Colour Evaluation of Pinot Noir and Merlot Wines after Malolactic Fermentation Carried out by Oenococcus oeni and Lactobacillus plantarum Patagonian Native Strains

  • N.T. Olguin Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada (IMBA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña Nº 352, (B1876BXD) Bernal, Buenos Aires, - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA,
  • L. Delfederico Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada (IMBA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña Nº 352, (B1876BXD) Bernal, Buenos Aires,
  • L. Semorile Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-BA),


Malolactic fermentation is a complex process that involves many reactions aside from the decarboxylation of L-malic acid. But we still have only glimpses of that complexity. It is not clear if the phenolic compositionand colour are affected by malolactic fermentation and, if so, to what extent. So, the aims of this study were: 1) to evaluate the behaviour of native Patagonian strains of Oenococcus oeni and Lactobacillus plantarumin two wine varieties, and 2) to analyse the effect of malolactic fermentation on the colour of these wines.  Our results show that the survival of bacteria and L-malic acid decarboxylation is different depending on the lactic acid bacteria strain employed and the wine variety. In addition, we found that O. oeni can survive in wine even when L-malic acid is not being consumed. We found some correlations between MLF and colour-related parameters in Pinot noir but not for Merlot. In fact, some of the colour-related parameters measured in Merlot (total polyphenolic index, colour intensity, hue, as well as the CIELAB parameters) were affected even when L-malic acid was not being consumed.


Abrahamse, C.E, Bartowsky, E.J. 2012. Timing of malolactic fermentation inoculation in Shiraz grape must and wine: influence on chemical composition. World J. Microbiol. Biotechnol. 28, 255-265.

Ayala, F., Echávarri, J.F., Negueruela, A.I. 1997. A new simplified method for measuring the color of wines. I. Red and Rosé wines. Am. J. Enol. Vitic. 48(3), 357-363.

Bartowsky, E.J. 2017. Oenococcus oeni and the genomic era. FEMS Micorbiol. Rev. 1;41(Supp_1): S84-S94.

Berbegal, C., Peña, N., Russo, P., Grieco, F., Pardo, I., Ferrer, S., Spano, G., Capozzi, V. 2016. Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation. Food Microbiol. 57, 187-194.

Bravo-Ferrada, B.M., Gómez-Zavaglia, A., Tymczyszyn, E.E., Semorile, L. 2014. Effect of acclimation medium on cell viability, membrane integrity and ability to consume malic acid in synthetic wine by oenological Lactobacillus plantarum strains. J. Appl. Microbiol. 116, 360-367.

Brizuela, N.S., Bravo-Ferrada, B.M., Valdés La Hens, D., Hollmann, A., Delfederico, L., Caballero, A., Tymczyszyn, E.E., Semorile, L. 2017. Comparative vinifications assays with selected Patagonian strains of Oenococcus oeni and Lactobacillus plantarum. LWT Food Sci. Technol. 77, 1-8.

Brizuela, N.S., Bravo-Ferrada, B.M., Pozo-Bayón, M.A., Semorile, L., Tymczyszyn, E.E. 2018. Changes in the volatile profile of Pinot noir wines caused by Patagonian Lactobacillus plantarum and Oenococcus oeni. Food Res. Int. 106, 22-28.

Brizuela, N., Tymczyszyn, E.E., Semorile, L.C., Valdés La Hens, D., Delfederico, L., Hollmann, A., Bravo-Ferrada, B. 2019. Lactobacillus plantarum as a malolactic starter culture in winemaking: A new (old) player? Electron. J. Biotechnol. 38, 10-18.

Burns, T.R., Osborne, J.P. 2013. Impact of malolactic fermentation on the color and color stability of pinot noir and merlot wine. Am. J. Enol. Vitic. 64(3), 370-377. http://10.5344/ajev.2013.13001.

Cheynier, V., Dueñas-Paton, M., Salas, E., Maury, C., Souquet, J.M., Sarni-Manchado, S., Fulcrand, H. 2006. Structure and properties of wines pigments and tannins. Am. J. Enol. Vitic. 57(3), 298-305.

Costantini, A., García-Moruno, E., Moreno-Arribas, M.W. 2009. Biochemical transformations produced by malolactic fermentation. In: Moreno-Arribas, M.W., Polo, M.C., (Eds), Wine Chemistry and Biochemistry (pp. 27-57). Springer, New York, NY.

Costello, P.J., Francis, I.L., Bartowsky, E.J. 2012. Variations in the effect of malolactic fermentation on the chemical and sensory properties of Cabernet Sauvignon wine: interactive influences of Oenococcus oeni strain and wine matrix composition. Aust. J. Grape Wine Res. 18(3), 287-301.

De Revel, G., Bloem, A., Augustin, M., Lonvaud-Funel, A., Bertrand, A. 2005. Interaction of Oenococcus oeni and oak wood compounds. Food Mircrobiol. 22, 569-575.

Dobrei, A., Poiana, M.A., Sala, F., Ghita, A., Gergen, I. 2010. Changes in the chromatic properties of red wines from Vitis vinifera L. cv. Merlot and Pinot Noir during the course of aging in bottle. J. Food Agric. Environ. 8(2), 20-24.

Durán, O.D.S, Trujillo, N.Y.Y. 2008. Estudio comparativo del contenido fenólico de vinos tintos colombianos e importados. Viate, Revista de la Facultad de Química Farmacéutica, 15(1), 17-24.

Du Toit, M., Engelbrecht, L., Lerm, E., Krieger-Weber, S. 2011. Lactobacillus: the next generation of malolactic fermentation starter cultures – an overview. Food Bioprocess Technol. 4, 876-906.

Elorduy Vidal, X.L. 2014. Caracterización de vinos tintos de varias denominaciones de origen catalanas en base a los vinos presentes en el mercado. DO Tarragona, DO Conca de Barberà y DOQ Priorat. Thesis, Universitat Politècnica de València. doi:10.4995/Thesis/10251/35893.

Garrido, J., Borges, F. 2013. Wine and grape polyphenols – a chemical perspective. Food Res. Int. 54, 1844-1858.

González-Centeno, M.R., Chira, K., Teissedre, P.L. 2017. Comparison between malolactic fermentation container and barrel toasting effects on phenolic, volatile and sensory profile of red wines. J. Agric. Food. Chem. 65(16), 3320-3329.

Hernández, T., Estrella, I, Pérez-Gordo, M., Alegría, E.G., Tenorio, C., Ruiz-Larrea, F., Moreno-Arribas, M.V. 2007. Contribution of malolactic fermentation by Oenococcus oeni and Lactobacillus plantarum to the changes in the nonanthocyanin polyphenolic composition of red wine. J. Agric. Food. Chem. 55, 5260-5266.

Izquierdo-Cañas, P.M., Mena-Morales, A., García-Romero, E. 2005. Interaction of Oenococcus oeni and oak wood compounds. Food Microbiol. 22, 569-575.

Krieger-Weber, S., Heras, J.M., Suarez, C. 2020. Lactobacillus plantarum, a new biological tool to control malolactic fermentation: a review and an outlook. Beverages, 6, 1-23.

Lonvaud-Funel, A. 2015. Lactic acid bacteria and malolactic fermentation in wine. In: Mozzi, F., Raya, R.R., Vignolo, G.M., (Eds), Biotechnology of lactic acid bacteria (pp. 231-247). John Wiley & Sons, Ltd, England.

Lorentzen, M.P.G., Lucas, P.M. 2019. Distribution of Oenococcus oeni population in natural habitats. Appl. Microbiol. Biotechnol. 103, 2937-2945.

Mangani, S., Buscioni, G., Collina, L., Bocci, E., Vicenzini, M. 2011. Effects of microbial populations on anthocyanin profile of Sangiovese wines produced In Tuscany, Italy. Am. J. Enol. Vitic. 62(4), 487-493. http://10.5344/ajev.2011.11047.

Massera, A., Soria, A., Catania, C., Krieger, S., Combina, M. 2009. Simultaneous inoculation of Malbec (Vitis vinífera) musts with yeast and bacteria: Effects on fermentation performance, sensory and sanitary attributes of wines. Food Technol. Biotechnol. 47(2), 192-201.

Nel, A.P. 2018. Tannins and anthocyanins: from their origin to wine analysis – a review. S. Afr. J. Enol. Vitic. 39(1), 1-20.

Olguin, N.T., Valdés La Hens, D., Delfederico, L., Semorile, L. 2019. Relative expression of stress-related genes during acclimation at low temperatures of psychrotrophic Oenococcus oeni strains from Patagonian wine. World J. Microbiol. Biotechnol. 35(5), 1-9.

Pandeya, A., Rayamajhi, S., Pokhrel, P., Giri, B. 2018. Evaluation of secondary metabolites, antioxidant activity, and color parameters of Nepali wines. Wiley Food Sci. Nut. 6(8), 2252-2263.

Versari, A., Boulton, R.B., Parpinello, G.P. 2008. A comparison of analytical methods for measuring the color components of red wines. Food Chem. 106(1), 397-402.

Renouf, V., Perello, M.C., de Revel, G., Lonvaud-Funel, A. 2007. Survival of wine microorganisms in the bottle during storage. Am. J. Enol. Vitic. 58(3), 379-386.

Ribéreau-Gayon, P., Glories, I., Maujean, A., Dubourdieu, D. 2006. Phenolic compounds, In: Handbook of enology, Vol. 2: The chemistry of wine: Stabilization and treatments (pp. 141-203). John Wiley & Sons, England.

Sumby, K.M, Bartle, L., Grbin, P.R., Jiranek, V. 2019. Measures to improve wine malolactic fermentation. Appl. Microbiol. Biotechnol. 103, 2033–2051.

Vaquero, I., Marcobal, A., Muñoz, R. 2004. Tannase activity by lactic acid bacteria isolated from grape must and wine. Int. J. Food Microbiol. 96, 199-204.

Vivas, N., Bellemere, L., Lonvaud-Funel, A., Glories, Y., Augustin, M. 1994. Etudes sur la fermentation malolactique des vins rouges en barrique et en cuves. Revue Française d’Œnologie. 151, 39-45.

Wang, S., Li, S., Zhao, H., Gu, P., Chen, Y., Zhang, B., Zhu, B. 2018. Acetaldehyde released by Lactobacillus plantarum enhances accumulation of pyranoanthocyanins in wine during malolactic fermentation. Food Res. Int. 108, 254-263.