2014. Wine science: Principles and applications (Food Science and Technology) 4th Edition. Amsterdam: Academic Press, an imprint of Elsevier.

Jolly, N.P., Varela, C. & Pretorius, I.S., 2014. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 14, 215–237 doi: 10.1111/1567-1364.12111

Juega, M., Nunez, Y.P., Carrascosa, A.V. & Martinez-Rodriguez, A.J., 2012. Influence of yeast mannoproteins in the aroma improvement of white wines. J. Food Sci. 77, 499–504.

Kim, P.D., Patel, B.B. & Yeung, A.T., 2012. Isobaric labeling and data normalization without requiring protein quantitation. J. Biomol. Tech. 23, 11–23.

King, E.S., 2010. The modulation of Sauvignon blanc wine aroma through control of primary fermentation. PhD thesis, The School of Agriculture, Food and Wine, University of Adelaide, Adelaide SA, 5005, Australia.

King, E.S., Francis, I.L., Swiegers, J.H. & Curtin, C., 2011. Yeast strain-derived sensory differences retained in Sauvignon blanc wines after extended bottle storage Am. J. Enol. Vitic. 62, 366–370.

Lambrechts, M.G. & Pretorius, I.S., 2000. Yeast and its importance to wine aroma - a review. S. Afr. J. Enol. Vitic. 21, 97–129.

Lapalus, E., 2016. Linking sensory attributes to selected aroma compounds in South African Cabernet Sauvignon wines. MSc thesis, Stellenbosch University, Private Bag X1, 7602, Matieland (Stellenbosch), South Africa.

Ljungdahl, P.O. & Daignan-Fornier, B., 2012. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics. 190, 885–929.

Lodish, H.B., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. & Darnell, J.E., 2000. Molecular Cell Biology (4th ed), W.H. Freeman, New York.

Luyten, K., Riou, C. & Blondin, B., 2002. The hexose transporters of Saccharomyces cerevisiae play different roles during enological fermentation. Yeast. 19, 713–726.

Mapelli, V., Olsson, L. & Nielsen, J., 2008. Metabolic footprinting in microbiology: Methods and applications in functional genomics and biotechnology. Trend. Biotechnol. 26, 490–497.

Marais, J., 1994. Sauvignon blanc cultivar aroma - a review. S. Afr. J. Enol. Vitic. 15, 41–45.

Mateo-Vivaracho, L., Cacho, J. & Ferreira, V., 2009. Selective preconcentration of volatile mercaptans in small SPE cartridges: quantitative determination of trace odor-active polyfunctional mercaptans in wine. J. Sep. Sci. 32, 3845–3853.

Mattivi, F., Fedrizzi, B., Zenatob, A., Tiefenthalerb, P., Tempestab, S., Perenzonia, D., Cantarella, P., Simeoni, F. & Vrhovseka, U., 2012. Development of reliable analytical tools for evaluating the influence of reductive winemaking on the quality of Lugana wines. Anal. Chim. Acta. 732, 194–202.

May, C., Brosseron, F., Chartowski, P., Meyer, H.E. & Marcus, K., 2012. Differential proteome analysis using 2D-DIGE. Methods Mol. Biol. 893, 75–82.

Merlini, L., Dudin, O. & Martin, S.G., 2013. Mate and fuse: how yeast cells do it. Open Biol. doi: 10.1098/rsob.130008

Moreno-García, J., García-Martínez, T., Millán, M.C., Mauricio, J.C. & Moreno, J., 2015. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions. Food Microbiol. 51, 1–9.

Moss, R., 2015. How volatile fatty acids and sulphurous compounds impact on key aromas. [Online]: http://www.wineland.co.za/technical/how-volatile-fatty-acids-and-sulphurous-compounds-impact-on-key-aromas [accessed on 27 May 2016].

Muñoz, D., Peinado, R., Medina, M. & Moreno, J., 2006 Higher alcohols concentration and its relation with the biological aging evolution. Eur. Food. Res. Technol. 222, 629–635.

Navarro-Tapia, E., Nana, R.K., Querol, A. & Pérez-Torrado, R., 2016. Ethanol cellular defense induce unfolded protein response in Yeast. Front. Microbiol. 7, 189. doi:10.3389/fmicb.2016.00189

O’Kennedy, K., 2016. Increasing Sauvignon blanc aroma with H2S. [Online]: http://igws.co.za/article/blog/increasing-sauvignon-blanc-aroma-with-h2s [accessed on 06 Sep 2016].

Pearson, K., 1896. Mathematical contributions to the theory of evolution. III. Regression, heredity and panmixia. Philos. Trans. Royal Soc. London Ser. A. 187, 253–318.

Pearson, K., 1901. On lines and planes of closest fit to systems of points in space. Phil. Mag. 2, 559–572.

Perez, M., Luyten, K., Michel, R., Riou, C. & Blondin, B., 2005. Analysis of Saccharomyces cerevisiae hexose carrier expression during wine fermentation: both low- and high-affinity Hxt transporters are expressed. FEMS Yeast Res. 5, 351–361.

Pinu, F.R., Edwards, P.J.B., Gardner, R.C. & Villas-Boas, S.G., 2015. Nitrogen and carbon assimilation by Saccharomyces cerevisiae during Sauvignon blanc juice fermentation. FEMS Yeast Res 14, 1206–1222.

Pinu, F.R., Jouanneau, S., Nicolau, L., Gardner, R.C. & Villas-Boas, S.G., 2012. Concentrations of the volatile thiol 3-mercaptohexanol in Sauvignon blanc wines: no correlation with juice precursors. Am. J. Enol. Vitic. 63, 407–412.

Roland, A., Schneider, R., Razungles, A. & Cavelier, F., 2011. Varietal thiols in wine: discovery, analysis and applications. Chem. Rev. 22, 7355–7376. doi: 10.1021/cr100205b

Roncoroni, M., Santiago, M., Hooks, D.O., Moroney, S., Harsch, M.J. & Lee, S.A., 2011. The yeast IRC7 gene encodes a β-lyase responsible for production of the varietal thiol 4-mercapto-4-methylpentan-2-one in wine. Food Microbiol. 28, 926–35.

Rossignol, T., Postaire, O., Storaï, J. & Blondin, B., 2006. Analysis of the genomic response of a wine yeast to rehydration and inoculation. Appl. Microbiol. Biotechnol. 71, 699–712.

Salvado, Z., Chiva, R., Rodríguez-Vargas, S., Rández-Gil, F., Mas, A. & Guillamo, J.M., 2008. Proteomic evolution of a wine yeast during the first hours of fermentation. FEMS Yeast Res 8, 1137–1146.

Sharma, S., Ray, S., Moiyadi, A., Sridhar, E. & Srivastava, S., 2014. Quantitative proteomic analysis of meningiomas for the identification of surrogate protein markers. Sci. Rep. 4, 7140. doi: 10.1038/srep07140

Srisamatthakarn, P., 2011. Improvement of varietal aroma in grape and tropical fruit wines by optimal choice of yeasts and nutrient supplements. Dr. Agr.Thesis, Justus-Liebig-University Giessen and Geisenheim Research Center, Germany.

Styger, G., 2011. Elucidating the metabolic pathways responsible for higher alcohol production in Saccharomyces cerevisiae. PhD thesis, Stellenbosch University, Private Bag X1, 7602, Matieland (Stellenbosch), South Africa.

Swiegers, J., Bartowsky, E., Henschke, P. & Pretorius, I., 2005. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res.11, 139–173

Swiegers, J.H., Capone, D.L., Pardon, K.H., Elsey, G.M., Sefton, M.A., Francis, I.L. & Pretorius, I.S., 2007a. Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma. Yeast 24, 561–574.

Swiegers, J.H., Francis, I.L., Herderich, M.J. & Pretorius, I.S., 2006a. Meeting consumer expectations through management in vineyard and winery: the choice of yeast for fermentation offers great potential to adjust the aroma of Sauvignon blanc wine. Aust. NZ. Wine Indus. J. 21, 34–42.

Swiegers, J.H., Kievit, R.L., Siebert, T., Lattey, K.A., Bramley, B.R., Francis, I.L., King, E.S. & Pretorius, I.S., 2009. The influence of yeast on the aroma of Sauvignon blanc wine. Food Microbiol. 26, 204-211.

Swiegers, J.H., King, E., Travis, B., Francis, L. & Pretorius, I.S., 2007b. Enhancement of Sauvignon blanc wine aroma through yeast combinations. [Online]: http://www.wineland.co.za/technical/enhancement-of-sauvignon-blanc-wine-aroma-through-yeast-combinations [accessed on 27 May 2016].

Swiegers J.H., Willmott, R., Hill-Ling, A., Capone, D.L., Pardon, K.H., Elsey, G.M., Howell, K.S., de Barros Lopes, M.A., Sefton, M.A., Lilly, M. & Pretorius, I.S., 2006b. Modulation of volatile thiol and ester aromas by modified wine yeast. Developments in Food Sci. 43, 113–116.

Ugliano, M., Kwiatkowski, M.J., Travis, B., Francis, I.L., Waters, E.J., Herderich, M.J. & Pretorius, I.S., 2009. Post-bottling management of oxygen to reduce off-flavour formation and optimise wine style. [Online]: http://www.newworldwinemaker.com/pdf/AWRI_report_

post-bottling_management.pdf [accessed on 23 Aug 2016].

Van Jaarsveld, F.P., Hattingh, S. & Minnaar, P.P., 2009. Rapid induction of ageing character in brandy products – Part III. Influence of toasting. S. Afr. J. Enol. Vitic. 30, 24–37.

Van Wyngaard, E., 2013. Volatiles playing an important role in South African Sauvignon blanc wines. MSc thesis, Stellenbosch University, Private Bag X1, 7602, Matieland (Stellenbosch), South Africa.

Varela, C., Kutyna, D.R., Solomon, M.R., Black, C.A., Borneman, A., Henschke, P.A., Pretorius, I.S. & Chambers, P.J. 2012. Evaluation of gene modification strategies for the development of low-alcohol-wine yeasts. Appl. Environ. Microbiol. 78, 6068–6077.

Vehus, T., Seterdal, K.E., Krauss, S., Lundanes, E. & Wilson, S.R., 2016. Comparison of commercial nanoliquid chromatography columns for fast, targeted mass spectrometry-based proteomics. Future Sci. OA. doi:10.4155/fsoa-2016-0014

Vilela, A., Schuller, D., Mendes-Faia, A. & Côrte-Real, M., 2013. Reduction of volatile acidity of acidic wines by immobilized Saccharomyces cerevisiae cells. Appl. Microbiol. Biotechnol. 97, 4991–5000.

Vilela-Moura, A., Schuller, D., Mendes-Faia, A., Silva, R.D., Chaves, S.R., Sousa, M.J. & Côrte-Real, M., 2011. The impact of acetate metabolism on yeast fermentative performance and wine quality: Reduction of volatile acidity of grape musts and wines. Appl. Microbiol. Biotechnol. 89, 271–280.

Volschenk, H., van Vuuren, H.J.J. & Viljoen-Bloom, M., 2006. Malic acid in wine: Origin, function and metabolism during vinification. S. Afr. J. Enol. Vitic. 27, 123–136.

Von Mollendorf, A., 2013. The impact of wine yeast strains on the aromatic profiles of Sauvignon Blanc wines derived from characterized viticultural treatments. MSc thesis, Stellenbosch University, Private Bag X1, 7602, Matieland (Stellenbosch), South Africa.

Walkey, C.J., Luo. Z., Madilao, L.L. & van Vuuren, H.J.J., 2012. The fermentation stress response protein Aaf1p/Yml081Wp regulates acetate production in Saccharomyces cerevisiae. PLoS ONE 7, e51551. doi:10.1371/journal.pone.0051551

Wang, C., Mas, A. & Esteve-Zarzoso, B., 2016. The interaction between Saccharomyces cerevisiae and non-Saccharomyces yeast during alcoholic fermentation is species and strain Specific. Front Microbiol. 7, 502.

Young, E., Poucher, A., Comer, A., Bailey, A. & Alper, H., 2011. Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Appl. Environ. Microbiol. 77, 3311–3319.

Zoecklein, B.W., Fugelsang, K.C., Gump, B.H. & Nury, F.S., 1995. Wine analysis and production. Chapman & Hall, New York.

Zou, H., Hastie, T. & Tibshirani, R., 2006. Sparse principal component analysis. J. Comput. Graph. Stat. 15, 265–286.

Zuzuarregui, A., Monteoliva, L., Gil, C., & del Olmo, M., 2006. Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation. Appl. Environ. Microbiol. 72, 836–847.

Published
2017-10-10
Section
Articles