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An R Shiny application for optimising mixed medley relay teams
in swimming

San-Mari Ackerman, Paul J. van Staden and Inger Fabris-Rotelli

Department of Statistics, University of Pretoria, Pretoria, South Africa

The allocation of Masters swimmers to relay teams presents a complex optimi-
sation problem, due to various combinations of age groups, genders and swimming
stroke type. This study explores the optimisation of team selection dynamics in
Masters swimming, focusing on mixed medley relay teams. In this article, we
aim to enhance performance through mathematical modeling and extend previous
research by incorporating stroke-specific constraints using integer linear program-
ming (ILP). We replicate and advance existing findings, using the R programming
language, addressing complexities such as gender balance, stroke specialisation,
and age categories. This research contributes to sports science by providing insights
into optimal team compositions, applicable not only to Masters swimming but also
serving as a template for team selection in other sports domains. Additionally, it
contributes to statistics by demonstrating the practical application of optimisation
techniques and combinatorial methods in solving real-world team selection prob-
lems.
Keywords: Integer Linear Programming, Masters Swimming, Mixed Medley Relay, Shiny
App, Team Composition.

1. Introduction
This study explores the intersection of sports science and mathematical optimisation, focusing on
team selection for Masters swimming mixed medley relay events. Masters swimming encompasses
amateur competitive swimming for individuals aged 18 and older. In South Africa, the criteria for age
and regulations vary by club or governing body1. These events are divided into age categories based
on the cumulative age of four swimmers, adding a unique layer of complexity to team composition.

Unlike conventional ranking-based approaches to team formation, the inclusion of age categories,
stroke specialisation, and gender balance introduces an optimisation problem that requires careful
consideration. This research addresses these complexities using integer linear programming (ILP)
to optimise team assignments. By minimising total race times while respecting age and stroke
constraints, this study contributes a novel mathematical approach to enhancing performance in
Masters swimming.

Team selection in sport plays a pivotal role in both individual development and overall team
success. By applying advanced mathematical techniques, this research aims to not only improve
team performance but also offers a framework for broader application in sports team management.

Corresponding author: Paul J. van Staden (paul.vanstaden@up.ac.za)
MSC2020 subject classifications: 62–06
1 https://www.samastersswimming.com/
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1.1 Literature Review
Integer programming (IP) models have been widely applied in team selection across various sports.
These models optimise team composition by defining decision variables, objective functions, and
constraints, such as non-negativity and technology conditions (Sierksma and Zwols, 2015).

Gerber and Sharp (2006) pioneered the use of IP for selecting cricket squads, applying it to a 15-
player squad for one-day international tournaments. While innovative, the model faced challenges
like multiple optimal solutions and the need for detailed cricket-specific knowledge to formulate
coefficients. Building on this, Sharp et al. (2011) refined the IP approach by introducing precise
ability indices, reducing subjective bias and extending the framework to Twenty20 (T20) cricket.

Further advancements were made by Chand et al. (2018), who developed a multi-objective IP
model incorporating financial metrics, player performance, and star power for cricket team auctions.
This model provided trade-off solutions, balancing performance and cost under budget constraints.
Similarly, Gokul and Sundararaman (2023) optimised player selection in the Indian Premier League
by using past performance data to maximise the likelihood of success against specific opponents.

Expanding beyond cricket, Fabris-Rotelli et al. (2022) applied an integer optimisation program to
form optimal freestyle relay teams for Masters swimming competitions. The model, using swimmers’
fastest 50m times, successfully minimised cumulative lap times across male, female, and mixed relay
teams, demonstrating the effectiveness of IP in team composition for swimming. This is the only
literature available that addresses integer optimisation in Masters swimming due to the complexities
involved in the relay team structures. This paper thus contributes to the literature by expanding
on the approach in Fabris-Rotelli et al. (2022). One should note that the use of genetic algorithms
or dynamic programming could also be considered as alternatives, but would, however, make the
problem more complex than necessary.

2. Methodology
This study aims to develop an IP model to assemble teams of four relay swimmers for a mixed medley
relay swimming competition to minimise the overall cumulative time of the teams. Each member can
participate in any of the following strokes within a single team: freestyle, backstroke, breaststroke,
and butterfly. The question begs which combination of swimmers would achieve the best results.

To illustrate the complexity of this question, consider the following example: The Swedish relay
is an athletics relay event that involves teams of four runners. The first team member runs 100m,
followed by the second covering 200m. The third then runs 300m, and the final member finishes
with a 400m lap, completing the 1km relay. This event is particularly interesting, since most athletes
that focus on the 200m event, are skilled at either the 100m or 400m event as well. Additionally,
the 300m event is an uncommon track event that few athletes specifically train for. In the context of
South African athletics, would it be most effective for Wayde van Niekerk, a skilled athlete in both
the 200m and 400m events, to run the 200m, 300m, or 400m leg of the race? This obviously depends
on the other members of the team as well and evokes an optimisation model.

A similar conundrum is faced in swimming as some athletes compete well in multiple stroke-
specific events. Also, the butterfly stroke is particularly difficult to master and consequently less
popular among Masters swimmers. Additionally, for this relay event, each team of a club needs to
adhere to a certain age constraint, specifically that the cumulative ages of the four swimmers in each
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Table 1. Categories of year ranges.

Category Years Range

1 100 to 119 years
2 120 to 159 years
3 160 to 199 years
4 200 to 239 years
5 240 to 279 years
6 280 to 319 years
7 320 to 359 years
8 360 to 399 years

team have to fall within a different age category. The categories, as specified by World Aquatics, are
listed in Table 1. For example, a relay team with four swimmers aged 19, 48, 58 and 76 respectively,
has cumulative age 19+48+58+76=201 and therefore falls, as indicated in Table 1, in Category 4: 200
to 239 years. Hence, there is a need for a mathematical algorithm to account for all the possibilities.

Any integer optimisation program (IOP) can be constructed by defining an objective function,
decision variables, and various constraints (Wolsey and Nemhauser, 1988). The objective function
is a value, expressed as a function of the decision variables, to be optimised, e.g., maximising an
investment’s profit or minimising energy consumption by a particular powerplant. To obtain the
desired result, the specific values of the decision variables are modified. The range of the variables is
limited by sets of equations, known as the constraints, for instance, the budget allocated for a specific
investment.

To construct the IOP, define the decision variable,

𝑥𝑖 𝑗𝑘𝑙 =

{
1, if swimmer 𝑖 is selected to swim in age category 𝑗 using stroke 𝑘 and is of gender 𝑙
0, otherwise,

where 𝑖 ∈ {1, ..., 𝑛𝑖}, 𝑗 ∈ {1, ..., 𝑛 𝑗 }, 𝑘 ∈ {1, ..., 4}, 𝑙 ∈ {1, 2} with 𝑛𝑖 the number of swimmers and
𝑛 𝑗 the number of age categories.

To achieve the desired result, the objective function 𝑇 is minimised:

𝑇 =

𝑛 𝑗∑︁
𝑗=1

(
𝑛𝑖∑︁
𝑖=1

4∑︁
𝑘=1

2∑︁
𝑙=1

𝑡𝑖 𝑗𝑘𝑙𝑥𝑖 𝑗𝑘𝑙 − 𝑟 𝑗

)
, (1)

where 𝑡𝑖 𝑗𝑘𝑙 is the recent fastest time for swimmer 𝑖 selected for age group 𝑗 to participate in stroke 𝑘 ,
of gender 𝑙 and 𝑟 𝑗 is the current record for age category 𝑗 .
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To guarantee that the team selection is practically possible, the following constraints are employed:

𝑛 𝑗∑︁
𝑗=1

4∑︁
𝑘=1

𝑥𝑖 𝑗𝑘𝑙 ≤ 1∀𝑖, 𝑙, (2)

𝑛𝑖∑︁
𝑖=1

4∑︁
𝑘=1

𝑥𝑖 𝑗𝑘𝑙 ≤ 1∀ 𝑗 , ℓ, (3)

𝑛𝑖∑︁
𝑖=1

4∑︁
𝑘=1

2∑︁
𝑙=1

𝑥𝑖 𝑗𝑘𝑙 = 4, (4)

𝑛𝑖∑︁
𝑖=1

2∑︁
𝑙=1

𝑥𝑖 𝑗𝑘𝑙 = 2∀ 𝑗 , 𝑘, (5)

𝐿𝐿 𝑗 ≤
𝑛𝑖∑︁
𝑖=1

4∑︁
𝑘=1

2∑︁
𝑙=1

𝑎𝑖𝑥𝑖 𝑗𝑘𝑙 ≤ 𝑈𝐿 𝑗∀ 𝑗 , (6)

where 𝑎𝑖 is the age of swimmer 𝑖 and 𝐿𝐿 𝑗 and 𝑈𝐿 𝑗 are the lower and upper limits of age group 𝑗 .
Constraint (2) guarantees that each swimmer 𝑖 is selected at most once across all events and age

groups. Constraint (3) ensures that each stroke 𝑘 within each age category 𝑗 is utilised exactly once.
Constraint (4) mandates that each team comprises exactly four swimmers. Constraint (5) ensures
that each team consists of exactly two male and two female swimmers. Lastly, Constraint (6) restricts
each team’s total age to fall within predefined age group boundaries 𝐿𝐿 𝑗 and 𝑈𝐿 𝑗 .

The program is implemented using the lpSolve package (Berkelaar and Csárdi, 2023) in the R
programming language, in conjunction with RShiny developed by Chang et al. (2023) to create a
user-friendly application where data can be uploaded and results displayed.

2.1 Technical framework
lpSolve is a package for solving linear, integer, and mixed integer programming problems. Within
lpSolve, the function lp() is used to solve linear programming problems and allows us to define
the objective function, constraints, and variable bounds to find the optimal team assignment. The
function lp() employs matrices A1,A2,A3 (the left-hand side of the constraints) along with right-
hand vectors b1, b2, b3, b4 to encode constraints and formulates the objective function C based on
swimmer times and performance records.

The constraint matrices are

𝐴1 =



1 0 0 · · · 0 1 0 · · · 0
0 1 0 · · · 0 0 1 · · · 0
0 0 1 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0 0 · · · 0
0 0 0 · · · 0 0 0 · · · 1

𝑛×(𝑛·𝑠·𝑚)

,
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𝐴2 =


1 1 · · · 1 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · 1

 (𝑠·𝑚)×(𝑛·𝑠·𝑚)

and

𝐴3 =


Age1 Age2 · · · Age𝑛 0 0 · · · 0

0 0 · · · 0 Age1 Age2 · · · Age𝑛
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · Age𝑛

𝑚×(𝑛·𝑠·𝑚)

,

while the objective function is

𝐶 = 𝑇1 −
𝑅

4
.

Each constraint matrix has 𝑛·𝑚·𝑠 columns. We construct the complete matrix A = (A1,A2,A3,A3)
used in lp. Within the lp function, A is multiplied by an 𝑛 ·𝑚 · 𝑠×1 vector 𝑣 of 1s, which is compared
with a (𝑛+ 𝑠 ·𝑚+𝑚) ×1 right-hand vector (b1, b2, b3, b4), where each entry represents the respective
constraints.

Focusing on A1, for any row 𝑖, the row contains 𝑠 · 𝑚 copies of a (1 × 𝑛) vector, having all zeros
except for the 𝑖-th entry. The resulting vector of Av is an 𝑛 · 𝑚 · 𝑠 × 1 vector. Each entry represents
an outcome of a binary variable 𝑥𝑖 𝑗𝑘 being 1 or 0. For the first 𝑛 entries of the vector, it is either 1 or
0 depending on whether swimmer 𝑖 swims the first stroke in the first team. The subsequent 𝑛 entries
are either 1 or 0 depending on whether swimmer 𝑖 swims the second stroke in the first team. This
pattern continues for all 4 strokes and then repeats for all 𝑚 teams.

A1 ensures each swimmer swims only one stroke per event. Each row corresponds to a swimmer,
and each column corresponds to a specific swimmer-stroke-group combination. A2 ensures each
stroke is covered exactly once per event. Each row corresponds to a specific stroke in a group, and
each column corresponds to a swimmer-stroke-group combination. A3 enforces the age constraints
for each group. Each row corresponds to a group, and each column represents a swimmer-stroke-
group combination with the swimmer’s age as the coefficient. Within the lp() constraint argument,
A3 is incorporated twice to enforce both lower and upper age limits.

The coefficient vector 𝐶 represents the objective function’s coefficients, combining the swimmers’
times and the record times, aiming to minimise the total adjusted time, 𝑇1 is the vector of swimmers’
times, and 𝑅 is the vector of record times. These matrices are used as arguments for the lp()
function, which minimises the objective function while satisfying the constraints encoded in the
matrices.

2.2 Shiny App
Shiny is more than just a package in R (R Core Team, 2025), as it enables a comprehensive framework
for the straightforward development of interactive web applications. A Shiny application (app) is
composed of two main components: the user interface (UI) and the server. The UI determines the
app’s design and layout, while the server manages the app’s logic and functionality.
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In this specific application, the Shiny app allows users to upload data and interactively view results.
Once uploaded, the data is processed using the lpSolve package to assign swimmers optimally. The
results are then displayed in a user-friendly data table, with clear formatting to distinguish between
different teams and strokes. Upon launching the application, users are presented with a dedicated
instruction page featuring two main tabs: "Instructions" and "Data Input."

In the "Instructions" tab, users will find comprehensive guidelines for uploading data. This section
ensures that users, regardless of their experience level, understand the specific data structures required
for compatibility with the program. The instructions are accompanied by visual representations that
illustrate how the Excel files should be formatted, providing clear examples to facilitate the upload
process. By following these instructions, both novice and experienced R users can effectively navigate
the app and successfully prepare their data.

The "Data Input" tab allows users to upload their pre-configured Excel files. Here the underlying
code is ran to generate results based on the uploaded data. This streamlined workflow enables
users to easily transition from understanding the requirements to actively engaging with the app’s
functionality.

Together, these tabs create an intuitive user experience, guiding users through the process of data
preparation and analysis in a clear and structured manner. As illustrated in Figure 1, users can browse
and upload a pre-configured Excel file through the app’s interface. Upon successful upload, the data
is loaded into the server, and entries from the relevant sheets are retrieved. These entries are then
processed through an external assignment function, using the methods described above to optimise
team and stroke assignments.

The assignment function begins by defining the relevant index parameters, including the number
of swimmers 𝑛 and teams 𝑚, as well as the lower and upper age limits for each team. Using
this information, the constraint matrices are constructed according to the methods described in the
previous section. The decision function is subsequently optimised, using lp(), to produce the output
matrix.

The resulting output is a binary matrix where each element is either 0 or 1, indicating whether a
particular swimmer is assigned to a specific stroke within a given team. This matrix is then multiplied
by the vector containing the names of all swimmers in the club. This multiplication step, performed
within the server environment, produces a final matrix where each row corresponds to a specific team
and each column represents one of the four strokes as shown in Figure 1.

As a final note, it is common for swimmers to skip certain strokes or lack recorded best times when
forming teams for an event. To address this, it must be ensured that missing data is marked with an
asterisk (*) in the Excel file and the time for that stroke is then set to a large value (e.g., 10,000) in
the program. This will prevent the swimmer from being assigned to that stroke.

The application can be further extended and adapted to various team-based sports, transforming
what traditionally takes hours of discussion and debate around team selection into a streamlined
process that can be completed in just a few seconds.

3. Application
This research focuses on data from a single swimming club in South Africa. The dataset consists of
each swimmer’s age and their most recent best (fastest) recorded time for each stroke. As mentioned
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Figure 1. Team-stroke assignment table in the app.

before, the aim is to classify each member of the club into a team in such a way that maximum points
will be scored in upcoming swimming relay events, or said otherwise, to minimise the total time per
race over all the teams.

The dataset captures the best times of 74 swimmers, 42 females (F1-F42) and 32 males (M1-M32),
from a South African swimming club, across four strokes: freestyle, backstroke, breaststroke, and
butterfly. Ages range from 21 to 90 years, showing a diverse group of competitors. While some
swimmers recorded times for all strokes, others have missing values, indicating non-participation or
unavailable data. This dataset offers a clear view of the club’s performance, highlighting individual
strengths and stroke specialisations.

In mixed medley relay swimming competitions, teams score points based on their finishing position
within their age group. The exact scoring system can vary by event organiser or competition, but
generally, higher placements in the race earn more points. For example, a team that finishes first in
its category might receive the maximum points (e.g. 10 or 20), with second-placed and third-placed
teams earning progressively fewer points, such as 8 and 6 points, respectively.

3.1 Descriptive Analysis
Upon preliminary analysis of the data, based on descriptive statistics and boxplot diagrams shown in
Figure 2, it became apparent that there is a noteworthy discrepancy in the variation in time among
different strokes. Furthermore, Figure 2 indicates that for all four stroke times, and in particular for
the butterfly stroke times, the medians and interquartile ranges (as measures of location and spread
respectively) are larger for females compared to males. These observations prompt us to consider
utilising stronger swimmers in strokes characterised by higher variation as the performance of weaker
swimmers might drag down the overall team performance. Fortunately, the IOP accounts for this
by delivering an optimal solution equivalent to considering all possible combinations, including
scenarios where stronger swimmers are assigned to swim a specific stroke.

3.1.1 ANOVA on stroke and gender
Before using the Shiny app to select the relay teams, more detailed descriptive analyses were
performed to study the effect of age, gender and stroke type on the swim times. Firstly, a two-way
Analysis of Variance (ANOVA) was conducted to assess the differences in swim times based on
stroke type, gender, and their interaction. In particular, it was used to test whether the swim times
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Figure 2. Boxplots of swim times by stroke and gender.

differ across the four stroke types (freestyle, backstroke, breaststroke, and butterfly) and between
males and females. Furthermore, it evaluated whether the effect of stroke on swim time is different
for males and females (i.e., the interaction between stroke and gender). Because not all the necessary
assumptions for ANOVA – specifically the assumptions of normality and homogeneity of variance
– were met, the Aligned Rank Transform (ART) procedure for performing nonparametric ANOVA
was used. This robust procedure provides accurate nonparametric treatment for both main and
interaction effects by first aligning all responses for each possible main effect or interaction before
assigning ranks – see Wobbrock et al. (2011) for full details. The ART procedure for ANOVA was
implemented in R using the art() function from the ARTool package by Kay et al. (2025), with
swim time as the response variable and stroke type, gender, and their interaction as the explanatory
variables. All observations with missing swim times were excluded. The results indicate that stroke
type has a highly significant effect on swim times, with 𝑝-value < 0.001. This suggests that there are
substantial differences in swim performance depending on the stroke type. The finding is consistent
with expectations, as different strokes naturally involve varying physical demands and techniques,
leading to differences in performance. Similarly, gender was also found to have a highly significant
effect on swim times, with a 𝑝-value < 0.001. Given that physiological differences can contribute to
variations in athletic performance, this result aligns with expectations that males and females perform
differently in competitive swimming. The interaction between stroke type and gender, however, was
not significant, with 𝑝-value = 0.7275.

3.1.2 Post-hoc pairwise comparisons
To further investigate the differences in mean swim times across various strokes, we conducted
pairwise comparisons using the ART-C algorithm developed by Elkin et al. (2021). As shown by
these authors through an extensive simulation-based validation study, the ART-C algorithm does not
inflate Type I error rates. This algorithm can be applied in R with the art.con() function from
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Table 2. Summary of significant results from post-hoc pairwise comparisons.

Comparison Estimate Std. Error Adjusted p-value

Gender
Female vs Male 28.9594 7.9082 < 0.001***

Stroke
Freestyle vs Backstroke -31.0002 9.2535 0.0050**
Freestyle vs Breaststroke -56.6427 9.6206 <0.001***
Backstroke vs Breaststroke -25.6425 10.7247 0.0537✝

Breaststroke vs Butterfly 37.1930 11.7899 0.0076**

Gender*Stroke
Female*Backstroke vs Male*Butterfly 57.7917 15.8571 0.0078**
Female*Backstroke vs Male*Freestyle 53.7344 12.2376 <0.001***
Male*Backstroke vs Female*Breaststroke -44.9167 13.4454 0.0206*
Female*Breaststroke vs Male*Butterfly 79.8472 15.3301 <0.001***
Female*Breaststroke vs Female*Freestyle 50.7222 11.2492 <0.001***
Female*Breaststroke vs Male*Freestyle 75.7899 11.5466 <0.001***
Male*Breaststroke vs Male*Butterfly 65.6378 17.6886 0.0065**
Male*Breaststroke vs Male*Freestyle 61.5805 14.5327 <0.001***
Female*Butterfly vs Male*Butterfly 51.7292 16.8739 0.0481*
Female*Butterfly vs Male*Freestyle 47.6719 13.5292 0.0115*
✝ Marginally significant (𝑝-value < 0.1)
* Moderately significant (𝑝-value < 0.05)
** Significant (𝑝-value < 0.01)
*** Highly significant (𝑝-value < 0.001)

the ARTool package. There has recently been some debate in the literature regarding the validity of
the usage of 𝑝-value adjustment corrections for multiple comparisons, specifically with conservative
methods such as the Bonferroni correction – see for instance Barnett et al. (2022). Following
their advice, since the multiple pairwise comparisons in our study are closely linked, we used the
Holm-Bonferroni correction proposed by Holm (1979), which is a less conservative alternative to the
Bonferroni correction and is also uniformly more powerful compared to the Bonferroni correction.

In Table 2, we present only the significant results from the post-hoc pairwise comparisons to
highlight the most relevant differences in swim times. Note that the estimates given in Table 2 are
on the scale of the ranks and not the observations, so these estimates are not the mean differences in
swim times between the compared pairs. However, the sign of an estimate for a specific comparison
does indicate which stroke has the faster swim times – a negative (positive) estimate implies faster
swim times for the first (second) stroke in the comparison. The swim times are the fastest for freestyle
compared to all three other stroke types. Notably, there is a highly significant difference between the
swim times for freestyle and breaststroke (adjusted 𝑝-value < 0.001) and also a significant difference
between the swim times for freestyle and backstroke (adjusted 𝑝-value = 0.0050). But no significant
difference was found between the times for freestyle and butterfly (adjusted 𝑝-value = 0.1299).
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Figure 3. Scatterplots of the swim times over age by stroke for different genders.

The swim times between breaststroke and butterfly are also significantly different (adjusted 𝑝-value
= 0.0076), while the swim times between backstroke and breaststroke are marginally significant
(adjusted 𝑝-value = 0.0537). There is no significant difference between the swim times of backstroke
and butterfly (adjusted 𝑝-value = 0.3163). Considering the pairwise comparisons for the various
interactions of stroke type and gender, multiple significant differences are observed from Table 2. Of
these significant results, the following differences are of particular interest:

• For both females and males, there are highly significant differences between the swim times of
breaststroke and freestyle (adjusted 𝑝-values < 0.001 for both comparisons).

• There is a significant difference between the swim times of breaststroke and butterfly for males
(adjusted 𝑝-value = 0.0065).

• Butterfly is the only specific stroke for which there is a (moderately) significant difference
between the swim times of females and males (adjusted 𝑝-value = 0.0481).

3.1.3 Scatterplots and linear regression models
As further analysis and to better understand how the combination of the swimmers’ ages in a team will
influence team selection, it is helpful to examine the relationship between the ages of the swimmers
and their respective times for each stroke. Therefore, scatterplots showing the relation between the
swim times and the ages for the four different strokes are presented in Figure 3. Regression lines
with 95% confidence intervals are added to the scatterplots to further elucidate these relationships for
females and for males. The fitted models’ regression coefficients and the corresponding 𝑅2 values
are summarised in Table 3. Overall, based on their 𝑅2 values, the fitted regression lines for males’
freestyle and for females’ butterfly provide the best fits. The availability of the most data for freestyle
compared to the other strokes, due to its commonality and also its popularity amongst swimmers,
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Table 3. Regression model coefficients and 𝑅2 values for different strokes and genders.

Stroke Gender Model (Intercept, Slope) 𝑅2

Freestyle Female (13.6568, 0.5438) 0.3670
Male (2.0253, 0.6021) 0.6222

Backstroke Female (8.7868, 0.8334) 0.5030
Male (15.4009, 0.4805) 0.4240

Breaststroke Female (-2.3489, 1.1102) 0.3986
Male (-3.3076, 0.9824) 0.4751

Butterfly Female (-36.5843, 1.6764) 0.6212
Male (16.9600, 0.3754) 0.4202

likely contributes to the robustness of the model for male swimmers. In contrast, the fitted regression
lines for females’ freestyle and breaststroke show the weakest fits, suggesting that factors beyond
age play crucial roles in determining swimming times for these swimmers. From Table 3 it is noted
that, whereas the slope coefficients of the regression lines for the females and males are in general
equivalent for the different strokes, there is a clear numerical difference between the slope coefficients
for butterfly. This difference is also visible in Figure 3. Recall from Section 3.1.2 that it was found
that there is a (moderately) significant difference between the swim times of females and males for
butterfly. These observations suggest that the relationship between age and swimming performance
might not be the same for both genders within each stroke type. To fully investigate the effects of age
and gender on swim times rigorously, a multiple linear regression model is utilised in Section 3.2,
incorporating interaction terms between age and gender.

3.2 Application of Linear Mixed Model
Linear mixed models extend linear regression by incorporating both fixed and random effects. These
models are particularly useful when dealing with data that has a nested or grouped structure, where
observations within the same group may be correlated.

The general form of a linear mixed model can be written as

𝑦𝑖 𝑗 = X𝑖 𝑗β + Z𝑖 𝑗u𝑖 + 𝜖𝑖 𝑗 , (7)

where

• 𝑦𝑖 𝑗 is the outcome for the 𝑖-th individual in group 𝑗 ,

• X𝑖 𝑗 is the vector of predictors for fixed effects,

• β is the vector of fixed-effect coefficients,

• Z𝑖 𝑗 represents the random-effect predictors,

• u𝑖 is the random effect for the 𝑖-th group, typically assumed to be normally distributed:
u𝑖 ∼ 𝑁 (0,𝚺),

• 𝜖𝑖 𝑗 is the residual error term, with 𝜖𝑖 𝑗 ∼ 𝑁 (0, 𝜎2).
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Table 4. Regression coefficients for each stroke.

Stroke Coefficient Estimate Std. Error p-value

Freestyle (Intercept) 2.0253 5.8953 0.7323
Age 0.6021 0.0971 < 0.001***
Gender 11.6315 8.4576 0.1738
Age*Gender -0.0584 0.1482 0.6951

Backstroke (Intercept) 15.4009 10.4872 0.1506
Age 0.4805 0.1771 0.0101*
Gender -6.6142 13.5610 0.6287
Age*Gender 0.3529 0.2403 0.1507

Breaststroke (Intercept) -3.3076 17.8312 0.8539
Age 0.9824 0.2788 0.0012**
Gender 0.9587 24.2702 0.9687
Age*Gender 0.1278 0.4015 0.7521

Butterfly (Intercept) 16.9600 13.2842 0.2139
Age 0.3754 0.2537 0.1519
Gender -53.5443 20.4710 0.0152*
Age*Gender 1.3011 0.3821 0.0023**

* Moderately significant (p-value < 0.05)
** Significant (p-value < 0.01)
*** Highly significant (p-value < 0.001)

In this model, the fixed effects β represent overall population-level effects, while the random
effects u𝑖 account for the variability within groups or clusters. The random effects allow different
groups (or individuals) to have their own intercepts and/or slopes, which captures the correlation
structure in the data.

The linear mixed model for the swim times is expressed as follows:

𝑦𝑖 𝑗 = 𝛽1 + 𝛽2𝑥𝑖 + 𝛽3𝑑𝑖 + 𝛽4 (𝑥𝑖 · 𝑑𝑖) + 𝜖𝑖 𝑗 (8)

where

• 𝑦𝑖 𝑗 represents the swim time for individual 𝑖 at age 𝑗 .

• 𝑥𝑖 denotes the age of individual 𝑖.

• 𝑑𝑖 =

{
1 if individual 𝑖 is female,
0 if individual 𝑖 is male.

• 𝜖𝑖 𝑗 is the random error term for individual 𝑖 at age 𝑗 .

The inclusion of the interaction term 𝑥𝑖 · 𝑑𝑖 allows us to explore how the relationship between age
and swim time varies by gender. The results of the linear mixed model for each stroke (freestyle,
backstroke, breaststroke, and butterfly) are summarised in Table 4.

Age significantly impacts swimming performance across all strokes, with older swimmers generally
recording slower times. This effect is strongest in freestyle (𝑝 < 0.001), backstroke (p-value< 0.05),
and breaststroke (p-value< 0.01), though gender differences are not significant for these strokes.
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Figure 4. Final team-stroke assignment table from the app.

With the butterfly stroke, however, gender plays a crucial role (p-value<0.05), with males performing
better, and the interaction between age and gender is also significant (p-value<0.01), indicating
different aging effects between genders.

3.3 Optimisation of Swimming Relay Teams
The data was imported into the Shiny app from an Excel file using the toggle feature illustrated
in Figure 1. The output generated by the Shiny app is shown in Figure 4. This process provides
a straightforward and efficient method for making mathematically sound decisions regarding team
selection.

It is noteworthy to examine the gender ratio in this selection process. Since the requirement of
having exactly two men and two women on each team was not strictly enforced, it allowed for the
possibility of an unequal representation of each gender. For instance, Team 3, which falls within the
age category of 160 to 199, consists solely of females, three middle-aged women in their 40s and one
woman aged 55. Similarly, the fourth team, categorised as 200 to 239, is almost exclusively female
members.

The predominance of female swimmers in Teams 3 and 4 is attributed to the performance-focused
selection criteria rather than any deliberate gender bias as team composition was based on swim
times without enforcing gender balance. The female swimmers in these age groups achieved faster
times than their male counterparts, leading to their inclusion. An alternative possible explanation
is that women in these age categories may maintain competitive swim times for longer in certain
strokes or distances. Additionally, there may have been a larger pool of female participants in these
age ranges, increasing their chances of being selected based solely on their performance.

4. Conclusion
This research successfully applies data analysis techniques to optimise team composition for a South
African swimming club. Using a dataset of swimmers’ ages and best times, we developed an algorithm
that minimises total race times for mixed medley relay events. Descriptive statistics, ANOVA, and
post-hoc analyses revealed significant performance variations across strokes and genders, highlighting
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the impact of stroke selection on overall team performance. Linear regression further established age
as a key predictor of swim performance, enabling more precise team assignments.

A key outcome of this study is the development of a Shiny app that allows coaches to make
data-driven team selections. The app enables users to upload swimmer data, visualise race results,
and generate optimal team configurations through an interactive interface. Its adaptability means it
can be expanded to accommodate different race formats and datasets, making it a practical tool for
competition planning.

Future work could explore expanding the dataset to include multiple clubs or larger competitions,
providing a broader perspective on performance optimisation. Additionally, integrating factors such
as training history, swimmer health, and psychological readiness may offer deeper insights into
performance variability. Enhancing the Shiny app with predictive models, real-time data updates,
and customisable features would further empower coaches with greater control over team decisions,
fostering improved performance outcomes in relay competitions.
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Multivariate stratification simultaneously partitions a heterogeneous population
into more homogeneous subgroups based on multiple variables of interest. Once
the subgroups are formed, the sample is allocated across strata, considering mul-
tiple outcome measures simultaneously. Multivariate stratified sampling therefore
involves two optimisation problems: strata boundary determination and sample size
allocation across strata. This study focuses on the allocation problem in multivari-
ate stratified sampling, relevant to survey research with predetermined strata and
multiple outcomes of interest, a common occurrence in large-scale surveys. An
overarching optimal solution for this problem has not yet been established, as an
allocation that optimises for one variable may not be optimal for the others, deemed
a ‘compromise’ solution. A key characteristic of the compromise is an arbitrary
or ‘compromise’ assignment of weights across outcome variables of interest. This
study aims to contribute a more systematic weighting of the variables using prin-
cipal component analysis. Additionally, we build on an established random search
algorithm with modifications to enhance efficiency. The procedure generated gen-
erally produces more efficient estimates relative to a previous method and offers an
intuitive approach for establishing variable importance weights.

Keywords: Multivariate, Sampling, Search Algorithm, Stratification.

1. Introduction
Multivariate stratification simultaneously partitions a heterogeneous population into more homoge-
neous subgroups based on multiple variables of interest. Once the subgroups are formed, the sample
is allocated across strata, considering multiple outcome measures simultaneously. Multivariate strat-
ified sampling therefore involves two key optimisation problems: strata boundary determination and
sample size allocation across strata. The challenge lies in the fact that any configuration of strata
affects the variance of the estimators and, ultimately, the precision achieved under the stratified
sampling design.

The problem of strata boundary determination largely concerns stratifiers with an extensive range
of potential cut points from which to form the strata, a particularly complex task for continuous
stratification variables. Recent progress in the multivariate context for boundary determination is
algorithmic and makes use of a novel grouping genetic algorithm methodology (O’Luing et al., 2018;
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Ballin and Barcaroli, 2020). The univariate case for optimal boundary determination has also seen
innovation including a biased random key genetic algorithm, variable neighbourhood search and
greedy randomised adaptive search, with the opportunity to extend to the multivariate context (Brito
et al., 2017, 2019, 2021).

Given a set of strata boundaries, optimal sample size allocation across strata is the next step
to achieve precision. It is well known that equal and proportional allocation across strata can
be suboptimal as strata variance is not accounted for in the allocation procedure (Neyman, 1934;
Cochran, 1977; Er and Keskintürk, 2007). An optimal solution under univariate stratified sampling
is provided in the seminal work of Neyman (1934), with a more generalised version of this solution
presented by Cochran (1977). In the multivariate case, however, research remains ongoing. The
difficulty in the multivariate context is that an optimal allocation with respect to one variable is not
necessarily optimal for the others (Cochran, 1977; Khan and Ahsan, 2003; Varshney et al., 2015).
The resulting allocation is considered a compromise allocation rather than the optimal allocation.
To facilitate the compromise, a predetermined weight to denote variable importance can be used,
variables can be mean-weighted or equal weights are implied when no weighting structure is specified
(Mulvey, 1983; Khan et al., 2003; Kozak, 2006a,b; Brito et al., 2015; Gupta and Bari, 2017). Variable
weighting in the multivariate context is therefore fairly arbitrary or focused on minimising average
variance or the average coefficient of variation across estimators.

This paper aims to offer a new systematic approach to multivariate weighting in the allocation
problem using principal component analysis (PCA) to weight stratification variables. The paper
additionally builds on Kozak’s (2006a) random search sample allocation method by applying mod-
ifications to enhance efficiency. The allocation methods presented in this paper are especially
appropriate for cases where strata are already formed according to natural boundaries or simple cate-
gorical data, as the problem of optimal boundary determination falls away. These types of stratifiers
with predetermined natural boundaries are commonly used in national surveys to achieve representa-
tion according to region and geography type (urban and rural) (StatsSA, 2024; UNICEF and NISA,
2023; FBoS, 2022). As such, this paper offers a new approach for practical implementation as well
as an extension to the current literature on optimal stratified sampling allocation.

The following section presents the allocation optimisation problem and motivates for the inclusion
of PCA to arrive at a more efficient compromise solution. Next, the original and enhanced search
algorithms are presented and explained. Simulated results using the different objective functions and
algorithms are then discussed and compared and the paper concludes with a discussion of limitations
and areas for further study.

2. Optimisation problem
The multivariate allocation problem in stratified sampling concerns the optimal distribution of 𝑛
sampled units across 𝐿 strata with respect to 𝐾 variables of interest, given a set of strata boundaries.
The objective function for this problem has been conceptualised in various ways, all aiming to achieve
optimal precision for the mean estimate for each variable of interest and often presented as a measure
of variation (Cochran, 1977; Holmberg, 2003; Khan et al., 2003; Kozak, 2006a,b). In this paper,
optimisation is considered in terms of minimising total survey variance, where we compare two
variation-minimising objective functions and introduce the use of PCA.



PCA AND RANDOM SEARCH IN MULTIVARIATE STRATIFIED SAMPLING ALLOCATION 19

Optimal multivariate allocation is therefore the choice of stratum sample size, 𝑛ℎ, that allows for
the minimisation of variation with respect to Y = (Yj, ...,YK), where 𝑌𝑘 is the 𝑘 th survey variable of
interest. Across objective functions, the variance of the mean for each estimator, 𝑗 = 1, ..., 𝐾 , with
ℎ = 1, ..., 𝐿 strata, is given as (Cochran, 1977):

𝑉 (𝑌 𝑗 𝑠𝑡 ) =
{
𝐿∑︁
ℎ=1

𝑊2
ℎ

(
1 − 𝑛ℎ

𝑁ℎ

)
𝑆2
𝑗ℎ

𝑛ℎ

}
, (1)

where 𝑉 (𝑌 𝑗 𝑠𝑡 ) is the estimated variance of the mean of 𝑌 𝑗 under stratified sampling, 𝑁ℎ represents
the total units in the population for stratum ℎ, 𝑆2

𝑗ℎ
is the variance of the mean of 𝑌 𝑗 in stratum ℎ and

𝑊ℎ is the proportion of the total population (𝑁) in stratum ℎ, such that𝑊ℎ =
𝑁ℎ

𝑁
.

The following constraints are additionally applied to ensure that there are at least two sampled
units per stratum and for the resulting solution to remain within the budgeted sample size, 𝑛 (Kozak,
2006a):

2 ≤ 𝑛ℎ ≤ 𝑁ℎ, (2)

and
𝐿∑︁
ℎ=1

𝑛ℎ = 𝑛. (3)

2.1 Principal component analysis
PCA extracts the most important information from multi-dimensional data, making it an appealing
choice for obtaining information from multivariate data. Principal components are calculated from
the correlation matrix1, ρ, of Y with eigenvalue-eigenvector pairs (𝜆1, 𝑒1), ..., (𝜆𝐾 , 𝑒𝐾 ) where
𝜆1 ≥ 𝜆2 ≥ ...𝜆𝐾 ≥ 0. The first principal component has the largest variance, explaining the largest
part of the data, given by (Johnson and Wichern, 2007):

𝑃𝐶1 = e′1Y = 𝑒11𝑌1 + 𝑒12𝑌2 + ... + 𝑒1𝐾𝑌𝐾 , (4)

where

𝑉𝑎𝑟 (𝑃𝐶1) = e′1ρe1 = 𝜆1, (5)

and

𝐶𝑜𝑣(𝑃𝐶1, 𝑃𝐶1+ 𝑗 ) = e′1ρe1+𝒋 = 0 ∀ 𝑗 = 1, ..., 𝐾 − 1. (6)

From (4), it is seen that the coefficient vector or eigenvector, e′1 = [𝑒11, 𝑒12, ..., 𝑒1𝑘], reflects the
relative importance of each 𝑌𝑘 to the first principal component. This measure of relative importance
demonstrates each variable’s contribution to the largest portion of variance in the dataset (housed
in the first principal component). We can therefore use e′1 as a vector of importance weights in the
multivariate allocation problem, as these weights help to best explain what the allocation problem is
trying minimise, total survey variance. To avoid negative weighting and retain the importance of the

1 We use correlation PCA to accommodate variables with differing units of measurement (Abdi and Williams, 2010).
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correlation regardless of direction, we consider the absolute value of e′1 and apply a transformation
to ensure the weights sum to one2:

w =
| e′1 |∑𝐾
𝑘=1 𝑒1𝑘

. (7)

2.2 Objective functions
In this subsection we present two objective functions that can be used to for the optimisation problem.
The first function uses an established method, while the second introduces a weighted approach that
leverages PCA to assign variable importance.

2.2.1 Objective function 1
The first objective function considered aims to find the allocation across strata, n=𝑛1, ..., 𝑛𝐿 , that
minimises the maximum variance of the 𝐾 estimators (Kozak, 2006a):

𝑓1 (n) = min

(
max

𝑗 , 𝑗=1,...,𝐾

{
𝐿∑︁
ℎ=1

𝑊2
ℎ (1 −

𝑛ℎ

𝑁ℎ
)
𝑆2
𝑗ℎ

𝑛ℎ

})
. (8)

Since variables are not weighted according to any criteria, each 𝑌𝑘 is treated with equivalent
importance.

2.2.2 Objective function 2
The second objective function uses a weighted sum of variance:

𝑓2 (n,w) = min ©«
𝐾∑︁
𝑗=1

𝑤 𝑗

(
𝐿∑︁
ℎ=1

𝑊2
ℎ (1 −

𝑛ℎ

𝑁ℎ
)
𝑆2
𝑗ℎ

𝑛ℎ

)ª®¬ . (9)

For the variable weights, w = (𝑤1, ..., 𝑤𝐾 ), PCA is leveraged using two approaches:

1. The first approach for w uses the principal component decomposition directly, with weights
determined by the loadings of the first principal component of Y, e′1:

𝐾∑︁
𝑗=1

𝑤 𝑗 = e′1. (10)

2. In the second case, w is based on a random search process with principal component weights,
e′1, given as the starting point. This approach aims to capture the potential for improvement
based on adjustments to the initial principal component weights. The algorithm used for the
search process is presented in the following section.

2.3 Algorithms
Kozak’s (2006a) random search method has been shown to offer an efficient solution to the allocation
problem in multivariate stratified sampling. The search procedure is easy to implement and a useful

2 This can also be achieved by taking e′1e1, subject to slight adjustment to scale.
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vehicle to test the objective functions presented in the previous section. We begin by presenting the
search algorithm as it was initially constructed in Algorithm 1, given a total sample size 𝑛 and 𝐿 strata
(Kozak, 2006a). The algorithm starts with an initial allocation based on proportional allocation from
which the search function applies perturbations to reach a more optimal allocation3. The number of
perturbations, 𝑅, is determined by the researcher and for this study we fixed 𝑅 at 200 iterations.

Algorithm 1 Original Algorithm, 𝐴1

Require: An initial allocationn based on proportional allocation (𝑛ℎ = [𝑛 𝑁ℎ∑
ℎ 𝑁ℎ
]), a fitness function

𝑓𝑡 , 𝐿 strata and 𝑅 number of steps.
Ensure: Constraints (2) and (3) are upheld.

for 𝑟 ≤ 𝑅 do ⊲ 𝑟 = 1, ..., 𝑅, 𝑟 ∈ N
Randomly select two strata, 𝐿1 and 𝐿2.
Generate random number 𝑗 ∈ Z, 1 ≤ 𝑗 ≤ 5
Generate n′ by changing the sample allocation as follows:

𝑛′𝐿2 ← 𝑛𝐿2 + 𝑗
𝑛′𝐿1 ← 𝑛𝐿1 − 𝑗

𝑛′ℎ ← 𝑛ℎ ∀ ℎ ≠ {𝐿1, 𝐿2}

if 𝑓𝑡 (n′) ≤ 𝑓𝑡 (n) then
n𝒓 ← n′

else if 𝑓𝑡 (n′) > 𝑓𝑡 (n) then
n𝒓 ← n

end if
end for
return nR

Next, we consider a modified version of the search algorithm, 𝐴2, as shown in Algorithm 2. The
main modification concerns the selection of two strata, 𝐿1 and 𝐿2, which is no longer based on simple
random selection but rather calculated with probability proportional to each stratum’s contribution
to total variation across the estimators of interest. This measure of variation is defined using𝑊ℎ𝑆ℎ,
a weighted measure of the stratum standard deviated that is weighted by the size of the stratum. The
motivation for using this measure of variation is its directly proportional relationship to variance as
defined in Equation 1.

In Algorithm 2, 𝐿1 is selected with probability proportional to stratum variation,𝑊ℎ𝑆ℎ. Therefore,
the stratum contributing the most variation has the highest likelihood of being selected as 𝐿1. The
next stratum selected for perturbation, 𝐿2, is selected with probability proportional to 1

𝑊ℎ𝑆ℎ
, where a

stratum with lower variation is more likely to be selected as 𝐿2. The selected strata are then perturbed
by adding more sample to the stratum with likely higher variance (𝐿1), and less of the sample to

3 Where the initial proportional allocation in Algorithm 1 does not provide an integer solution, we have rounded to integer
sample sizes and allocated any remaining sampling units to the final stratum, 𝐿.
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𝐿2. The aim here is to distribute the sample most efficiently by allocating a larger sample to higher
variance strata and therefore reducing total variability.

A further change in Algorithm 2 is the size of the perturbation variable, 𝑗 , which is modified to
have a range anywhere between 1 and the sample size of the smallest stratum, 𝑚𝑖𝑛(𝑛ℎ). This change
in range aims to reduce the chance of getting caught in a local optima by allowing the algorithm
to potentially make bigger jumps in the search space than that of the fixed 𝑗 = 5 in Algorithm 1.
The range variable in Algorithm 2 is randomised rather than set as a larger fixed integer, as direct
expansion of range increases the risk of overshooting optimal regions. Therefore, implementing a
random selection of 𝑗 in each iteration aims to balance the need to increase solution diversity and
escape local optima while limiting the risk of poor convergence.

The modified procedure is therefore given as follows:

Algorithm 2 Modified Algorithm, 𝐴2

Require: An initial allocationn based on proportional allocation (𝑛ℎ = [𝑛 𝑁ℎ∑
ℎ 𝑁ℎ
]), a fitness function

𝑓𝑡 , 𝐿 strata and 𝑅 number of steps.
Ensure: Constraints (2) and (3) are upheld.

for 𝑟 ≤ 𝑅 do ⊲ 𝑟 = 1, ..., 𝑅, 𝑟 ∈ N
Select stratum 𝐿1 proportional to𝑊ℎ𝑆ℎ.
Select stratum 𝐿2 proportional to 1

𝑊ℎ𝑆ℎ
.

Generate random number 𝑗 ∈ Z, 1 ≤ 𝑗 ≤ 𝑚𝑖𝑛(𝑛ℎ)
Generate n′ by changing the sample allocation as follows:

𝑛′𝐿2 ← 𝑛𝐿2 − 𝑗
𝑛′𝐿1 ← 𝑛𝐿1 + 𝑗

𝑛′ℎ ← 𝑛ℎ ∀ ℎ ≠ {𝐿1, 𝐿2}

if 𝑓𝑡 (n′) ≤ 𝑓𝑡 (n) then
n𝒓 ← n′

else if 𝑓𝑡 (n′) > 𝑓𝑡 (n) then
n𝒓 ← n

end if
end for
return nR

We lastly present a random search procedure that is followed in the case of random variable weights.
In Algorithm 3, the choice of variable weights is included as part of the optimisation problem, using
principal component weights as the starting point. This modification has been applied to test whether
perturbations applied to the principal component weights might yield better results.
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Algorithm 3 Weight Algorithm, 𝐴3

Require: An initial weight w = e′1, a fitness function with weights 𝑓𝑡 (n,w), 𝐿 strata, 𝐾 variables
and 𝑅 number of steps.

Ensure: Constraints (2) and (3) are upheld.
for 𝑟 ≤ 𝑅 do ⊲ 𝑟 = 1, ..., 𝑅, 𝑟 ∈ N

Generate random number 𝑣 ∈ R, 1 ≤ 𝑣 ≤ 𝑚𝑖𝑛(w)
Randomly select two variables, 𝑌𝑝 and 𝑌𝑧 ⊲ 𝑝, 𝑧 ∈ [1 : 𝐾] ∈ N
Generate w′ as follows:

𝑤′𝑌𝑝 ← 𝑤𝑌𝑝 + 𝑣

𝑤′𝑌𝑧 ← 𝑤𝑌𝑧 − 𝑣

𝑤′𝑌𝑥 ← 𝑤𝑌𝑥 ∀ 𝑥 ≠ {𝑝, 𝑧}

if 𝑓𝑡 (n,w′) ≤ 𝑓𝑡 (n,w) then
w𝒓 ← w′

else if 𝑓𝑡 (n,w′) > 𝑓𝑡 (n,w) then
w𝒓 ← w

end if
end for
return wR

3. Test set up
Based on the approaches outlined in the previous section, five methods are used across several datasets
to explore the performance of the weighted objective functions and modified algorithm relative to
the original random search procedure:

1. RS: Original random search method (Objective Function 1 (Subsection 2.2.1) and Algorithm
1) (Kozak, 2006a)

2. PC_RS+: Principal component weights with the modified search algorithm (Objective Func-
tion 2 (Subsection 2.2.2) and Algorithm 2)

3. RW_RS+: Random search weights with the modified search algorithm (Objective Function 2
(Subsection 2.2.2), Algorithm 2 and Algorithm 3)

4. RS+: Modified search algorithm with the original objective function (Objective Function 1
(Subsection 2.2.1) and Algorithm 2)

5. PC_RS: Principal component weights with the original random search algorithm (Objective
Function 2 (Subsection 2.2.2) and Algorithm 1)

Each method is tested in cases with 2, 3, 4 and 5 variables of interest (𝐾), with predetermined
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strata boundaries according to the given stratifier and total sample size 𝑛4. The variable and dataset
combinations used for each test are described in Table 1, where 𝐿 refers to the total number of strata5.
Here, 𝑌1, ..., 𝑌𝑘 are the variables of interest for mean estimation using stratified sampling, given the
predetermined boundaries according to 𝐿 strata formed by the stratifier.

Table 1. Datasets, strata and variables of interest for precise mean estimation.

𝐾 Dataset Stratifier 𝑌1, ..., 𝑌𝐾 𝐿 𝑁 𝑛

2 Agriculture Cen-
sus 2002*

Province Cereal area, potato area 16 1379311 20000

3 Agriculture Cen-
sus 2002*

Province Cattle count, pigs count,
agriculture area

16 1140178 50000

4 Swiss Municipali-
ties

Region Municipality area, wood
area, cultivation area, pop-
ulation total

6 2651 100

4 Boston Housing Index of access to
radial highways

Crime rate, residential land,
property tax rate, nitric ox-
ide concentration

9 506 100

4 Pima Diabetes Number of preg-
nancies

Blood pressure, tricep skin-
fold thickness, glucose,
BMI

10 710 100

5 Swiss Municipali-
ties

Region Municipality area, wood
area, cultivation area, pop-
ulation total, mountain pas-
ture area

6 2651 200

5 Boston Housing Index of access to
radial highways

Crime rate, residential land,
property tax rate, nitric
oxide concentration, pupil-
teacher ratio

24 506 200

5 Pima Diabetes Number of preg-
nancies

Blood pressure, tricep skin-
fold thickness, glucose,
BMI, age

10 710 200

5 Child Health and
Development
Studies

Categorical vari-
able on prior births
and smoking

Birth weight, gestation pe-
riod, mother age, mother
height, mother weight

4 1174 200

*Simulated dataset based on parameters as in (Kozak, 2004, 2006a)

The datasets offer variety in terms of variable distribution, variable contribution to total variance,
number of strata, subject area, population and sample size. The agriculture census data was simulated
for both 𝐾 = 2 and 𝐾 = 3, as the authors did not have access to the original dataset. The simulations
were based on the given stratification by province and corresponding strata means, standard deviations

4 The 𝑛 reported corresponds to the sample size used in the analysis. In some cases, this is a subsample of the dataset. All
data used has been made publicly available for reproducibility.
5 For example, where 𝐾 = 4 for the Swiss Municipalities Dataset, Region is the stratifier, with 6 strata (𝐿 = 6) in total
(corresponding to 6 regions).



PCA AND RANDOM SEARCH IN MULTIVARIATE STRATIFIED SAMPLING ALLOCATION 25

and population sizes as supplied in the corresponding research (Kozak, 2004, 2006a). As the name
suggests, these data consider agricultural measures such as livestock counts and land use area. The
data for both 𝐾 = 2 and 𝐾 = 3 has a large sampling frame (𝑁 > 20, 000), again in line with the
original research conducted by Kozak (2004, 2006a).

To test cases where 𝐾 > 3, commonly used and publicly available datasets were identified and
included in the research. The first of these datasets is the Swiss municipalities dataset, which has
been extensively used by other researchers in the stratification literature (Barcaroli et al., 2018;
Ballin and Barcaroli, 2020). This dataset is municipality-level and the ‘region’ variable is used as
the stratifier. Municipality-level variables that describe the nature and development of each region
have been used as outcome variables. Notably, all of these outcome variables showcase extreme
right skewness. The Boston housing data has been taken from a repository of datasets often used in
machine learning (Blake and Merz, 1998; Leisch and Dimitriadou, 2024). These data also measure
area-level indicators and are stratified based on the index of accessibility to radial highways, where
the index ranges from 1-24 and corresponds to 9 unique index values or strata. The Boston dataset
has the smallest sampling frame (𝑁 = 506) out of the datasets considered in this study. The Pima
diabetes database shifts the subject matter focal area to health and is also taken from the machine
learning repository (Leisch and Dimitriadou, 2024). The data are stratified based on the number of
respondent pregnancies6, resulting in 𝐿 = 10. Again concerning health outcomes, the child health
dataset measures child health indicators and is available for public use in a curated repository of
health datasets (Rossi, 2024). This dataset corresponds to the fewest strata tested, 𝐿 = 4.

Across the datasets, loadings for each 𝑌𝑘 on the first principal component, 𝑃𝐶1, are reported in
Table 2. The loadings in this case reflect the coefficients of correlation between the variables and the
first component (Abdi and Williams, 2010). The agriculture census data when 𝐾 = 2 has the same
loadings for each 𝑌𝑘 for 𝑃𝐶1. When 𝐾 = 3, it is seen that 𝑌2 contributes slightly less to the variation
in 𝑃𝐶1. The Swiss dataset indicates that 𝑌4 (population total) contributes the least to the variation in
𝑃𝐶1. The Boston data shows that 𝑌2 (residential land area) has an opposite relationship with 𝑃𝐶1,
reflected by the negative correlation, in comparison to the other variables. The Pima data indicates
that 𝑌5 (age) contributes the least to 𝑃𝐶1, while 𝑌4 (BMI) has the strongest relationship. Lastly, the
child health data shows 𝑌1 and 𝑌4 (birth weight and mother height) have the strongest relationship
while 𝑌3 (age) has the weakest relationship with 𝑃𝐶1.

For the respective dataset and 𝐾 variable combinations, results were simulated over 50 runs.
Within a run, each algorithm was allowed to iterate 200 times before reaching the stopping criteria.
The relative performance of each method is measured by examining the ratio between the total
average (aggregated over the 50 runs) variance of a given method and that of the original method,
RS, calculated as follows for some method 𝑋:

𝑅 = ( 𝑉𝑋
𝑉𝑅𝑆
), (11)

where 𝑉𝑋 represents the average total variance for the mean estimates of 𝑌1, ..., 𝑌𝑘 under method 𝑋
across the 50 runs and 𝑉𝑅𝑆 represents the same measure of variance only it is derived when using
the original random search method, 𝑅𝑆.

6 The range of pregnancies has been reduced to [0, 9] to allow for variation in the dataset, as higher pregnancy numbers
resulted in insufficient observations across strata.
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Table 2. Variable loadings on 𝑃𝐶1 for each dataset and 𝑌𝑘 combination tested.

𝐾 𝑌1 𝑌2 𝑌3 𝑌4 𝑌5

Agriculture Census 2 0.71 0.71 NA NA NA
Agriculture Census 3 0.65 0.44 0.62 NA NA

Swiss Municipalities 4 0.61 0.63 0.44 0.18 NA
Boston Housing 4 0.46 -0.40 0.56 0.56 NA
Pima Diabetes 4 0.49 0.52 0.35 0.61 NA

Swiss Municipalities 5 0.57 0.55 0.29 0.09 0.53
Boston Housing 5 0.43 -0.40 0.53 0.49 0.37
Pima Diabetes 5 0.51 0.44 0.41 0.57 0.24
Child Health 5 0.53 0.39 0.10 0.54 0.51

In cases where 𝑅 > 1, method 𝑋 performed worse than RS, resulting in a larger total variance.
𝑅 = 1 reflects equivalent performance between the methods. When 𝑅 < 1, method 𝑋 achieves lower
variance than RS.

4. Results
Results are presented in Table 3 and Figure 1. The first two columns of Table 3 indicate the method,
dataset and 𝐾 combinations. The average variance over 50 runs for each variable𝑌𝑘 is then presented
as well as the total of the average variance across 50 runs for the 𝐾 variables, 𝑉 (Y ). Runtime in
minutes is reflected in the 𝑚𝑖𝑛𝑠 column and relative performance in comparison to the original RS
method is shown in the ‘𝑅’ column7. Figure 1 offers a view of the spread of results across the 50
runs, a useful indication of consistency for each method.

In general, improvements in variance are observed relative to the original random search (RS)
method, where the random weight (RW_RS+) method tends to most often achieve the lowest total
variance. The size of the precision gain, however, tends to vary depending on the dataset and
while efficiency gains are observed in terms of lower variance, computational cost also increases
correspondingly.

Table 3. Results across 50 runs for each combination of dataset and 𝐾 variables of interest for
estimation.

Method Data (𝑘) 𝑉 (𝑌1) 𝑉 (𝑌2) 𝑉 (𝑌3) 𝑉 (𝑌4) 𝑉 (𝑌5) 𝑉 (Y ) 𝑚𝑖𝑛𝑠 𝑅

PC_RS Agri (2) 18.33 0.30 NA NA NA 18.62 0.02 1.000
PC_RS+ Agri (2) 15.79 0.28 NA NA NA 16.07 0.45 0.863
RS Agri (2) 18.33 0.30 NA NA NA 18.63 0.03 1.000
RS+ Agri (2) 15.80 0.28 NA NA NA 16.08 0.45 0.863
RW_RS+ Agri (2) 15.78 0.28 NA NA NA 16.06 7.23 0.862

7 All results have been generated using a MacBook Air (M2 Chip) with 8GB of RAM.
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PC_RS Agri (3) 0.00 0.19 130.22 NA NA 130.42 0.03 1.000
PC_RS+ Agri (3) 0.00 0.18 124.77 NA NA 124.96 0.57 0.958
RS Agri (3) 0.00 0.19 130.22 NA NA 130.42 0.03 1.000
RS+ Agri (3) 0.00 0.18 124.46 NA NA 124.65 0.54 0.956
RW_RS+ Agri (3) 0.00 0.18 124.21 NA NA 124.40 4.35 0.954

PC_RS Swiss (4) 57027 4054 1348 672228 NA 734657 0.03 1.005
PC_RS+ Swiss (4) 56952 4050 1346 672421 NA 734769 0.28 1.005
RS Swiss (4) 66973 4736 1551 658007 NA 731266 0.03 1.000
RS+ Swiss (4) 67152 4749 1555 657952 NA 731407 0.27 1.000
RW_RS+ Swiss (4) 62962 4479 1479 659945 NA 728865 2.14 0.997

PC_RS Bost (4) 2.05 2.82 20.85 0.00 NA 25.72 0.03 0.911
PC_RS+ Bost (4) 0.60 3.50 25.34 0.00 NA 29.43 0.36 1.043
RS Bost (4) 5.55 2.78 19.90 0.00 NA 28.23 0.03 1.000
RS+ Bost (4) 0.62 3.58 24.99 0.00 NA 29.18 0.36 1.034
RW_RS+ Bost (4) 0.56 3.47 25.64 0.00 NA 29.67 4.07 1.051

PC_RS Pima (4) 2.98 2.12 8.64 0.52 NA 14.26 0.03 0.994
PC_RS+ Pima (4) 2.98 2.11 8.63 0.52 NA 14.25 0.42 0.993
RS Pima (4) 3.12 2.15 8.54 0.53 NA 14.34 0.03 1.000
RS+ Pima (4) 3.10 2.15 8.53 0.53 NA 14.31 0.42 0.998
RW_RS+ Pima (4) 3.02 2.13 8.57 0.52 NA 14.24 5.52 0.993

PC_RS Swiss (5) 25709 1835 616 326573 1572 356305 0.03 1.026
PC_RS+ Swiss (5) 25741 1834 614 326687 1574 356451 0.29 1.026
RS Swiss (5) 32619 2306 755 309665 2096 347441 0.03 1.000
RS+ Swiss (5) 32624 2304 753 309834 2096 347612 0.28 1.000
RW_RS+ Swiss (5) 30433 2156 710 310865 1930 346093 3.00 0.996

PC_RS Bost (5) 0.96 0.97 6.33 0.00 0.01 8.27 0.03 0.756
PC_RS+ Bost (5) 0.22 1.33 8.62 0.00 0.01 10.18 0.41 0.931
RS Bost (5) 4.20 0.94 5.78 0.00 0.01 10.94 0.03 1.000
RS+ Bost (5) 0.23 1.40 8.60 0.00 0.01 10.24 0.41 0.936
RW_RS+ Bost (5) 0.23 1.29 8.61 0.00 0.01 10.14 4.56 0.927

PC_RS Pima (5) 1.24 0.89 3.60 0.22 0.35 6.29 0.03 0.991
PC_RS+ Pima (5) 1.24 0.89 3.60 0.21 0.35 6.29 0.46 0.991
RS Pima (5) 1.31 0.90 3.56 0.22 0.35 6.35 0.03 1.000
RS+ Pima (5) 1.31 0.90 3.56 0.22 0.35 6.35 0.46 1.000
RW_RS+ Pima (5) 1.25 0.89 3.59 0.22 0.35 6.29 5.51 0.992

PC_RS Child (5) 1.31 1.05 0.12 0.03 1.74 4.25 0.03 0.996
PC_RS+ Child (5) 1.31 1.05 0.12 0.03 1.74 4.25 0.21 0.996
RS Child (5) 1.33 1.06 0.12 0.03 1.73 4.27 0.03 1.000
RS+ Child (5) 1.33 1.06 0.12 0.03 1.73 4.27 0.21 1.001
RW_RS+ Child (5) 1.31 1.05 0.12 0.03 1.74 4.25 1.62 0.996
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In the bivariate case, 𝐾 = 2, simulated Agriculture Census 2002 data has been used. Consequently,
the simulated dataset provided a large sampling frame (N=1379311) from which a consistently large
sample was drawn (n=20000). The outcome variables of interest were also relatively normally
distributed in comparison to the other datasets considered. In this case, the methods using the
modified search algorithm displayed improvements in variance in comparison to the original RS
method, with RW_RS+, PC_RS+ and RS+ achieving an average variance of approximately 14.7%
less than that of RS. Figure 1 gives an indication of the narrow variation in performance across runs,
further supporting the notable improvement observed. Here, the increased search space and targeted
perturbations offered by the modified algorithm seem to allow for precision gains. This result could
likely be due to the larger N and n enabled by the simulated dataset, where the smaller search space
of the RS method could risk settling in a local optima.

When𝐾 = 3, similar performance patterns to the case of𝐾 = 2 are observed, however the change in
precision across methods is of a smaller magnitude. The modified search algorithms offer an average
precision gain of approximately 4.2-4.6% relative to RS. The principal component weights combined
with the original search (PC_RS) achieve the same result as RS. Again, the relative improvement in
performance offered by the modified algorithm could be due to the size of the dataset (N=1140178)
and the expansion of the search space. It is important to note that while the random weight method
(RW_RS+) displays gains in improvement, it has a substantially longer average runtime of 4.35
seconds in comparison to RS with 0.03 seconds. The other modified search algorithms are more
computationally expensive than RS but less so than RW_RS+, with PC_RS+ and RS+ having average
run times of 0.57 and 0.54 seconds respectively.

To test cases with more variables than those studied in Kozak 2006, new datasets are considered.
In instances when 𝐾 = 4, results differ subject to the dataset. The highly skewed Swiss dataset

results in similar average performance across methods, with RW_RS+ showing an almost negligible
improvement relative RS of 0.3%. That being said the distribution of results for the Swiss dataset
observed in Figure 1 show that RW_RS+ is a consistent performer with few outliers. The Boston
housing data shows the modified algorithm performing relatively worse than the original algorithm,
while the use of PC weights leads to the most precision out of all the methods with PC_RS achieving
an average variance 8.9% lower than that of RS. Figure 1 further indicates the tight distribution of
results achieved for the Boston data under PC_RS. The Pima Diabetes data leads to more favourable
results for combinations using the modified algorithm, supported in Figure 1 although the relative
precision gains in comparison to RS are marginal.

The case of 𝐾 = 5 tends to show gains when using a weighted objective function relative to RS,
however the magnitude continues to differ depending on dataset. The Boston Housing data shows
the largest change in performance when using PC weights. PC_RS achieved 24.4% lower average
variance than that of RS. Unlike when 𝐾 = 4, the modified algorithms also show improvements
(smaller than those seen in PC_RS) relative to RS. In line with previous results, the RW_RS+ method
on the Swiss dataset shows a minor relative improvement of 0.4%. The Pima dataset has both the
principal component weight methods (PC_RS and PC_RS+) performing equivalently with the lowest
average variance (0.9% less than RS). Finally, the Child Health dataset shows all weighted methods
(PC_RS, PC_RS+, RW_RS+) performing marginally better (0.4%) than RS.

Relative to the large Agriculture datasets, the average runtime for RW_RS+ has reduced to 1.84
seconds (from 4.35 and 7.23 seconds), however this remains markedly higher than RS at 0.02 seconds.
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Figure 1. Total variance achieved according to each method, dataset and 𝑌1, ..., 𝑌𝑘 combination
across the 50 test runs.



30 BORROS, ER & SALAU

Table 4 provides a summary of each method’s performance across the 9 datasets and variable
combinations. The results reflect that the weighted methods and the modified algorithm tend to most
often achieve lower total variance in comparison to the original RS method (𝑅 < 1). The magnitude
of these gains are, however, largely dataset dependent and seem to vary with factors such as sample
frame size, variable loadings on 𝑃𝐶1 and dataset distribution. The modified search algorithm when
combined with random search weights is seen to outperform RS in 8 out of the 9 dataset and variable
combinations tested, although this result is accompanied by a trade off in terms of computational
efficiency.

Table 4. Summary of method performance relative to the original random search procedure (RS).

Method 𝑅 > 1 𝑅 = 1 𝑅 < 1

PC_RS 2 2 5
RS+ 3 2 4
PC_RS+ 3 0 6
RW_RS+ 1 0 8

5. Conclusion
This study provides a new method for variable importance weighting in the multivariate stratified
sampling allocation problem, integrating Principal Component Analysis (PCA) and an enhanced
random search algorithm. Prior to this contribution, variable weighting for the multivariate allocation
problem is generally either not applied (resulting in implicitly equally weighted outcome variables) or
based on some predetermined level of importance allocated by the survey practitioner (Cochran, 1977;
Kozak, 2006a). The PCA approach leverages each outcome variable’s loading on the first principal
component, which provides a linear combination that explains most of the variance in the dataset or,
in this case, sampling frame (Abdi and Williams, 2010). The weighted method is accompanied by a
modified search algorithm, which targets strata according to variation and modifies the search space
relative to the original search algorithm of Kozak (2006a), aiming to reach the minimum (optimum)
total variance under a stratified sampling design.

Based on the datasets, strata and sample size combinations tested in this study, it was found
that RW_RS+, the random weight method (using principal component weights as the starting point
followed by an iterative search procedure) with the modified search algorithm, most often (in 8 out of
9 dataset combinations tested) achieved lower average total variance relative to the original random
search method. This method, however, was the most computationally expensive as it uses a nested
search procedure. The next top performing method in terms of variance reduction was PC_RS+,
principal component weights combined with the modified search algorithm. This method achieved
lower total variance relative to the original method in 6 out of the 9 test conditions and the compute
was less expensive than RW_RS+, with runtime less than one minute on average.

Overall, the approach to multivariate stratified sampling allocation proposed in this study generally
achieves similar or lower total variance relative to earlier research and offers an intuitive approach
to variable weighting in the multivariate context. An important limitation of this study is the
assumption of predetermined strata boundaries, as the optimal allocation is fundamentally dependent
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on the choice of strata boundaries (Dalenius and Hodges, 1959). Future research should explore
the joint optimisation of boundary determination and allocation to establish the overarching optimal
solution for a given stratified sampling procedure (Khan and Sharma, 2015).
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The global energy landscape is currently undergoing several profound changes,
developing some paths towards accessible renewable resources. Natural hydrogen
has emerged as a promising energy source, yet its formation in different geological
environments remains uncertain. This research explores the directional relation-
ship between seepages of natural hydrogen, known as sub-circular depressions, and
geological lineaments in Mpumalanga, South Africa. The methodology employs
circular statistics to analyse depression orientations and uses rose diagrams for data
visualisation. Comparisons between the angles of depressions and geological linea-
ments are conducted using a proposed novel algorithm for data set division, followed
by 𝐾-means clustering to classify the depressions by size. Hypothesis testing, tai-
lored for circular data, is applied through the single-sample likelihood ratio test,
along with the Watson-Williams and the Watson-Wheeler tests. Initial findings sug-
gest that the average orientation between the depressions and geological lineaments
in the study area differs significantly from zero. Additionally, the Watson-Wheeler
test indicates that the three-cluster solutions exhibit no significant directional dif-
ferences when comparing individual clusters, while the four-cluster solution reveals
substantial variation in angular distributions. The findings provide a foundation for
understanding these interactions and open the door to exciting possibilities for future
research and exploration, potentially revolutionising the way we harness and study
the implementation of natural hydrogen as a renewable energy.

Keywords: Natural Hydrogen, Directional Statistics, Renewable Energy.

1. Introduction
The global energy landscape is undergoing a period of ground-breaking development as we shift
towards renewable resources, driven by the need to mitigate the side effects of non-renewable energy
sources such as coal and oil (Gielen et al., 2019). Various agreements, such as the Paris Agreement
of 2015 (Delbeke et al., 2019), have been put in place to combat the global issue of climate change.
Despite these efforts, many countries are struggling to meet their targets, highlighting the ongoing
challenge of transitioning to sustainable energy sources.
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Natural hydrogen has emerged as a promising alternative to non-renewable energy. This form of
hydrogen is produced through geological processes and is considered a clean, renewable potential
source of energy. Surface seepages of natural hydrogen are associated globally with sub-circular
depressions that typically present as shallow, elliptically shaped, vegetation-free depressions on the
landscape which are easily identifiable via satellite imagery (Moretti et al., 2022). Research indicates
that depressions are frequently aligned with geological lineaments, suggesting a deep subsurface
connection (Xiang et al., 2020).

Ongoing studies in South Africa are investigating the presence of natural hydrogen in sub-circular
depressions identified in Mpumalanga. These depressions are typically filled with water and are
colloquially referred to as pans1. The pans are identified on satellite imagery using Geographic
Information System (GIS) techniques, while geological lineaments are determined using magnetic
and other geophysical measurements.

Unlike traditional statistics, which deals with data on a linear scale, the data present in this research
is of a directional and angular nature. Circular data arises whenever measuring direction is of interest
and is usually expressed as angles relative to a fixed reference point, such as due north (Lee, 2010).
Examples of where circular data is present include wind directions (e.g., Carnicero et al., 2013),
animal movement (e.g., Rivest et al., 2016), and fault orientation (e.g., Michalak et al., 2021).

Due to the nature of circular data, conventional statistical methods used for linear numerical data are
inadequate (Lee, 2010). Rose diagrams are generally constructed to detect deviations from a random
or uniform distribution of directional data (Walsh and Martill, 2006). Additionally, they provide
insight into the structural characteristics inherent in the data (Wells, 2000). These diagrams will be
used to represent relationships between the orientations of the pans and the geological lineaments.

The von Mises distribution plays a similar role to the normal distribution in circular data analyses
(Mardia and Jupp, 2009). This study investigates whether the angles between the major axes of pans
and geological lineaments differ significantly, aiming to assess a potential directional relationship.
Using the von Mises distribution, the null hypothesis, that the mean angular difference deviates
from zero, is tested against the alternative. The test statistic is computed based on the fitted von
Mises distribution, with large values indicating rejection of the null hypothesis, thus suggesting a
meaningful directional relationship (Mardia and Jupp, 2009).

The study employs statistical tools to evaluate whether significant directional relationships exist
between sub-circular depressions and nearby geological lineaments and proposes a novel algorithm
for this purpose. To categorise the depressions, particularly by size, 𝐾-means clustering is applied
as an unsupervised method, reducing subjectivity by grouping data based on similarities. The
elbow method determines the optimal number of clusters (𝐾), which serves as the basis for statistical
comparisons. Two hypothesis tests are then employed: the Watson-Williams test to assess differences
in mean directions across clusters, and the Watson-Wheeler test, a non-parametric hypothesis test,
which does not rely on strict parametric assumptions (Mardia and Jupp, 2009; Sinaga and Yang,
2020). These methods provide a framework to understand how depressions may align with geological
lineaments, contributing to insights into their formation and spatial relationships.

This study aims to contribute to the growing body of research on natural hydrogen by statistically

1 UP scientists lead Mpumalanga study of natural hydrogen gas discovered under Earth’s surface. (2023, December
1). Squared2 UP Newsletter. Retrieved January 16, 2025, from https://www.up.ac.za/media/shared/11/ZP_NewsImages/
squaredup_december-2023.zp245474.pdf

https://www.up.ac.za/media/shared/11/ZP_NewsImages/squaredup_december-2023.zp245474.pdf
https://www.up.ac.za/media/shared/11/ZP_NewsImages/squaredup_december-2023.zp245474.pdf
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evaluating the directional relationship between sub-circular depressions (pans) and geological linea-
ments in Mpumalanga, South Africa. By leveraging circular statistics, including rose diagrams and
the von Mises distribution, the study assesses whether significant alignment exists between these fea-
tures. Additionally, 𝐾-means clustering categorises the pans by size, and hypothesis tests determine
whether directional differences exist across clusters. The paper is structured as follows: Section 2
outlines the methodology, detailing data collection, transformation, and statistical techniques. Sec-
tion 3 presents the results, followed by an analysis and discussion. Finally, Section 4 summarises key
findings, acknowledges limitations, and suggests directions for future research.

2. Methodology
2.1 Visualisation and Data Transformation
Rose diagrams depict relationships between two variables: direction or angle around a circle and
a scalar quantity representing distance from the centre (Sanderson and Peacock, 2020). Angles
are typically represented in degrees or radians, with radians ensuring compatibility with statistical
software like R (Ihaka and Gentleman, 1996). Therefore, all angles in this paper are converted to
radians. Built-in functions such as atan2 and rose facilitate direction calculation and rose diagram
creation (Pewsey et al., 2013).

Let the pans be denoted by 𝑝𝑖 for 𝑖 = 1, 2, ..., 𝑛 and the geological lineaments by 𝑔 𝑗 for 𝑗 = 1, 2, .., 𝑚,
where 𝑛 is the number of pans and 𝑚 represents the number of geological lineaments. The angles
for each 𝑝𝑖 will then be given by 𝜃𝑝𝑖 and for each 𝑔 𝑗 by 𝜃𝑔 𝑗 . Each geological lineament 𝑔 𝑗 is a line
pattern such that the single line displayed consists of an arrangement of smaller lines that together
form a specific pattern or trend in the data set. These line patterns will later be linked to specific
pans which will be denoted by 𝑔𝑖 𝑗 . The quantity 𝑔𝑖 𝑗 represents the line pattern of the 𝑗 𝑡ℎ geological
lineament near pan 𝑝𝑖 .

Circular statistics considers observations which are directions or angles. The directions can be
represented as points on the unit circle where the choice of the initial direction and orientation for the
unit circle is important (Mardia and Jupp, 2009). A conventional method is choosing the rightward
direction as the initial starting point, known as the East direction. This aligns with the x-axis of the
standard Cartesian coordinate system. A useful way of representing each point x on a unit circle
involves using an angle 𝜃 and unit complex numbers 𝑧 (Mardia and Jupp, 2009). The relation between
x, 𝜃, and 𝑧 is given by

x = (cos 𝜃, sin 𝜃)𝑇 and 𝑧 = 𝑒𝑖 𝜃 = cos 𝜃 + 𝑖 sin 𝜃. (1)

Figure 1, shows a unit circle with a radius of 1 with direction x (from origin 𝑂 to point 𝑧)
represented by angles 𝜃, measured anticlockwise from the East. It identifies 𝑧 as a point on the unit
circle corresponding to 𝜃, calculated using Equation 1. The coordinates of 𝑧, cos 𝜃 and sin 𝜃, define
the 𝑥 and 𝑦 positions on the circle’s circumference. This approach, which uses angles and complex
numbers to represent directions, is similarly applied to the pans in this study.

When analysing spatial data, applying the correct projection is essential. For this study, the
Hartebeesthoek 94 projection, a geodetic reference system used in South Africa (Wonnacott, 1999),
was chosen. This projection ensures accurate calculation of lengths and angles, allowing precise
representation of spatial relationships between lineaments and pans.



36 BOTHA, SMIT, BUMBY, FABRIS-ROTELLI, MAC’ODUOL & NAKHAEIRAD

Figure 1. Representation of vector x using angle 𝜃 and complex number 𝑧 (Mardia and Jupp, 2009).

(a) (b)
Figure 2. Calculation of angles of major axis of the two typical sub-circular depressions.

To calculate angles, a consistent directional measure is required. Each pan’s orientation is defined
by its major axis, determined as the maximum Euclidean distance between two boundary points of
the pan. As these pans are elliptical in nature, we can refer to their major axis for this purpose. The
major axis is represented as 𝑦 = 𝑚𝑥 + 𝑐, where 𝑚 is the slope and 𝑐 is the intercept. The angle 𝜃
of the major axis is calculated via the slope 𝑚 using the arc-tangent function: 𝜃 = tan−1 (𝑚), where
𝜃 is measured anticlockwise from the horizontal axis. Angles are constrained to [0, 𝜋] because 𝜋

2
and 3𝜋

2 describe the same axis. Applying this to two randomly selected pans produces the results in
Figure 2. Note that the example in Figure 2b illustrates a scenario where the angle exceeds 𝜋

2 .

2.2 Circular Statistics Methods
For the calculation of the circular mean (denoted by 𝜃), assume that 𝑥1, 𝑥2, ..., 𝑥𝑛 are the observed
unit vectors with angles 𝜃1, 𝜃2, ..., 𝜃𝑛 respectively. The Cartesian coordinates of each unit vector
𝑥 𝑗 is represented as (cos 𝜃 𝑗 , sin 𝜃 𝑗 ) for 𝑗 = 1, 2, ..., 𝑛 (Mardia and Jupp, 2009). The corresponding
Cartesian coordinates of the circular mean (centre of mass) are (�̄�,𝑆) where

�̄� =
1
𝑛

𝑛∑︁
𝑗=1

cos 𝜃 𝑗 and 𝑆 =
1
𝑛

𝑛∑︁
𝑗=1

sin 𝜃 𝑗 . (2)

These quantities represent the components of the circular mean, which summarises the directional
tendencies of the observed angles on the unit circle. The length of the centre of mass vector x is

�̄� =
√︁
�̄�2 + 𝑆2 where 0 ≤ �̄� ≤ 1,

which is analogous to the Euclidean distance formula used in linear statistics (Mardia and Jupp,
2009). The quantity �̄� is a measure of concentration. �̄� will be close to 1 when the angles are closely
situated or 0 when the angles are widely spread out. Note that for calculating the mean direction 𝜃, it
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is assumed that �̄� > 0, resulting in the mean direction being calculated using the following formula:

𝜃 =


tan−1 ( �̄�

�̄�
) if 𝑆 > 0, �̄� > 0,

tan−1 ( �̄�
�̄�
) + 𝜋 if �̄� < 0,

tan−1 ( �̄�
�̄�
) + 2𝜋 if 𝑆 < 0, �̄� > 0,

(3)

where the inverse tangent function takes on values in the interval [− 𝜋
2 ,

𝜋
2 ].

In addition, comparisons can be made using measures of dispersion along a line. The simplest of
these is the sample circular variance, defined by Mardia and Jupp (2009) as

𝑉 = 1 − �̄�, where 0 ≤ 𝑉 ≤ 1.

Other measures outlined by Mardia and Jupp (2009), such as the circular standard deviation and
circular dispersion, while less pivotal for this study, offer additional insights into the distribution
characteristics. The final set of descriptive statistics involves measures of skewness and kurtosis,
providing insights into the distribution of the angles around the mean direction. As detailed by
Bekker et al. (2022), the skewness coefficient is given by

𝑠 =
𝛾2

(1 − �̄�)3/2 where 𝛾2 =
𝑆2 (�̄�2 − 𝑆2) − 2�̄��̄�2𝑆

�̄�2 with �̄�2 =
1
𝑛

𝑛∑︁
𝑗=1

cos(2𝜃 𝑗 ),

where 𝛾2 represents the second cosine moment about the mean direction 𝜃. The kurtosis coefficient
is derived as

�̂� =
(𝛾1 − �̄�4)
(1 − �̄�)2 where 𝛾1 =

�̄�2 (�̄�2 − 𝑆2) + 2�̄�𝑆𝑆2

�̄�2 with 𝑆2 =
1
𝑛

𝑛∑︁
𝑗=1

sin(2𝜃 𝑗 ),

where 𝛾1 is the second sine moment about the mean direction 𝜃.
These measures offer insight into the distribution’s asymmetry and tail lengths. They complement

the visual information provided by the rose diagrams, offering a deeper understanding of the angular
distribution characteristics observed in the study. While further investigation could involve fitting a
circular distribution to the data, this falls outside the scope of this research.

2.3 Proposed Algorithm for Geological Lineaments Comparison
Analysing the directional statistics of the pans in isolation, while valuable, does not provide a
complete understanding of the research questions. A similar analytical approach to establishing the
relationship between the orientation of geological lineaments in relation to the direction of observed
pans is followed for the geological lineaments. The challenge lies in integrating these two sets of
data in a statistically robust manner to derive meaningful insights.

For simplicity, each pan is assumed to be independent, meaning factors such as orientation and
proximity of pans do not influence others. This assumption should be revisited in future research.
Unlike the pans, geological lineaments follow varied and irregular patterns beneath the surface.
Some may lie directly under the pans, while others are nearby, making the determination of their
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orientations more complex. The difference in orientations between pans and geological lineaments
is critical to establish the underlying relationship between these two.

The method proposed is to create a buffer structure that is placed over the two sets of data, with
one being the pans (𝑃) and the other the geological lineaments (𝐺). The process can be summarised
in the following algorithm.

1. Initialisation: Set the initial scaling parameter 𝑎 = 1, where 𝑎 determines the initial buffer size
in metres around each pan.

2. Create Bounding Boxes: For each pan 𝑝𝑖 ∈ 𝑃 :

(a) Obtain the outer boundary of each pan 𝑝𝑖 .

(b) Calculate the initial bounding box around 𝑝𝑖 with a buffer of 𝑎 metres. In construction
of the buffer it was chosen that it would increase uniformly in all directions resulting in
a rounded shape around the original polygon, even if the pan has an irregular shape.

3. Increase the Scaling Parameter: Increase 𝑎 by integer values until every bounding box contains
at least one geological lineament 𝑔 𝑗 ∈ 𝐺. The buffer should be adjusted evenly around the
entire perimeter of 𝑝𝑖 , so that larger pans will naturally have proportionally larger bounding
boxes.

4. Evaluate Directions:

(a) For each bounding box around pan 𝑝𝑖 , extract all lineament segments such that these
segments fall entirely within the bounding box, denoted by 𝑔𝑖 𝑗 .

(b) The direction of each lineament is calculated as a single angle 𝜃𝑖 𝑗 ∈ [0, 𝜋), determined
from the orientation of the line based on its start and end coordinates within the bounding
box.

(c) For each pan 𝑝𝑖 , compute the following using all angles 𝜃𝑖 𝑗 relevant to its bounding box:

�̄�𝑖 =
1
𝑛(𝑖)

𝑛(𝑖)∑︁
𝑗=1

cos(𝜃𝑖 𝑗 ), 𝑆𝑖 =
1
𝑛(𝑖)

𝑛(𝑖)∑︁
𝑗=1

sin(𝜃𝑖 𝑗 ),

where 𝑛(𝑖) is the number of lineaments within the bounding box of pan 𝑝𝑖 .

(d) Compute the average direction 𝜃𝑖 for all geological lineaments in each bounding box
using:

𝜃𝑖 =


tan−1

(
�̄�𝑖
�̄�𝑖

)
if 𝑆𝑖 > 0, �̄�𝑖 > 0,

tan−1
(
�̄�𝑖
�̄�𝑖

)
+ 𝜋 if �̄�𝑖 < 0,

tan−1
(
�̄�𝑖
�̄�𝑖

)
+ 2𝜋 if 𝑆𝑖 < 0, �̄�𝑖 > 0.

The resulting 𝜃𝑖 represents the overall average directional trend of all the geological
lineaments in the bounding box around pan 𝑝𝑖 .

5. Store the Directional Information: For each pan 𝑝𝑖 , store the direction of the pan 𝜃𝑝𝑖 , the
directions of all lineaments within it {𝜃𝑖 𝑗 }𝑛(𝑖)𝑗=1 , and the average direction of the lineaments 𝜃𝑖 .



DIRECTIONAL ANALYSIS OF HYDROGEN DEPRESSIONS AND LINEAMENTS IN MPUMALANGA 39

2.4 Hypothesis Test for Significant Mean Differences
It is of interest to test if the mean of differences between the angles of various pans and the angles
between a pan and associated geological lineaments differ significantly from zero. The single-sample
hypothesis test for the mean direction of circular data, as discussed by Mardia and Jupp (2009), is
applied. Since the population concentration parameter 𝜅 is unknown, the version of the test that
accommodates this uncertainty is used, as the average direction of all pans is not available.

The hypothesis test focus is on the differences

𝑑𝑖 = 𝜃𝑝𝑖 − 𝜃𝑖 , (4)

for 𝑖 = 1, 2, . . . , 𝑛, where 𝑛 is the total number of differences corresponding to 𝑛 pans, and 𝜃 represents
the angles of the pans and geological lineaments, respectively. The von Mises distribution is fitted to
these angular differences 𝑑𝑖 .

The von Mises distribution’s density function involves two parameters: 𝜇 (mean direction) and 𝜅
(concentration). Special cases arise when 𝜅 = 0 (uniform distribution) or 𝜅 is large, approximating
the normal distribution with mean 𝜇 and variance 1

𝜅
, and is defined by Mardia and Jupp (2009) as

𝑓 (𝑑𝑖; 𝜅, 𝜇) =
𝑒𝜅 cos(𝑑𝑖−𝜇)

2𝜋𝐼0 (𝜅)
with 𝐼0 (𝜅) =

1
2𝜋

∫ 2𝜋

0
𝑒𝜅 cos(𝑑𝑖−𝜇) , (5)

where 𝐼0 (𝜅) is the modified Bessel function of the first kind and order zero.
The parameters 𝜅 and 𝜇 are obtained by maximising the log-likelihood function using optimisation

algorithms such as optim and DEoptim in R (Mullen et al., 2011).The mean direction 𝜇, calculated as
the circular mean of the angular differences 𝑑𝑖 , serves as the initial value for the iterative optimisation.

When a mean direction 𝜇0 is specified, Equation 2 quantities are modified to (Mardia and Jupp,
2009)

�̄� =
1
𝑛

𝑛∑︁
𝑘=1

cos(𝑑𝑖 − 𝜇0) and 𝑆 =
1
𝑛

𝑛∑︁
𝑘=1

sin(𝑑𝑖 − 𝜇0).

The hypothesis statements follow as

𝐻0 : 𝜇𝑑 = 𝜇0 vs 𝐻𝐴 : 𝜇𝑑 ≠ 𝜇0,

where 𝜇0 = 0 can be used to test for no significant difference. The likelihood ratio statistic for 𝐻0 is

𝑤 = 2𝑛(𝜅�̄� − 𝜅�̄� − log𝐼0 (𝜅) + log𝐼0 (𝜅)),

where �̃� = 𝐴−1 (�̄�) denotes the ML estimate of 𝜅 under 𝐻0 (Mardia and Jupp, 2009). Large values
of 𝑤 will result in rejecting the null hypothesis.

A simpler statistic is proposed as
𝑤 = 2𝑛𝜅(�̄� − �̄�), (6)

where 𝜅 is the ML estimate of the concentration parameter. Under Wilks’s theorem, and given a
large sample size, 𝑤 approximately follows a 𝜒2 distribution with 1 degree of freedom under the
null hypothesis 𝐻0 (Mardia and Jupp, 2009). Rejecting the null hypothesis suggests significant
differences in angles, implying other factors may influence their orientation.
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2.5 Clustering Analysis by Pan Size
The analysis can be further refined by examining how pan size influences the directional relationship
between pans and nearby geological lineament(s). Classifying pan size is often subjective, which
may lead to bias. To mitigate this, 𝐾-means clustering, an unsupervised classification method, is
used to objectively group pans by size by minimizing the Within-Cluster Sum of Squares (WCSS).
This ensures that observations within each cluster are as similar as possible while being as distinct
as possible from those in other clusters (Sinaga and Yang, 2020).

Several methods can be used to identify the optimal number of clusters 𝐾 e.g. the elbow method
(Cui et al., 2020), silhouette analysis (Shutaywi and Kachouie, 2021), and gap statistics (Yang et al.,
2019). The elbow method is examined in this paper due to its frequent use and practical relevance.
The optimal 𝐾 occurs at the point, where adding more clusters yields diminishing returns, showing
a decrease in WCSS as 𝐾 increases.

2.6 Testing Mean Direction Differences Across Clusters
The rose diagrams and circular means are recalculated for the respective clusters to compare their
directional distributions and to assess whether the mean direction for each group differs significantly
from zero. Assuming a sufficiently large sample size, the same approach as in Equation 6 is followed.

A new comparison takes the form of testing whether means are statistically different. Using
the elbow method, if K clusters are identified as the optimal classification, the multiple-sample
Watson-Williams test for the equality of mean directions is constructed as (Mardia and Jupp, 2009)

𝐻0 : 𝜇𝑑𝐶1
= 𝜇𝑑𝐶2

= ... = 𝜇𝑑𝐶𝐾 vs 𝐻𝐴 : At least one mean pair is not equal

where 𝜇𝑑𝐶𝑖 is the sample mean difference of the 𝑖𝑡ℎ group. This test is conducted using R packages
such as circular. The three assumptions upheld while applying the test are: (1) the concentration
parameters 𝜅1, 𝜅2, ..., 𝜅𝐾 are assumed equal, (2) these concentration parameters must be sufficiently
large (𝜅 > 1), and (3) the observed angular differences are independent random samples, each
following a von Mises distribution with parameters 𝜇𝑑𝐶𝑖 and 𝜅𝑖 where 𝑖 = 1, 2, ..., 𝐾 (Mardia and
Jupp, 2009). If these assumptions are violated, the test results may not be accurate. An alternative
test is the non-parametric Watson-Wheeler test, which avoids these assumptions but requires at least
10 observations per cluster (Mardia and Jupp, 2009).

3. Application
A dataset containing 2735 pans or elliptical depressions was sourced from the LEAP-RE HyAfrica
project using topographic maps from the South African Surveyor General. Geological lineaments
were sourced from geophysical maps from the Council for Geoscience in South Africa. This data was
used with approval from the University of Pretoria’s Faculty of Natural and Agricultural Sciences
Ethics Committee (NAS116/2019). By making use of fundamental geometric principles, the angles
of the major axis of each pan were calculated and assigned to the pan under consideration. This
information was used to calculate the relevant circular statistics and rose diagram.

As seen in Figure 3, the major axis of the pans is fairly spread out, with the mean direction pointing
to NNE (North Northeast). The calculated circular mean is 1.4449 radians (or 82.79°), and the
circular variance is 0.2239. These statistics highlight the dispersion and orientation of the pans’
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Figure 3. Rose diagram indicating the average direction of the major axis of all pans in the data set.

(a) (b)
Figure 4. (a) Buffer size of 48440 applied to a random pan (b) Example of a buffer with the
highlighted lines used to calculate the average direction.

major axes. Unlike a traditional rose diagram that bins angles around the entire circle, the angles
here are restricted between 0 and 𝜋, as explained in the methodology. The bins for the rose diagram
have a width of 5° (0.09 radians) throughout the paper.

The average direction of the geological lineaments surrounding each pan is obtained using the
algorithm, as outlined in Section 2.3. The buffer size required to meet the chosen criteria was 48440,
shown in Figure 4a. Since the buffer size represents a one metre increase in the radius around the
initial pan, a buffer of this size would mean that each buffer would cover around 0.96◦, or roughly
96kms in diameter. A buffer of this magnitude would include a large proportion of the sample area
and so adjustments were made to attempt to make this smaller, to restrict the geological lineaments
to a more representative region around the pan of interest.

Further investigation revealed that some geological lineament data were missing, causing the
buffer size to increase unnecessarily, as smaller pans required larger buffers to meet the criteria.
After updating the data, the buffer size was nearly halved to 24855. Despite this reduction, the buffer
size remained almost 50kms in diameter. To address this, an additional criterion was implemented:
the buffers were adjusted so that 90% of the pans intersected with at least one geological lineament.
This resulted in a smaller buffer size of 11016 (22kms diameter), while still ensuring the inclusion
of most pans to minimise selection bias.

The pans with buffers that did not intersect were located in areas with few visible geological
lineaments, likely due to geological factors that made them difficult to detect. This insight emphasizes
the value of consultation with geological experts, and further investigation into this area will be
considered in future work.

Figure 4b provides a clear representation of how the geological lineaments are selected for the
calculation of average direction. In the calculation, each pan will get a single direction that represents
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Figure 5. Rose diagram indicating the aver-
age direction of the geological lineaments per
buffer.

Figure 6. Rose diagram indicating the dif-
ference in the angles of pans and geological
lineaments.

Table 1. Summary of circular statistics for the difference in directions.

Mean Direction Circular Variance Skewness Coefficient Kurtosis Coefficient
0.1463 (8.38◦) 0.3069 320.7871 7050.385

the average direction of the selected green geological lineament(s) within the buffer. The calculation
of the angular difference follows from Equation 4 which entails subtracting this value from the
calculated angle of the major axis of the pan. The rose diagram for the average direction of all the
geological lineaments in the area is given in Figure 5.

The distribution of the average geological lineament directions is difficult to compare to that of the
pans. The two seem to have a similar mean direction but this cannot be confirmed nor disregarded
by means of the rose diagram in isolation. Based on the circular variance, the geological lineaments
do display less variation.

The von Mises distribution was fitted to the angular differences 𝑑𝑖 between the pans and geological
lineaments. The ML estimate for the average angular difference is calculated as 0.1463 radians
(8.38◦), which serves as the initial value of 𝜇 in the optimisation procedure. The first hypothesis test
aims to determine whether the mean angular difference is significantly different from zero.

Figure 6 and Table 1 display the rose diagram and circular statistics for the angular difference. In
Figure 6, the angles are plotted on the right hemisphere, reflecting the nature of the angle difference
calculation. If the average direction of the geological lineaments exceeds that of the pan, the result
is a negative angle measured clockwise from zero. Angles near zero indicate similar orientations,
while those further away suggest a larger discrepancy. However, a definitive conclusion cannot be
drawn from the diagram alone.

The ML result, using both the optim and DEoptim functions in R, results in 𝜅 = 1.9719, directly
applied in the test statistic displayed in Equation 6.

Table 2 presents the relevant test statistics for the hypothesis, conducted at the 5% significance
level (the standard unless otherwise specified) using a buffer size of 11016. The null hypothesis is
rejected, and it is concluded that the directional difference is significantly different from zero. This
indicates that the average geological lineament direction and the major axis of the pans do not align.
However, the small difference suggests some level of relationship. Test results may be influenced by
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Table 2. Hypothesis test results: Testing mean direction deviation from zero.

TS CV 𝑝-value
71.9043 3.8415 2.2589 × 10−17

Table 3. Comparison of circular statistics for three- and four-cluster solution.

Three-Cluster Solution Mean Direction Circular Variance Skewness Kurtosis
Small Cluster 1.4456 0.2251 -1935.704 18972.64
Medium Cluster 1.3824 0.1103 -71.7724 1352.909
Large Cluster 1.4504 0.0 N/A N/A

Four-Cluster Solution Mean Direction Circular Variance Skewness Kurtosis
Small Cluster 1.4536 0.2319 -1687.6770 15825.82
Medium Cluster 1.3398 0.1186 -248.9124 8602.185
Large Cluster 1.4850 0.1164 -44.1764 490.5742
Very Large Cluster 1.4504 0.0 N/A N/A

the selected buffer size, missing data, and the 90% criteria used to adjust the buffer size. Nonetheless,
using a larger buffer size of 24855 yields a 𝑝-value of 1.5245 × 10−18, which does not change the
outcome of the test. Note that in the following tables, the test statistic is denoted as TS, and the
critical value as CV.

Building on the finding that the directional difference is significantly different from zero, the po-
tential effects of other factors, particularly pan size, should also be examined. Using WCSS, an elbow
plot identifies three optimal clusters, grouping pans into small, medium, and large. Additionally, a
four-cluster solution is explored for further insight, categorising pans as small, medium, large, and
very large.

Sub-setting the data based on a three and four cluster solution is completed using the kmeans
function in R. The data was split into 2708 small pans, 26 medium pans, and 1 large pan for the
three-cluster solution. The four-cluster solution resulted in a respective split of 2536, 187, 11, and 1.

Table 3 presents the circular statistics for the three- and four-cluster solution, while the corre-
sponding rose diagrams are shown in Figure 7 and Figure 8. Clusters with only one pan will have no
circular variance, skewness coefficient, or kurtosis, and the mean direction represents the direction
of the major axis of that pan. Similar to the previous analysis, buffers are fitted to the pans. However,
in this case, each iterative procedure is applied to each cluster in isolation. Both the 90% criteria
and the full data set criteria will be applied with the buffer sizes for the different cluster solutions
provided in Table 4.

The direction of geological lineaments and the difference are calculated as before, within each
cluster, and then combined for hypothesis testing. Once angles are calculated and the ML procedure
completed, the test for cluster means differing from zero is conducted. The large (three- and four-
cluster solutions) and very large cluster (four-cluster solution), consisting of only one and eleven pans
respectively, cannot be tested due to insufficient small-sized clusters, leaving these untested. The
fitted von Mises distributions and hypothesis test statistics for the cluster solutions are provided in
Table 5, with results for both the standard and 90% criteria presented below one another.
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(a) (b) (c)
Figure 7. Rose diagram indicating the average direction of the (a) Small pans, (b) Medium pans,
and the individual (c) Large pan.

(a) Small Pans (b) Medium Pans (c) Large Pans (d) Very Large Pan
Figure 8. Rose diagram indicating the average direction of the (a) Small pans, (b) Medium pans, (c)
Large pans, and the single (d) Very Large pan.

Table 4. Buffer size (in metres) for the full data and 90% criteria values for the cluster solutions.

Three-Cluster Solution Full Data 90% CV
Small Cluster 24855 11028
Medium Cluster 8660 7892
Large Cluster 8660* 7892*

Four-Cluster Solution Full Data 90% CV
Small Cluster 24855 11106
Medium Cluster 18110 8307
Large Cluster 8065 7666
Very Large Cluster 8065* 7666*

*The buffer size for these clusters was chosen to be the same as the previous cluster since there is already a geological
lineament running through the pan. This ensures that this pan has more than one intersection.
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Table 5. Test statistics and parameters: Cluster mean direction tested against zero.

Three-Cluster Solution 𝜅 𝜇 TS CV 𝑝-value
Small Cluster 2.2182 0.1307 74.8977 3.8415 4.96 × 10−18

Medium Cluster 3.5256 0.1694 2.2112 3.8415 0.1370
Small Cluster (90% criteria) 1.9641 0.1451 69.5823 3.8415 7.33 × 10−17

Medium Cluster (90% criteria) 3.2175 0.2883 5.2592 3.8415 0.0218

Four-Cluster Solution 𝜅 𝜇 TS CV 𝑝-value
Small Cluster 2.1621 0.1321 68.9956 3.8415 9.87 × 10−17

Medium Cluster 2.1621 0.1412 6.5879 3.8415 0.0103
Small Cluster (90% criteria) 1.9170 0.1366 55.7723 3.8415 8.14 × 10−14

Medium Cluster (90% criteria) 2.6172 0.2451 15.0475 3.8415 1.05 × 10−4

Table 6. Watson-Wheeler results: Test for equality of mean direction across three cluster solution

Cluster Solution Test Test Statistic df 𝑝-value
Three-Cluster Watson-Wheeler Test 4.1962 4 0.3801
Three-Cluster (90%) Watson-Wheeler Test 4.6856 4 0.3211
Four-Cluster Watson-Wheeler Test 30.43 6 3.256 × 10−5

Four-Cluster (90%) Watson-Wheeler Test 17.384 6 0.008

Based on Table 5, the results suggest that for all applicable clusters, the mean differences are
significantly different from zero at any reasonable level of significance. The only exception is the
medium cluster in the three-cluster solution. This result may be questionable due to the relatively
small cluster size of 26, raising concerns about whether this sample size is sufficient for reliable
conclusions and should be further investigated. Similarly, using the 90% criteria, the null hypothesis
is rejected for all relevant tests, indicating that the mean directions of all tested clusters differ
significantly from zero.

The final hypothesis test examines the homogeneity of means and angular distributions across the
clusters. Originally, the Watson-Williams test was planned, but its assumption of equal concentration
parameters (𝜅) across clusters are violated due to non-constant concentration parameters, leading to
unequal dispersion of angular data. As a result, the Watson-Williams test is not applicable.

Therefore, the analysis switches to the Watson-Wheeler test, a non-parametric alternative that does
not require equal concentration parameters. The tests were performed on both the original and the
90% criteria adjusted three- and four-cluster solutions. The results are summarised in Table 6.

The three cluster solution suggests no significant differences in angular distributions. However, the
four cluster solution has a highly significant 𝑝-value of 3.256×10−5, indicating substantial differences
in angular distributions between the four clusters. In the 90% criteria solutions, the three-cluster
suggests no significant differences, while the four-cluster solution still reveals significant differences
in angular distributions even under the 90% criteria.

The significant 𝑝-values in the four cluster solution, for both the original and 90% criteria, strongly
support the rejection of the null hypothesis, indicating heterogeneity in angular distributions across
the four clusters. This is not the case for the three-cluster solutions.
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While the Watson-Williams test could not be applied to assess homogeneity in mean directions
due to the violation of its assumptions, the Watson-Wheeler test was successfully implemented and
revealed significant differences in angular distributions, particularly for the four-cluster solution. This
suggests that the average directional difference between geological features varies across different
pan sizes, offering valuable insights into underlying patterns in the geological data.

It is important to note, though, that the Watson-Wheeler test assumes all clusters have more than
10 observations, a criterion that was not met in this analysis. As a result, while the test produced
results, these should be interpreted with caution. Future work should aim to apply tests that meet
all assumptions to confirm these findings and explore their practical implications in geological
interpretation and modelling. Note: All relevant R code for the analysis can be found here.

4. Conclusion
This research aims to explore the directional relationship between elliptical natural hydrogen de-
pressions and geological lineaments in Mpumalanga, South Africa, using circular statistics (circular
mean, variance, skewness, and kurtosis), 𝐾-means clustering, hypothesis testing, and a novel algo-
rithm for calculating the average direction of geological lineaments based only on segments within a
defined bounding box. A dataset of 2735 pans was analysed, focusing on the angles of their major
axes and their relation to surrounding geological features. Descriptive statistics revealed patterns in
pan orientations, suggesting potential angular relationships with geological lineaments.

The unsupervised clustering, through 𝐾-means, yielded insights into the classification of pans
based on area, identifying three- and four-cluster solutions with both significant and insignificant
differences in angular distributions. Circular statistics were used to show that while larger clusters
exhibited a more stable and consistent mean direction, smaller clusters showed considerable variabil-
ity, reflecting the complex geological processes that may influence their formation and orientation,
in addition to the effects of sample size. The accompanying rose diagrams represented the average
orientation for each cluster, aiding in the understanding of the directional relationships in the data.

Hypothesis testing aimed to determine if the mean direction of each cluster significantly differed
from zero. Most clusters showed significant angular differences, except for the medium-sized cluster
in the three-cluster solution. Sample size issues prevented conclusions about the larger clusters,
underscoring the need for caution in interpreting results.

The Watson-Williams test attempted to answer whether angular differences differed significantly
across clusters. Here, the assumption of using populations with constant concentration parameters
was violated, so the full hypothesis test could not be tested. Instead, the non-parametric Watson-
Wheeler test was used, revealing significant heterogeneity in angular distributions, especially in
the four-cluster solution. In contrast, the three-cluster solution showed no significant differences,
indicating that the mean directions did not differ substantially across these clusters. These findings
imply that geological processes influencing pan orientation vary by cluster size, though the assumption
of at least 10 observations per cluster wasn’t met, warranting caution and further investigation.

Future research should explore several key areas. One suggestion is to assign a weight to the
average direction of the geological lineaments based on their lengths to provide a more accurate
representation of the directional influence of the lineaments on the surrounding landscape. Similarly,
the average direction of the major axes of the pans could be weighted according to their lengths. This

https://drive.google.com/file/d/1u2IqrLYlc_hs4ZNvJcNZmCtcCsZtd0O-/view?usp=drive_link
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aims to investigate the potential significance of larger pans in shaping the spatial dynamics of the
environment and provide deeper insights into the interplay between pan size and geological features.

Moreover, future studies should investigate potential spatial and geological dependence among
pans such as the alignment, proximity, or shapes of surrounding pans.

This research has begun the process of laying important groundwork for understanding the intricate
relationships between pan formations and geological lineaments, particularly in Mpumalanga. By
continuing to employ interdisciplinary approaches and advanced statistical techniques, it opens the
door for future investigations to further explore these natural systems.
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Covariate-based distance outlier scoring for nonconvex domain
estimation
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To conduct an appropriate analysis of point pattern data, knowledge of the
location of events and the spatial domain, termed a window, in which these lo-
cations are observed is required. The window defines the extent for analysis and
is directly involved in estimating and inferring on the first-and-second order prop-
erties of the point process that generated the data. Often, the window is known
and recorded during data collection. Otherwise, it must be chosen objectively by
the researcher. When the window is unknown, the typical approach is to use the
minimum bounding box or the convex hull of the observed locations. Choosing too
large a window, however, may lead to spurious estimation and inference in regions
where points cannot occur. In a setting where points are restricted by physical or
other phenomena, a nonconvex window that accounts for these constraints provides
a more representative domain for analysis. Herein, we propose an algorithm for
estimating nonconvex windows for point pattern data using covariate-based distance
outlier scores and Otsu thresholding. The robustness of the algorithm is evaluated
on various point pattern types, namely regular, clustered, inhomogeneous, and com-
pletely spatially random point patterns. An application to rural village household
locations in Tanzania is then considered.

Keywords: Covariate, Nonconvex, Point pattern, Window domain.

1. Introduction
Spatial point pattern data consists of a set of locations of events (Cressie, 1993; Baddeley et al.,
2015). The locations are observed within a spatial region termed a window. Conventionally, the
point pattern is assumed to arise from a point process, a stochastic mechanism, whose characteristics
are of scientific interest (Cressie, 1993; Baddeley et al., 2015).

The window is often given a priori. In this setting, the window boundaries are known and can
be recorded during data collection. For example, in epidemiological applications, disease incidence
locations may form points in a point pattern with municipal boundaries delineating the window’s
perimeter (Gatrell et al., 1996; Reader, 2000). In other cases, the window boundaries may not
be clearly defined and must be chosen objectively by the researcher, e.g., the boundary of nesting
territories in an ecological study (Newton et al., 1977; Dare and Barry, 1990). Herein, we consider
the latter.
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Selecting the window must be done carefully as it gives information about where observations were
and were not made and where they could be predicted (Baddeley et al., 2015). A large window choice
may result in spurious estimation and incorrect conclusions about the properties of the underlying
point process since the description of these properties rely implicitly or explicitly on the specification
of the window, e.g., when computing density measures based on the area of the window, when
correcting for edge effects (Baddeley et al., 2015; Diggle, 1985; Baddeley et al., 2022), and when
using distance to quantify spatial dependence and correlation (Diggle et al., 1976; Chiu and Stoyan,
1998).

Efforts to infer the window based on observed data locations have been made. In Ripley and
Rasson (1977), a technique for window selection is proposed to reconstruct an unknown compact
convex set from a realisation of a homogeneous planar Poisson process observed from this unknown
set. The solution therein is the dilation of the convex hull about its centroid. Moore (1984) presents
a method for addressing a similar problem, i.e., estimate a compact convex set, given independent
observations sampled uniformly from the unknown set. Rasson et al. (1996), Rasson et al. (1994),
and Remon (1994) extend these methods to estimate convex sets with observations that are inside
and outside the convex set. Other literature that address determining a convex set from a random set
of points include (and are not limited to) Efron (1965) and Dattorro (2010).

While standard methods for window selection typically consider rectangular or convex domains,
real-world applications may involve nonconvex windows that emerge due to phenomenon that con-
strain the occurrence of points (Baddeley et al., 2012; Myllymäki et al., 2020). For example, features
such as mountains, valleys, rivers, or deserts may be obstacles that create discontinuities or boundaries
in space that limit where points can move to or be placed. In Mahloromela et al. (2023), a method
was developed to construct nonconvex windows by using covariate information in an algorithm that
is based on moving window statistics. The algorithm, however, was only tested on real cases, and its
suitability for different point patterns was not investigated.

In this paper, a new algorithm for nonconvex window selection is provided that makes use of a
weighted repeated sample nearest neighbour distance outlier score and Otsu’s method for automatic
threshold selection. We work in a setting where points in a point pattern are constrained by physical
or other phenomenon, represented as spatial covariates. The algorithm’s robustness is evaluated on
point patterns with various first- and second-order characteristics to assess its behaviour, reliability,
and generalisability across different point pattern types. The algorithm is then applied to select the
appropriate window of village household locations in rural Tanzania.

The remainder of this paper is organised as follows. Section 2 provides some definitions and
a presentation of the proposed nonconvex window selection algorithm. The performance of the
algorithm is evaluated through a simulation study in Section 3. An application to rural village
household locations in Tanzania is given in Section 4, a discussion in Section 5, and concluding
remarks in Section 6.

2. Methodology
In this section a formal definition of a point pattern data set is provided in Section 2.1. The proposed
nonconvex window selection algorithm uses a repeated sample nearest neighbour distance outlier
score and Otsu’s method for image thresholding; thus, a discussion of these topics is provided in
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Sections 2.2 and 2.3, respectively. The nonconvex window selection algorithm based on covariate
data is outlined in Section 2.4.

2.1 Point patterns
A point pattern dataset typically comprises a set of locations, {𝑥1, ..., 𝑥𝑛}, observed in a spatial
domain𝑊 ⊂ R2, where 𝑛 ≥ 0 is not predetermined (Baddeley et al., 2015; Cressie, 1992; Illian et al.,
2008). Additional covariate information, as a spatial measurement 𝑧(𝑢) with 𝑢 ∈ 𝑊 , may also be
recorded. In practice, the points 𝑢 usually form a regular lattice extracted from continuous data over
𝑊 and do not necessarily coincide with the data points. When covariate information is available, the
dependence of a point pattern on the covariate should be investigated and quantified. For a thorough
discussion of these techniques, see Baddeley et al. (2015) and Myllymäki et al. (2020).

2.2 Nearest neighbour distance outlier score
Covariates at observed locations represent a random sample1 of possible data values of a point pattern.
When points are constrained by covariates, the distribution of covariate values at observed locations
will differ significantly from those at random locations generated by a mechanism independent of
the covariate. A value that deviates significantly from the set of covariates at observed locations may
thus provide an indication that it arose from a mechanism that is different to that of the possible data
values. Owing to this, the use of a distance-based outlier detection framework is proposed to classify
covariate values into two sets: inliers, which coincide with the possible data locations, and outliers,
locations where points cannot occur. In particular, the outlier-score introduced in Pang et al. (2015)
is used. The score is defined as the distance between a given point, 𝑢, and its nearest neighbour in
repeated independent random samples of the data, i.e.,

𝑞(𝑢) :=
1
𝑟

𝑟∑︁
𝑗=1

min
𝑠∈𝑆 𝑗 (𝑥 )

𝑑 (𝑢, 𝑠),

where 𝑆 𝑗 (𝑥) is the 𝑗-th random sample (selected with replacement) from the data set 𝑥 = {𝑥𝑖}𝑛𝑖=1,
𝑑 (𝑢, 𝑠) is the Euclidean distance between 𝑢 and 𝑠, and 𝑟 is the number of random subsets selected.
This technique combines multiple nearest-neighbour outlier scores from data re-samples. Data values
that obtain relatively large scores are considered outliers. In order to classify a data point as an inlier
or outlier based on its outlier score, a threshold value must be chosen. For this task, we use Otsu
thresholding.

2.3 Otsu thresholding
Otsu thresholding (Otsu et al., 1975) is a technique that is widely used for automatic greyscale image
segmentation. The image pixels are divided into two groups, namely foreground and background, by
a threshold 𝜏, i.e., a set of pixel values less than or equal to 𝜏 and a set of pixel values greater than 𝜏
(relabelled as 0 and 1, respectively).

Consider an image represented as an 𝑀 × 𝐾 array of pixels with greyscale values {𝑦𝑖}𝐿𝑖=1, where
𝐿 is the total number of pixels. Let 𝐼 (·) be an indicator function that is 1 when a condition is true

1 Albeit in some cases a biased sample, e.g., for clustered point patterns.
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and 0 otherwise. Otsu’s thresholding method exhaustively searches for a threshold that maximises
the inter-class variance,

𝜎2 (𝜏) = 𝜔0 (𝜏)𝜔1 (𝜏) (𝜇0 (𝜏) − 𝜇1 (𝜏))2,

where

𝜔0 (𝜏) =
1
𝐿

𝐿∑︁
𝑖=1

𝐼 (𝑦𝑖 ≤ 𝜏)

is the fraction of background pixels,

𝜔1 (𝜏) = 1 − 𝜔0 (𝜏) =
1
𝐿

𝐿∑︁
𝑖=1

𝐼 (𝑦𝑖 > 𝜏)

is the fraction of foreground pixels,

𝜇0 (𝜏) =
𝐿∑︁
𝑖=1

𝑦𝑖 𝐼 (𝑦𝑖 ≤ 𝜏)
𝐿𝜔0 (𝜏)

is the average of the background pixel values, and

𝜇1 (𝜏) =
𝐿∑︁
𝑖=1

𝑦𝑖 𝐼 (𝑦𝑖 > 𝜏)
𝐿𝜔1 (𝜏)

is the average of the foreground pixel values.
Otsu thresholding aims to find the pixel value that best separates an image into foreground and

background pixels. The inter-class variance is the criterion used to measure separability between
these group of pixels, with larger values indicating better separation. The process tests each pixel
value as a threshold, grouping pixels into foreground or background based on whether they are below
or above this threshold. The proportion of background and foreground pixels is determined along
with the average of the pixel values for each group. These are then used to compute the inter-
class variance. The pixel value that yields the highest inter-class variance is chosen as the optimal
threshold. In our proposed setting, Otsu thresholding is applied to automatically select a threshold
value that separates the outlier scores into those associated with inlier and outlier pixels, where the
pixel values are the outlier scores determined based on the covariates at observed locations.

2.4 Window selection algorithm
In this section, we present a new algorithm for nonconvex window selection. The algorithm constructs
nonconvex spatial domains by making use of covariate data. The algorithm differs in approach from
that of Mahloromela et al. (2023) and better accounts for the bias in sampled covariates that is induced
by heterogeneity that arises in certain point pattern types, which was not considered in Mahloromela
et al. (2023). It is important to investigate the dependence of the point pattern on the covariate
before implementation of the algorithm. Ideally, covariates believed to impact the distribution and
abundance of points, or that are correlated to them should be used (see Baddeley et al. (2015) and
Myllymäki et al. (2020)).

Let 𝑥 = {𝑥1, ..., 𝑥𝑛} denote the set of observed locations in the point pattern. The points are
assumed to be observed from an unknown domain 𝑊 ⊂ R2. Let 𝑧(𝑢) be the value of a covariate
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at location 𝑢 ∈ 𝑊∗, where 𝑊∗ ⊃ 𝑊 . The covariate is represented as an image with 𝑚 pixel cells,
denoted by 𝑃 𝑗 , 𝑗 = 1, ..., 𝑚, each holding the value of the covariate, i.e., 𝑧(𝑢 𝑗 ) is the value of the
covariate associated with the 𝑗-th pixel, where 𝑢 𝑗 is the location of the pixel center. Without loss
of generality we suppose that 𝑊∗ is the smallest bounding rectangular window that contains all the
observed data points.

The algorithm uses the notion that covariate values at observed points are a random subset of
potential data values within the point pattern, although in some instances, the sample may be biased.
When the placement of points is influenced by covariates, the covariate distribution at observed points
will deviate substantially from that at randomly chosen points generated by a process not dependent
on the covariate. Thus, to determine whether a given value of a covariate is “anomalous” relative to
the covariate values at observed locations, the repeated sampled nearest neighbour distance outlier
score is used, given by

𝑞(𝑢) = 1
𝑟

𝑟∑︁
𝑘=1

min
𝑠∈𝑆𝑘 (𝑥 )

𝑑 (𝑧(𝑢), 𝑧(𝑠)),

where 𝑆𝑘 (𝑥) is the 𝑘-th weighted random sample of the data set 𝑥 = {𝑥𝑖}𝑛𝑖=1, 𝑑 (𝑧(𝑢), 𝑧(𝑠)) is the
absolute difference between the covariate values 𝑧(𝑢) and 𝑧(𝑠), and 𝑟 is the number of random
subsets. To account for the potential selection bias of the covariate values that is induced by point
patterns with high clustering and inhomogeneous intensity, 𝑆𝑘 (𝑥) is chosen as a weighted random
sample (with replacement) where the weight 𝑤𝑖 at a location 𝑥𝑖 is the multiplicative inverse of the
kernel density estimate of the locations {𝑥𝑖}𝑛𝑖=1,

𝑤𝑖 =

(
𝑛−1

𝑛∑︁
𝑣=1

𝐾ℎ (𝑥𝑖 − 𝑥𝑣)
)−1

,

where 𝐾ℎ (𝑥) = 1
ℎ
𝐾 ( 𝑥

ℎ
) is a scaled kernel weighting function, 𝐾 (·) is a probability density on R2,

and ℎ > 0 is a smoothing bandwidth.
When the value of the covariates at a given location differs substantially from those at at observed

locations, the outlier score will be significantly large. To increase the contrast between inlier and
outlier scores, we apply a log transformation to the values of the scores and then use Otsu’s method
to classify the pixels associated with the values of the transformed scores into an inlier and outlier
group. The final window constructed is the union of all pixel cells associated with covariates that are
part of the inlier group that is produced via Otsu’s method. The threshold, 𝜏, chosen maximises

𝜎2
𝑞 (𝜏) = 𝛼0 (𝜏)𝛼1 (𝜏) (𝑞0 (𝜏) − 𝑞1 (𝜏))2,

where

𝛼0 (𝜏) =
1
𝑚

𝑚∑︁
𝑗=1

𝐼 (− ln(𝑞(𝑢 𝑗 )) ≤ 𝜏)

is the fraction of transformed outlier scores less than or equal to 𝜏,

𝛼1 (𝜏) = 1 − 𝛼0 (𝜏) =
1
𝑚

𝑚∑︁
𝑗=1

𝐼 (− ln(𝑞(𝑢 𝑗 ) > 𝜏)
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is the fraction of transformed outlier scores greater than 𝜏,

𝑞0 (𝜏) =
𝑚∑︁
𝑗=1

− ln(𝑞(𝑢 𝑗 ))𝐼 (− ln(𝑞(𝑢 𝑗 ) ≤ 𝜏)
𝑚𝛼0 (𝜏)

is the average of transformed outlier scores less than or equal to 𝜏, and

𝑞1 (𝜏) =
𝑚∑︁
𝑗=1

− ln(𝑞(𝑢 𝑗 ))𝐼 (− ln(𝑞(𝑢 𝑗 )) > 𝜏)
𝑚𝛼1 (𝜏)

is the average of transformed outlier scores greater than 𝜏. The resultant window is given by

𝑊 =
⋃

∀ 𝑗∋ln(𝑞 (𝑢 𝑗 )−1 )≤𝜏

𝑃 𝑗 .

Opening and closing (mathematical morphological operations) can be applied to the constructed
window as a post-processing step to remove noise and improve the window smoothness (Najman and
Talbot, 2013). Next, we perform a simulation study to evaluate the robustness of the algorithm to
different point patterns.

3. Simulation study
In this section, we perform a simulation study to test the robustness of the window selection algorithm
to point patterns with different first- and second-order properties. All computations are performed
using the R programming language (R Core Team, 2021). Simulations of point patterns and spatial
covariates are done using functions in the spatstat (Baddeley et al., 2015) and SpatialExtremes
(Ribatet, 2022) packages, respectively.

3.1 Simulation outline
The performance of the proposed methodology is evaluated with simulated data. The basic outline
of the simulation is as follows. A spatial covariate is simulated using a Gaussian random field (Stein,
2012). A threshold for the covariate values is chosen to delineate the simulation domain for point
pattern locations. The window is defined as the set of locations that coincide with covariate values
based on the following three cases: points may only occur at locations with a covariate value that
is less than the chosen threshold; points may only occur at locations with a covariate value that
is greater than the chosen threshold; and points may only occur a locations with covariate values
that lie between two chosen threshold limits. Point patterns with different first- and second-order
characteristics, namely point patterns that are completely spatially random, regular, and clustered
are then simulated on the defined domain. The window construction algorithm is then applied and
the quality of the estimated window is evaluated using statistics derived from the area of the set
difference between the simulation extent and the estimated window.

3.2 Simulating the covariate
A Gaussian random field with a Whittle-Matern covariance model (Stein, 2012; Whittle, 1954) is
used to simulate the spatial covariate in a window𝑊∗ = [0, 10] × [0, 10]. Two different values, 0.5
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and 1.5, are used as range parameters in the Whittle-Matern covariance model to simulate spatial
covariates with short and moderate autocorrelation structures, respectively. For ease of reference,
we label the covariates and refer to these labels in the rest of this document. Two spatial covariates
with a range parameter of 0.5 are generated and labelled Covariate I and Covariate II and two spatial
covariates with a range parameter of 1.5 are generated and labelled Covariate III and Covariate IV.

3.3 Using the covariate to define the window
To define the simulation window,𝑊 , on which the points are generated, we use thresholds based on
the covariate values to specify the locations at which points should be simulated. The following three
cases are considered. In the first case, points only occur at locations that coincide with covariate
values that are less than a chosen threshold. Figure 1(a) shows the result of applying this case to
Covariate I. In the next case, points only occur at locations that coincide with covariate values that
are greater than a chosen threshold. Figures 1(b) and (c) depict the result of applying this case to
Covariate II and III, respectively. In the final case, points only occur at locations that coincide with
covariate values that lie between two chosen limits. Figure 1(d) illustrates the result of applying this
case to Covariate IV.

(a) (b) (c) (d)

Figure 1. Simulation extent of points based on selecting thresholds for (a) Covariate I, (b) Covariate
II, (c) Covariate III, and (d) Covariate IV. The grey regions indicate where points can be simulated,
while the white regions represent areas where points cannot occur.

3.4 Simulating the point pattern
For the point pattern simulation, we consider four different spatial point process models, namely
a homogeneous Poisson point process, heterogeneous Poisson point process, a simple sequential
inhibition process, and a Matérn cluster process. The simulation of point patterns from these models
are performed using the functions rpoispp, rSSI, and rMatClust in the spatstat package in R.
For each window, we simulate 1000 point patterns from the different models and consider small (S),
medium (M), and large (L) sized point patterns with 100, 500, and 1000 points, respectively.

3.5 Evaluation metrics
To assess the algorithms performances, statistics based on the area of the set difference between
the simulation window, 𝑊 , and the constructed window, 𝑊 , are computed for each simulated point
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pattern2.

3.6 Results
The results of the simulation are presented in Figures 2–4.

In Figure 2, a high mean accuracy for the window selection algorithm can be observed, with values
ranging from 91% to 99% across various point patterns, sizes, and covariates. Accuracy increases
as the size of the point patterns increases from small to large across all point pattern types and
covariates. Small clustered point patterns show the poorest performance overall. The algorithm is
relatively stable, as demonstrated by low standard deviation values ranging from 0.01% and 4.41%
for the different point patterns and covariates.

The result in Figure 3 show that, on average, the algorithm has high F1-score values that are fairly
close to 1. This suggests that the algorithm does well in identifying regions to retain in the window
while also being accurate in doing so. The pattern of improved performance of the algorithm as the
size of point patterns increases is also notable here.

Figure 4 indicates a high degree of overlap between the predicted and true window, implying
that the algorithm typically performs well in localising the extent of the window domain. Poor
performance in the case of small point patterns is observed especially in the case of clustered point
patterns.

The window selection algorithm shows relatively good performance across all evaluation metrics.
The algorithm has strong capabilities in retaining relevant regions, with improvements observed as
point pattern sizes increase. The Intersection over Union (IoU) shows large overlap between the
estimated and true simulation extent, demonstrating the algorithm’s ability to appropriately delineate
the boundary of the window domain. Although performance is lower for small clustered point
patterns, the algorithm performs relatively well in most of the considered scenarios.

4. Application
We now apply the proposed methodology to estimate the spatial domain of rural household locations
in Tanzania. The data used was collected in a census in the Serengeti District, Mara province,
Northern Tanzania3. The data comprises georeferenced locations for 35 947 households spread
across 88 villages. The locations are given in latitude and longitude decimal degree coordinates.
Three villages are considered for this paper: namely Iseresere, Kono and Nyamakobiti with household
locations numbering 295, 320 and 412, respectively. Spatial covariate data of terrain elevation for
Tanzania is extracted from a Digital Elevation Model (DEM): a raster grid with each cell containing
a value of the elevation (in meters) of the earth’s surface above sea level. The data was collected
in the Shuttle Radar Topographic Mission (SRTM). The SRTM data were sampled over a grid of 1
arc-second by 1 arc-second (approximately 30m by 30m). The top pane of Figure 5 shows the terrain
slope of the elevation data from the DEM.

2 True Positive (TP) = |𝑊 ∩𝑊 |, True Negative (TN) = |𝑊 ′ ∩𝑊
′ |, False Positive (FP) = |𝑊 ′ ∩𝑊 |, False Negative (FN) =

|𝑊 ∩𝑊
′ |, where the symbol ′ denotes the complement. These values are then used to compute the accuracy, F1-score, and

the intersection over union score.
3 Provided by Katie Hampson, http://www.gla.ac.uk/researchinstitutes/bahcm/staff/katiehampson,
http://www.katiehampson.com/#intro, and approved for use by the Faculty of Natural and Agricultural Science Re-
search Ethics committee under the reference NAS33/2019.
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(a) Covariate I (b) Covariate II

(c) Covariate III (d) Covariate IV

Figure 2. Violin plots of the accuracy of the window selection algorithm for point patterns of
different types and sizes across Covariates I–IV.
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(a) Covariate I (b) Covariate II

(c) Covariate III (d) Covariate IV

Figure 3. Violin plots of the F1-score of the window selection algorithm for point patterns of different
types and sizes across Covariates I–IV.
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(a) Covariate I (b) Covariate II

(c) Covariate III (d) Covariate IV

Figure 4. Violin plots of the intersection over union of the window selection algorithm for point
patterns of different types and sizes across Covariates I–IV.
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Human settlements in rural areas often depend on some attractive and limiting features of the
natural landscape. Topographic properties of terrain influence the distribution of environmental
phenomena and the nature of environmental processes. In rural areas, steep slopes present many
challenges which make it impracticable for building houses. Steep slopes have greater requirements
in terms of structural planning and costs. Flat land is easier and cheaper to build on since less time
and expenses are incurred in getting the land suitable for building. Owing to these reasons, terrain
slope is useful for describing terrain viable for (new) house locations and is used here as a covariate
to characterise land that is suitable for building.

The algorithm is applied to each of the villages and the results are presented in the bottom pane of
Figure 5. Opening and closing (mathematical morphological operations) are applied to the resultant
windows to remove noise and smooth the window edges (Najman and Talbot, 2013). For each
village, the algorithm detects and removes regions with high terrain slope. Regions where terrain
slope values are close to covariate values at observed household locations have been identified by
the algorithm as low terrain slope areas and are retained in the final window. Even though there are
no realisations of the point process in certain areas, the algorithm accounts for the possibility of a
point occurring there as long as it satisfies the definition of viable land that is a function of covariate
values at observed locations in the pattern.

Terrain features such as hills (areas of high ground), ridges (sloping line of high ground) and flat
plains (even landmass of relatively uniform elevation) are identifiable in the figures. We observe that
households are spread along the edge of terrain with high relief. The occurrence of households is
only seen on flat plain areas and at the base of the mountainous regions. The households cluster
on plains adjacent to scarps (i.e. steep slopes). The plan of the village is mostly adjusted to the
relief features of the region, some along the edges of the hill slopes. The algorithm shows a strong
ability to identify terrain that are suitable for household locations to occur on. Thus the algorithm
has admitted a data-driven domain selection approach that aligns relatively well with the underlying
processes generating the point pattern.

5. Discussion
In this paper, a spatial domain estimation technique for point pattern data is considered. For an
appropriate analysis of point pattern data, the window must be defined since estimation and prediction
rely on it. When the window is unknown, the typical approach, when inferring on it, is to assume that
it is convex and that the point process that generated the data is a homogeneous Poisson process, i.e.,
assumptions which may not be true in practice. In real world applications, the distribution of points
may be constrained by some underlying process, expressed as a covariate, resulting in more complex
spatial windows. When covariate information is available, the dependence of the point pattern on
the covariate should be investigated. Parametric models that incorporate this dependence and formal
hypothesis testing procedures, under parametric assumptions, are well developed. Nonparametric
methods have received some attention including extending the kernel smoothed intensity estimate to
allow for covariate effects.

An algorithm is proposed to estimate the domain of a point pattern dataset without the assumption
of convexity or a point process model. The robustness of the algorithm to different point pattern types
is investigated. The algorithm performs well for most cases considered in the simulation experiment,
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(a) Iseresere (b) Kono (c) Nyamakobiti
Figure 5. Constructed window (bottom) and terrain slope (top) for villages in Tanzania’s Mara
province.

with the exception of small clustered point patterns. An application to rural household locations
is considered with the use of elevation data from a DEM. In other cases, it may be appropriate to
include other covariates that characterise a feature of the landscape that is unsuitable for building
new houses, such as areas with rivers, dams or marshes.

6. Conclusion
Window selection for spatial data is a complex process, most often requiring expert knowledge if not
obtained using a data-driven approach, such as herein. The common generic approaches used are the
smallest rectangular bounding window and convex windows. A chosen window must however cover
the true domain of the sampled spatial data in order to facilitate modelling. Here, we presented a
new algorithm for estimating the spatial point pattern domain without the restriction of a convexity
assumption. The algorithm works by using a reweighted repeatedly sampled nearest neighbour
distance outlier score and Otsu’s method for automatic threshold selection on covariates at observed
point locations. Using a feature of the spatial covariate in regions at observed points in the pattern, the
proposed method constructs a nonconvex window. The robustness of the algorithm to various point
pattern types and covariates was tested in a simulation study. The algorithm performs well in most
settings with the poorest performance observed for small clustered point patterns. An application
to rural village households in Tanzania’s Mara province was considered. Remotely sensed data
from a DEM was used as a covariate in this case. The algorithm performed well in detecting and
filtering areas of high relief and steep slopes, which were observed characteristics that suggested
the low likelihood of household occurrence in these regions. When the movement between points
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is constrained to such a nonconvex window, the Euclidean distance will not give a representative
distance measure of the path between points. Consequently, the Euclidean shortest path distance
calculated on the nonconvex window is a measure better suited to quantifying the proximity between
points and should therefore be used in any further spatial analysis. In future work, the algorithm
could be extended to allow for an ensemble of spatial covariate effects. One could also investigate
other automatic threshold selection techniques.
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Spatial point pattern analysis considers the arrangement of spatial locations and
whether there is an underlying pattern. In this research, we consider clustered point
patterns, spatial point patterns where the points attract each other. Investigating
clustered point patterns can highlight problems in the simulation and fitting of such
point patterns. Various cluster point pattern types are simulated and the robustness
of the simulation is examined by using functions available in the spatstat package
in R. The point patterns are simulated, then a point process model is fitted to the data
and the fitted parameters are used to simulate a new point pattern. The simulated
and resimulated point patterns are compared using the 𝐾-function and Kolmogorov-
Smirnov tests. We conclude with a proposed methodology to use when simulating
or fitting clustered point pattern data. The results only consider the Matern point
pattern as it is the most accessible and widely used point pattern.

Keywords: Clustered point pattern, 𝐾-function, Point pattern simulation.

1. Introduction
Spatial statistics makes inferences about the spatial nature of data with location information. It
assumes there exists some kind of spatial dependency within the data. Spatial statistical data can
take on one of three forms, namely, point pattern data, lattice data, or geostatistical data (Cressie,
2015). Point pattern data, the only spatial data type considered in this research, is zero-dimensional
and pertains to the location at which a data point occurred.

Point pattern analysis is a part of spatial statistics that considers whether or not there is an
underlying pattern to the location at which data points (events) occur. A point pattern is a finite
collection 𝑥 = {𝑥1, 𝑥2, ..., 𝑥𝑛} of points 𝑥𝑖 ∈ R2, (Baddeley et al., 2015). A point process, denoted
by 𝑋 = {𝑋1, 𝑋2, ..., 𝑋𝑛}, is a random process whose realizations are point patterns, (Baddeley et al.,
2015). Cressie (2015) and Baddeley et al. (2015) note that there are three types of patterns present in
spatial point patterns; random, clustered and regular as can be seen in Figure 1. Random points (see
Figure 1a) have an equal chance of occurring anywhere in the area under consideration, there is no
discernible pattern to the points. Clustered points (see Figure 1b) are points that form groups. They
attract some points and repel others. Regular points (see Figure 1c) are points that repel each other.
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They do not occur completely randomly, but they also do not form groups and appear to be equally
spaced.

Diggle (2013) defines Complete Spatial Randomness (CSR) as a point process where all events
have equal probability of occurring anywhere in the area of interest and are independent of each other.
Cressie (2015) notes that if the points are CSR they will be represented by a homogeneous Poisson
point process. A homogeneous Poisson point process has the following properties: the points have
no spatial location preference (homogeneity), and the points in one region have no influence on the
spatial location of the points in another region (independence) (Baddeley et al., 2015; Cressie, 2015).

The typical focus of spatial point pattern analysis is the spatial arrangement of points (Baddeley
et al., 2015). We want to establish whether or not the location of the datapoints tells us something
more about the points, whether or not there is a pattern that can be picked up. To do this, we test for
CSR by testing the null hypothesis that the points are randomly distributed, realised from a Poisson
point process against the alternative hypothesis that the points are either clustered or regular (Moraga,
2023). Two methods are used namely, the quadrat method (Ripley, 1977), and Ripley’s 𝐾-function
(Ripley, 1976). Both of which tells us about the point patterns distribution.

This research explores clustered point patterns and their simulation. As will be discussed in more
detail later, clustered point patterns are a versatile and valuable type of point pattern and as such,
having accurate simulating functions is beneficial. Often times in real world scenarios, we do not
have access to adequate data to make a conclusion about the nature of the point patterns, so we
make use of simulating functions to create more data. Simulations and coded statistical methods
will be done with the spatstat package in R (Baddeley et al., 2015). The spatstat package has
the 𝐾-function, quadrat and nearest neighbour distance methods, as well as functions to simulate
clustered point patterns; rMatClust, rThomas, rVarGamma, rCauchy. All of these functions
will be investigated, and the robustness of each will be tested by changing the parameters required
for the different point process models, simulation and fitting functions. We investigate different
parameters to ensure the simulated models are both robust and statistically similar to the original
point patterns. Additionally, identifying problematic parameters is beneficial, as it helps pinpoint
potential problem areas.

In Section 2 we define and explain all the functions and methods we plan to use, as well as
comparing the clustered point pattern types we will evaluate. Next, Section 3 explains the tests
that we will perform, and discusses their results and the implications thereof. Finally, Section 4 we
presents a methodology for simulating and fitting clustered point patterns.

2. Background Theory
Random point patterns have no spatial dependency (Baddeley et al., 2015). They are completely
spatially random (CSR). Clustered point patterns, the focus of this research, form groups, or clusters
(Baddeley et al., 2015). Points in the point pattern attract each other; so there is a clear spatial
dependency. In regular point patterns, points repel each other (Baddeley et al., 2015), so there is
a clear spatial dependency as they do not occur randomly within the area under consideration. As
depicted in Figure 1, point patterns may be random, clustered or regular. This research will only
consider clustered point patterns as they are particularly difficult to model, and due to the time
constraints for this research we could only focus on them. The term complete spatial randomness is
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(a) Random (b) Clustered (c) Regular

Figure 1. Types of point patterns.

used frequently when considering if a point process is clustered, regular or random. It forms the null
hypothesis.

The quadrat method (Ripley, 1977) is one of the most common methods used in spatial statistics
to determine whether a point pattern is CSR. The quadrat method works by partitioning the spatial
region in which a point pattern is observed into non-overlapping quadrats of equal size. The test
statistic based on the number of points in each quadrat is then computed. This is given by,

𝜒2 =

𝑚∑︁
𝑖=1

(𝑛𝑖 − 𝑛∗)2

𝑛∗
,

where 𝑛𝑖 is the observed number of points for each quadrat 𝑖 = 1, 2, ..., 𝑚, and 𝑛∗ is the expected
number of points in each quadrat. The expected number of points in each quadrat, assuming complete
spatial randomness, is the total number of points divided by the number of quadrats. Under the null
hypothesis, 𝐻0 : the point pattern is CSR, the test statistic 𝜒2 is approximately 𝜒2 (𝑚−1) distributed.
The quadrat method aids us in determining if the point pattern under consideration is clustered,
regular or random.

Two additional methods used to indicate clustering in point patterns are the index of clumping
(ICS) (David and Moore, 1954) and Ripley’s 𝐾-function. The index of clumping gives us a way to
quantifiably measure whether a point pattern is clustered, or regular, and is given by

𝐼𝐶𝑆 =
𝑠2

𝑥
− 1,

where 𝑥 and 𝑠2 are the sample mean and sample variance respectively. The idea of the index of
clumping is that if the ICS is greater than one (Embarak, 2022), the point pattern is clustered, and
if it is less than zero, the point pattern is regular (Ripley, 2005). If the ICS is very close to zero,
the point pattern is CSR. This is because, if the point pattern has an underlying Poisson distribution,
the mean and variance are approximately equal. Ripley’s 𝐾-function tells us whether or not a point
pattern is more clustered or regular than would be expected under CSR. Ripley (1977) defines the
𝐾-function in Definition 1.
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Definition 1 (𝐾-function). If 𝑋 is a stationary point process, with intensity 𝜆 > 0 then, for any 𝑟 ≥ 0

𝐾 (𝑟) = 1
𝜆
𝐸 [number of 𝑟-neighbours of 𝑢 |𝑋 has a point at location 𝑢]

does not depend on the location of 𝑢, and is called the 𝐾-function, where 𝜆, the intensity, is the
amount of points per unit area, of the point process. Under the complete spatial randomness, the
theoretical 𝐾-function attains a value of 𝜋𝑟2 (Baddeley et al., 2015). 𝐾 (𝑟) = 𝜋𝑟2 indicates CSR,
𝐾 (𝑟) > 𝜋𝑟2 indicates clustering, and 𝐾 (𝑟) < 𝜋𝑟2 indicates regularity in the points.

The empirical 𝐾-function (Ripley, 1977) is given by the following equation

�̂� (𝑟) = |𝑊 |
𝑛(𝑛 − 1)

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

1{𝑑𝑖 𝑗 ≤ 𝑟}𝑒𝑖 𝑗 (𝑟),

where |𝑊 | is the area of the observation window 𝑊 , 𝑛 is the number of points and, 1{𝑑𝑖 𝑗 ≤ 𝑟} is
an indicator function which is equal to one if the distance between the point under consideration, 𝑥𝑖 ,
and any other point, 𝑥 𝑗 , 𝑗 ≠ 𝑖, falls within the circle with radius 𝑟 centered at the point 𝑥𝑖 and zero
otherwise. Here, 𝑒𝑖 𝑗 (𝑟) is the edge correction weight which corrects for boundary effects imposed
by the observation window. The Fry plot (Fry, 1979; Hanna and Fry, 1979), also referred to as the
Patterson plot (Patterson, 1934, 1935) can be thought of as a visualisation of the 𝐾-function. It is
essentially a scatter plot of all the differences between all possible point pairs in the point patterns
and is useful in determining correlation in the point pattern.

A necessary and important assumption made by Poisson point process models is that of indepen-
dence of points (Baddeley et al., 2015). Restating the properties of a Poisson point process, it can be
seen that a Poisson point process model has homogeneous intensity. Meaning, the number of points
expected to occur within any bounded region of space 𝐵 is,

E[𝑛(𝑋 ∪ 𝐵)] = 𝜆 · |𝐵 |,

where 𝜆 is the intensity of the point process model. Baddeley et al. (2015) explains that an intensity
function 𝜆(𝑢) completed describes its Poisson point process and all that is needed to fit a Poisson
point process model to a point pattern dataset is the form of the intensity function. Thus, all that is
required to change the model, is to change the intensity.

The assumption of independence required by Poisson point process models does not hold for
clustered data. As such, the models proposed by Cox (1955), Neyman and Scott (1958), Møller
(2003), Møller and Torrisi (2005), Brix (1999) and Yau and Loh (2012) are used instead. The model
proposed by Cox (1955) is a variation of the Poisson point process. The model put forth by Neyman
and Scott (1958) is a special case of the Cox process, and all other models that will be considered in
this research are generalisations of the Neyman-Scott process, referred to as shot noise Cox processes.
The Cox process (Cox, 1955), also referred to as a doubly stochastic Poisson process is defined in
Definition 2,

Definition 2 (Cox process). Suppose that 𝑍 = {𝑍 (𝜉) : 𝜉 ∈ 𝑆} is a non-negative random field so that
with probability one, 𝜉 → 𝑍 (𝜉) is a locally integrable function, If the conditional distribution of 𝑋
given 𝑍 is a Poisson process on 𝑆 with intensity function 𝑍 , then 𝑋 is said to be a Cox process driven
by 𝑍 .

𝑋 |𝑍 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑍).
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(a) Parent points (b) Parent and offspring points (c) Offspring points

Figure 2. Parent points, denoted in red, and offspring points, denoted in blue, of a Thomas process.

Baddeley et al. (2015) explains that a Cox process is in essence a Poisson process whose intensity
function is random. The Cox processes assume there is a random, underlying intensity function
Λ(𝑢). If the intensity function were known, it would form a Poisson point process with an intensity
function Λ(𝑢). A Neyman-Scott cluster process, commonly referred to as just a cluster process is
created in two steps. Firstly, a set of parent points, a point process 𝑊 , are created. Next, every
parent point, 𝑤𝑖 , generates a random point pattern of offspring points, 𝑥𝑖 𝑗 . We only observe the
offspring points in a cluster process (Baddeley et al., 2015), so we remove the parent points. This
set, made up only of offspring points, is denoted by 𝑋 . This process is shown in Figure 2, using
a generalisation of the Neyman-Scott process, called the Thomas process (Thomas, 1949; Diggle,
1978). The Neyman-Scott model (Neyman and Scott, 1958) chooses the parents to be generated from
a Poisson process with intensity 𝛾, and the offspring to be generated with another Poisson process
of intensity 𝛽. A number of assumptions are needed before we can continue. Namely, that clusters
are independent and identically distributed, and offspring points within the clusters are themselves
independent.

The set of Neyman and Scott (1958) clustering processes considered in this research are also
known as shot noise Cox processes (Møller, 2003), defined in Definition 3,

Definition 3 (Shot noise Cox process). Let 𝑋 be a Cox process in R𝑚 driven by

𝑍 (𝜉) =
∑︁

(𝑐,𝛾) ∈Φ
𝛾𝑘 (𝑐, 𝜉),

where 𝑘 (·, ·) is a kernel for a 𝑚-dimensional point process 𝑋 and Φ is a Poisson point process on
R2 × (0,∞) with a locally integrable intensity function 𝜁 . Then 𝑋 is called a shot noise Cox process
(SNCP).

Shot noise processes, and generalised shot noise processes, as presented by Møller (2003). Møller
and Torrisi (2005) are incredibly useful and versatile classes of point process models for clustered
point patterns. Møller and Torrisi (2005) explains that generalised shot noise processes are shot noise
processes that are extended in two key ways. The first, the parent points are not necessarily Poisson
processes. The second, the kernel of the shot noise process can be random. An example of this can
be seen with the generalised Neyman-Scott (GNS) process from Yau and Loh (2012). Examples
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Table 1. Underlying distribution of parent and offspring points of generalisations of the Neyman-
Scott process.

Point process model Parents Offspring

Neyman-Scott Independent Poisson process,
intensity 𝜅

Independent Poisson process,
intensity 𝜇

Variance gamma Independent Poisson process,
intensity 𝜅

Poisson(𝜇), independently and
uniformly according to a Vari-
ance Gamma kernel

Cauchy Independent Poisson process,
intensity 𝜅

Poisson (𝜇), independently
and uniformly according to a
Cauchy kernel

Thomas Independent Poisson process,
intensity 𝜅

Poisson(𝜇), with the positions
being isotropic Gaussian dis-
placements from the cluster
parent location

Matérn Independent Poisson process,
intensity 𝜅

Poisson(𝜇), independently and
uniformly in a disc centered
around parent

Yau and Loh (2012) GNS Strauss process Poisson process, intensity 𝜇

include Neyman-Scott processes (Neyman and Scott, 1958), shot noise G Cox processes (Brix, 1999)
and Poisson-gamma processes (Wolpert and Ickstadt, 1998). Table 1 compares the Neyman-Scott
process with generalisations of the Neyman-Scott process.

The methods discussed above will all be used to both test the robustness of point pattern fitting
functions, and to evaluate the differences between an original point pattern dataset and simulated point
pattern from a fitted model. In Section 3, we will explain the impact that different parameters have on
the fitting functions, and how they can be changed to achieve different point patterns. Furthermore,
these differences will be tested to determine if they are significant.

3. Application
This research aims to investigate the robustness of the available cluster models. We discuss point
process fitting functions in the spatstat library (Baddeley et al., 2015). Specifically making use of
the kppm function which fits a Neyman-Scott or Cox cluster process model. Cox and cluster processes
are used when there is positive association (clustering) between the points in a point pattern. These
models and generalisations thereof are the only ones that will be considered in this research. Using
kppm a model can be fitted in spatstat and the parameter values of the point pattern are estimated.

The robustness of a simulated fitted model will be evaluated using the Kolmogorov-Smirnov test
(Kolmogorov, 1933; Darling, 1957), via the use of the ks.test() function in R, to determine if the
underlying distributions are the same. This is done by comparing the 𝐾-function of the simulated
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(a) Square (b) Convex

Figure 3. Two windows used to simulate point patterns.

point patterns to the 𝐾-function of the original point patterns.

𝐷 = max|𝐹1 (𝑋) − 𝐹2 (𝑋) |,

where 𝐹1 and 𝐹2 are the 𝐾-functions of the two point patterns being compared. The 𝐾-function can
be used as a summary of a point pattern (Ripley, 1976). In R, $un returns the uncorrected estimate of
the 𝐾-function, the value calculated without edge correction. Since the 𝐾-function is a cumulative
function, the values stored in $un can be thought of as CDF (cumulative density function) values and
thus the Kolmogorov-Smirnov test can easily be applied to determine if the underlying distribution
of two point patterns is the same. A test statistic and p-value are returned that determine if the point
patterns come from the same underlying distribution.

To obtain the results that will be discussed in this research, a seed value of 303 and 404 were used
in the original simulation and resimulation of the point patterns respectively. Explanation of the
results will only consider the Matern Cluster case. Thomas Cluster, Variance-Gamma and Cauchy
point process models and the results for these as well as all tables referred to and discussed in this
section of the research can be found in an appendix pdf1.

Two windows are considered. The first, Figure 3a, is a square with area 100 and the second, Figure
3b, is a convex shape with area 100.1. The windows are of different shapes, but approximately the
same area, to determine if the window shape plays a role in the point pattern creation, and parameter
estimation. In real world scenarios, it will not always be the case that the observation window under
consideration is a square, or uniform shape, so it is beneficial to investigate the impact of irregularly
shaped windows in clustered point pattern simulation. While this is not done in this research, it
should be considered in future work.

Three sizes of point patterns are considered, to determine the effect of size on the point pattern
creation and resimulation, namely Small: 50 ≤ no. points ≤ 100 (see Figure 4a), medium: 100 <
no. points ≤ 500 (see Figure 4b) and large: no. points ≥ 1000 (see Figure 4c).

Each point pattern type (Matern, Thomas, Variance-Gamma and Cauchy) have three parameters;
namely, kappa, scale and mu. Kappa is the intensity of the underlying parent process, scale is the
radius of the offspring clusters around the parent points and mu is the expected number of points in
each cluster. Two values for each of these parameters are considered, specifically the boundary values
which would give point patterns with a number of points very close to the size boundaries. The

1 The code to produce the results discussed in this research is available at this link. The full tables, for all four point pattern
types, can be found here. And, the results referred to but not included in this research can be found here.

https://drive.google.com/file/d/1dIvYDUfisr7rNrVUMirOhzM1IvX6vAkV/view?usp=drive_link
https://drive.google.com/file/d/191vWiIMBXlzMMw1_xsNcJ32ifvwAh6oJ/view?usp=drive_link
https://drive.google.com/drive/folders/1SKtiVoMVLPlSFBlVTsmXeh6pFCzzIDDY?usp=drive_link
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(a) Small (b) Medium

(c) Large

Figure 4. Matern point patterns displaying the three point pattern sizes in a convex window.

base model parameters values (kappa, scale and mu) for the small, medium and large point patterns
are: (0.9, 0.1, 0.9), (1.5, 0.1, 1.5) and (4, 0.1, 4) respectively. For a small point pattern, the range
of kappa, scale and mu values we consider are, (0.8, 1.1), (0.1, 100) and (0.8, 1.4) respectively.
Similarly, for a medium point pattern we consider (0.8, 3), (0.1, 100) and (0.8, 3) respectively. And
lastly, for a large point pattern we consider (2.3, 5), (0.1, 100) and (2.5, 5) respectively. In each
case we use the boundary values to simulate the actual point pattern. When each parameter value
is selected, its value is changed from the base model value to the boundary value of the appropriate
interval, and the other two parameters keep their base model values. This is repeated for the different
window shapes and point pattern sizes.

In summary, we have four point pattern types, two windows, three point pattern sizes, three
parameters each with two values. Which results in 144 original point patterns meaning 36 original
point patterns per point pattern type.

The original Matern point patterns are given in Table 2. The index refers to the number of point
pattern that is created, in all further tables the indices are the same and refer to the same point pattern.
In this case the point pattern is Matern Cluster and the size and window refers to the size and window
of the point pattern in the 𝑖th index. The parameter column indicates the parameter that is changed to
a boundary value and the kappa, scale and mu value columns store the values of the parameters for
the 𝑖th point pattern.

There are three ways the robustness of the fitting and simulation functions is tested. The first,
by considering the number of points in the point patterns. The second, by comparing the original
parameter values to the fitted parameter values. And, the third by conducting a Kolmogorov-Smirnov
test on the simulated and fitted 𝐾-functions to determine if the underlying distributions are the same.
Where applicable, a 10% significance level is used.

To test if there is a significant difference in the total points in the point pattern we add 9×9 quadrats
over the point patterns, the number of points in each quadrat is determined and we then sum over all
the quadrats to get the total points in the point pattern.

Using the method explained above, Table 3, is obtained and displays the index number; in ac-
cordance with the index numbers in Table 2 and the number of points in the point pattern. If the
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number of points between the rectangular-shaped point pattern and the convex-shaped point pattern
is significantly different the row is flagged for further investigation. In each case 10% of the upper
boundary for the point pattern size is considered significant. That is, 10 for small, 50 for medium
and 100 for large. Applying this rule to Table 3 we obtain Table 4, of the point patterns where the
difference in points is significant. The second column is the number of points in the point pattern at
the index in the index column. The third column is the number of points in the point pattern at the
index value plus 1, and the fourth column is the absolute value of the difference between the number
of points in the two point patterns.

Interestingly the quantity of points in the convex shape is larger than the quantity of points in the
rectangular shape three out of the four times, which is not what we would expect. As there are more
sharp points in the convex shape we expect it to be more difficult to fit the points in the window. Each
row in Table 4 is resimulated 10 times to determine if the difference is an abnormality or if it always
occurs. Table 5, and Table 6, show the 10 resimulations of rows 7 and 23 respectively.

The amount of times the difference exceeds 10 in Table 5, is four and the amount of times the
difference is greater than 50 in Table 6, is five. Thus, in index 7 the difference is an abnormality,
while in index 23 the difference occurs half the time so there is an issue with point pattern creation
at that index. Out of four flagged rows, two are for small point patterns, one for a medium and one
for a large, which is to be expected since it makes sense for smaller point patterns to be less robust
to changes.

The original point patterns are fitted using kppm for two cases. The first where the point pattern
type is specified, in this case as Matern, and the second where the point pattern type is unspecified.
In Table 7, Table 8 and Table 8, the original parameter values are compared to the parameter values
for the fitted point pattern where the point pattern type is specified and to the parameter value for the
fitted point pattern where the point pattern type is unspecified.

When all three parameter values are significantly different; meaning the difference is larger than
10%; the point pattern is investigated further. Four of the flagged rows are resimulated 10 times to
test if the differences are abnormal or not and the results for one of the resimulations; performed on
row 9; are stored in Table 10, Table 11 and Table 12. The second column in each table stores the
original parameter value; from the original point pattern; which is compared to the third and fourth
columns.

These columns store the parameter values when the point pattern is fitted and specified and when
it is fitted and unspecified. If we compare these values we find that in six the kappa and scale values
differ significantly and in eight cases the mu values differ significantly. All three parameter values
differ significantly five times in both cases. Meaning the resimulation indicates that there is a 50 : 50
chance this is not an abnormality, so further investigation should be done.

To determine if the original point pattern and the fitted point patterns are from the same distribution
we get the 𝐾-functions and perform a Kolmogorov-Smrinov test on the 𝐾-function values, Figure
5 shows this process. Figure 5a is an original Matern point pattern and Figures 5b and 5c are the
resimulated Matern point patterns when the point pattern type is specified and unspecified in kppm,
respectively. Figures 5d, 5e and 5f are the 𝐾-functions for the original, resimulated and specified
and resimulated and unspecified point patterns respectively.

In Table 13, point pattern 1 is the point pattern type of the point pattern that was originally created,
point pattern 2 is the fitted point pattern where the point pattern type is specified. And, point pattern
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(a) Matern point pattern
on rectangle window

(b) Resimulated, type
specified in kppm

(c) Resimulated, type
unspecified in kppm

(d) 𝐾-function of the original
Matern point pattern

(e) 𝐾-function of resimulated, type
specified

(f) 𝐾-function of resimulated, type
unspecified

Figure 5. Comparison of 𝐾-functions of original and resimulated (where type is both specified and
unspecified in kppm) point patterns for Kolmogorov-Smirnov test.

3 is the fitted point pattern where the point pattern type is unspecified. PV12 is the p-value of the
Kolmogorov-Smirnov test of the 𝐾-functions of point pattern 1 and point pattern 2. From Table 13, it
is evident that the Kolmogorov-Smrinov test rejects more often when the point pattern size is small,
and when the point pattern size is large the null hypothesis is almost always not rejected.

In Table 14, 10 resimulations of the 𝑖th row of Table 13 are displayed. The first column stores the
indices of the original point pattern and the resimulations. The second column stores which point
patterns are not equal, in this case "1 ≠ 3" means that the original point pattern, denoted here with a
"1", does not have the same underlying distribution as the fitted and resimulated point pattern where
the point pattern type is not specified, denoted here with a "3". The third and fourth columns store
the point pattern type of the original point pattern, point pattern 1, and the point pattern type of the
resimulated point pattern where the point pattern type is unspecified, point pattern 3, respectively.
The final column stores the p-values from the Kolmogorov-Smrinov test.

As the scale values do not seem to have an influence on the number of points, a table of ICS
values are obtained to determine if there is an effect on the "clusteredness" of the point pattern when
the scale values vary. Table 15, shows that there does not seem to be a significant change in the
"clusteredness" of the point patterns when the scale values are changed. As such, there is no clear
reason why the scale values have such a large difference when fitted.

Some additional interesting things that are observed in the simulated data include:

• In all cases when the point patterns are fitted and the point pattern type is unspecified, kppm
chooses Thomas.

• In the Matern and Thomas cases, the rectangular window is the window on which most original
point patterns experience significant differences.
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• In the Variance-Gamma and Cauchy cases, the convex window is the window on which most
original point patterns experience significant differences.

• In all cases the small point patterns observe the largest number of significant differences,
roughly 45% of the time the differences are from a small point pattern.

• In the Matern, Thomas and Cauchy cases, scale is the parameter which causes the largest
number of significant differences, roughly 58% of the time the differences are from a point
pattern in which the scale value is changed.

• In the Variance-Gamma case, kappa is the parameter which causes the largest number of
significant differences.

• In all cases, the amount of times point pattern 1 equals point pattern 2 is the same as the amount
of times point pattern 1 equals point pattern 3. Based on the results of the Kolmogorov-Smirnov
test results.

The Thomas point pattern is not the default point pattern type for kppm, as no default is specified
in the write up of the function. However, when the point pattern type is not specified it is always
classified as a Thomas process by the kppm function, no matter what the original point pattern type
is. This is something that should be investigated further.

When simulating clustered point patterns it is beneficial to simulate many times over a number
of different windows, especially if the point pattern is small. When fitting clustered point patterns
using kppm, all four point pattern types should be fitted and compared to each other and the best one
chosen. It should not be left up to kppm to determine the best point pattern type, as it will always be
classified a Thomas.

4. Conclusion
In this research, we considered the robustness of fitting and simulating functions for clustered point
pattern models. A total of 36 simulated clustered point patterns were created using different windows,
point pattern sizes and parameter values. The clustered point patterns were then fitted to test the
robustness of the fitting functions by comparing the fitted parameter values to the original ones.
Using the fitted parameter values, the clustered point patterns were resimulated to test the robustness
of the simulating functions by comparing the underlying distributions of the simulated and original
clustered point patterns using a Kolmogorov-Smirnov test on the 𝐾-functions. The robustness tests
were all performed using a 10% level of significance. This gives an indication of how well the fitting
and simulating functions work.

When simulating and fitting clustered point patterns, it is beneficial to simulate using multiple
different point patterns, windows and sizes. And when fitting models the same is true. Models
should be fitted where the clustered point pattern type is specified, and where it is unspecified and
the results should be compared to each other to determine which is the best fit. As there is no benefit
in specifying or not specifying the clustered point pattern type in kppm, both cases should always be
considered. As was seen, small clustered point patterns produce the most differences, so extra care
should be taken when working with clustered point patterns with less than 100 points. The window
does not seem to have a significant effect on the results, but it is still safer to simulate on a few different
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window shapes. The results should be compared in a number of ways. By considering the difference
in number of points, difference in the original and fitted parameter values and by comparing the
underlying distributions. It is clear that kppm chooses Thomas as the underlying clustered point
process the vast majority of the time, even when the Thomas fit is a worse fit than the fit when the
clustered point pattern type is specified. Small clustered point patterns do not always behave, so
extra care should be taken when simulating and fitting them. Large clustered point patterns are more
robust and can withstand more parameter changes.

The proposed methodology when simulating or fitting clustered point pattern is as follows:

1. Simulate many point patterns on different windows.

2. Fit using all four point pattern types.

3. Resimulate using the fitted values many times.

4. Compare the fitted parameter values to the original parameter values.

5. Perform a Kolmogorov-Smirnov test on the 𝐾-functions to compare the original and resimu-
lated point patterns.

6. Select the resimulated point pattern that best fits the original point pattern.

This research should be extended to find out why the Thomas process is always classified as the
default point pattern when no point pattern is specified in kppm, and perhaps new methodology can be
written to better determine the most appropriate point pattern type. Further, it would be beneficial to
investigate the impact of varying window sizes and shapes, as well as considering irregular window
shapes. Only similarly sized windows were considered in this research, but it may be worthwhile to
consider the impact of a small window against a larger one. Lastly, the scale parameter should be
further investigated to determine what it impacts in the point pattern and why the fitted estimates are
so different to the original parameter values.
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In this paper, a new approximate Bayesian computation (ABC) algorithm based
on rejection sampling is introduced, where the tolerance threshold is adaptively
adjusted as candidate particles are accepted or rejected. The adaptive threshold
eliminates the importance of choosing a suitable fixed tolerance threshold and
results in the acceptance of more preferable candidate particles via appropriate
hyperparameter choices. This modification can also act as a search mechanism
for determining a suitable fixed tolerance threshold for the standard ABC rejection
sampling algorithm. By means of a simulation study on parameter estimation
for widely used life distributions, it is shown that the new ABC algorithm has
comparable performance to maximum likelihood estimation.
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1. Introduction
Approximate Bayesian computation (ABC) is a modern class of likelihood-free methods formally
introduced by Beaumont et al. (2002), following on the work of Tavaré et al. (1997) and Pritchard
et al. (1999). Since ABC methods attempt to directly approximate the marginal posteriors without
the closed-form specification of the likelihood function, these methods are particularly useful in cases
where the likelihood function is difficult to compute analytically or even computationally intractable.
Other Bayesian approximation methods, such as Markov chain Monte Carlo methods and variational
Bayesian methods, require the explicit specification and evaluation of the likelihood function (see,
for example, Brooks et al., 2011; Blei et al., 2017). ABC is now widely used to perform parameter
estimation, model selection, and other inferences for complex problems in fields such as quantitative
finance, molecular epidemiology, systems biology, population genetics, ecological modelling, and
nuclear imaging (see, for example, Sisson et al., 2019).

The basic idea behind ABC methods and how they can be used to perform parameter estimation
is quite simple. A candidate particle, which is a set of potential model parameters, is generated from
the prior distributions and used to simulate a candidate dataset from a specified model. The level of
agreement between the simulated data and the observed data is then evaluated using some distance
function or summary statistic. The candidate particle is considered acceptable if the distance function
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or summary statistic indicates a high level of agreement. A large number of acceptable particles are
generated until some convergence is achieved and then used to approximate the marginal posteriors.

Bayesian inference relies on the use of Bayes’ theorem, which is given by

P (Θ |D ) = P (D |Θ ) P (Θ)
P (D) ,

where Θ is the parameter vector associated with some model M, D is the observed data, P(Θ|D)
is the posterior, P(D|Θ) is the likelihood, P(Θ) is the prior, and P(D) is the normalising constant.
Analytical parameter estimation in the Bayesian paradigm is often not possible, since this typically
requires a mathematically tractable likelihood and prior, as well as an explicit solution for the
normalising constant.

In the ABC setup using some distance function 𝑔(·), the discrepancy between the observed data
D and the simulated data D∗ can be assessed by comparing 𝑔(D,D∗) to some tolerance threshold
𝜖 > 0. A candidate particle is acceptable if 𝑔(D,D∗) ≤ 𝜖 , where D∗ is simulated using the candidate
particle as the parameters for the model M. Considering the distance function rather than only the
observed data, Bayes’ theorem can be modified to

P (Θ |𝑔(D,D∗) ≤ 𝜖 ) = P (𝑔(D,D∗) ≤ 𝜖 |Θ ) P (Θ)
P (𝑔(D,D∗) ≤ 𝜖) .

ABC algorithms allow for the direct simulation from P(Θ|𝑔(D,D∗) ≤ 𝜖), where inference is then
based on approximate marginal posteriors consisting of a large number of acceptable particles.
The level of approximation is determined by the tolerance threshold 𝜖 , where P(Θ|𝑔(D,D∗) ≤ 𝜖)
converges to P(Θ|D) as 𝜖 → 0.

A major limitation of the standard ABC rejection sampling (ABC-RS) algorithm is that is has a
fixed tolerance threshold which should be carefully chosen. If the tolerance threshold is too small,
the algorithm might take too long to generate accepted particles, whereas if the tolerance threshold is
too large, undesirable particles might be accepted (i.e., particles for which the discrepancy between
the observed and simulated data is not small enough). Several improvements and modifications of the
ABC-RS algorithm, as well as alternative algorithms based on importance sampling, Markov chain
Monte Carlo methods, and sequential Monte Carlo methods, have been suggested in the literature
(see, for example, Abdessalem et al., 2019; Sisson et al., 2019). However, these algorithms are often
complicated or have several tuning parameters which should be chosen appropriately.

In this paper, a simple modification of the ABC-RS algorithm is introduced, called the ABC
threshold-search (ABC-TS) algorithm. The ABC-TS algorithm overcomes the fixed-threshold
limitation of the ABC-RS algorithm by adaptively adjusting the tolerance threshold as candidate
particles are accepted or rejected. This modification enables the acceptance of preferable candidate
particles and can act as a search mechanism for determining an appropriate fixed tolerance threshold
for the ABC-RS algorithm. Furthermore, there is a clear optimal choice for the tuning parameters
of the ABC-TS algorithm, where suitable adjustments can be made to increase the computational
efficiency of the algorithm. A simulation study is conducted to compare the performance of the ABC-
TS algorithm against maximum likelihood estimation (MLE). In the simulation study, parameter
estimation is performed for life distributions widely used in reliability analysis.

The layout of the paper is as follows. In Section 2, the ABC-TS algorithm and the distance functions
used are defined. The threshold-search property of the ABC-TS algorithm is also illustrated. Section 3
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Algorithm 1 Standard ABC-RS algorithm.

1. Input required: data D, model choice M, tolerance threshold 𝜖 , number of accepted particles
𝑁 , distance function 𝑔(·), priors P(𝜃𝑠 |M), 𝑠 = 1, ..., 𝑆.

2. For 𝑖 = 1 to 𝑁 do

• Sample a candidate particle Θ∗ from the priors P(𝜃𝑠 |M), 𝑠 = 1, ..., 𝑆.

• Simulate a candidate dataset D∗ from 𝐹 (·|Θ∗,M).
• Determine the value of 𝑔(D,D∗). Then, for the tolerence threshold 𝜖 do

– If 𝑔(D,D∗) ≤ 𝜖 , accept and store Θ(𝑖) = Θ∗. Set 𝑖 = 𝑖 + 1.
– If 𝑔(D,D∗) > 𝜖 , reject and discard Θ∗. Set 𝑖 = 𝑖.

3. Output provided: approximate marginal posteriors for 𝜃1, ..., 𝜃𝑆 from {Θ(1) , ...,Θ(𝑁 ) }.

provides a short overview of the life distributions and their associated log-likelihood functions, which
are used to perform MLE. The simulation settings and the performance of the ABC-TS algorithm
against MLE based on specified metrics, are discussed in Section 4. The paper is concluded with
some final remarks in Section 5.

2. The Modified ABC-TS Algorithm

2.1 ABC algorithms and notation
Before defining the ABC-TS algorithm, some notation used throughout the paper is introduced.
Suppose that one has an observed dataset D, a model choice M with its associated parameter vector
Θ = {𝜃1, ..., 𝜃𝑆}, and priors for the model parameters P(𝜃𝑠 |M), 𝑠 = 1, ..., 𝑆. A candidate particle
sampled from the priors is denoted by Θ∗ = {𝜃∗1, ..., 𝜃

∗
𝑆
} and the dataset simulated from the model

M using the candidate particle is denoted by D∗. Let 𝑁 denote the number of particles that should
be accepted by the ABC algorithm using some distance function 𝑔(·).

Let us first consider the standard ABC-RS algorithm, provided in Algorithm 1, where a fixed
tolerance threshold 𝜖 > 0 is selected (see, for example, Beaumont et al., 2002). A candidate
particle is sampled from the priors and used to simulate a candidate dataset from the given model.
The candidate particle is accepted if 𝑔(D,D∗) ≤ 𝜖 and rejected if 𝑔(D,D∗) > 𝜖 . This process
is repeated until 𝑁 particles are accepted, which can then be used to approximate the marginal
posteriors. The importance of the choice for 𝜖 is clear from the algorithm, where an inappropriate
tolerance threshold may result in either very few particles being accepted or undesirable particles
being accepted.

The modified ABC-TS algorithm, where the tolerance threshold is adaptively adjusted as candidate
particles are accepted or rejected, is defined in Algorithm 2. The algorithm has three tuning
parameters, which include an initial tolerance threshold 𝜖1 ≥ 0, and two tolerance threshold
adjustments 𝛿Accept > 0 and 𝛿Reject > 0. Due to the high rejection rate of rejection sampling-based
ABC algorithms, it is required that 𝛿Reject ≪ 𝛿Accept to ensure convergence of the algorithm. The
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Algorithm 2 Modified ABC-TS algorithm.

1. Input required: data D, model choice M, initial tolerance threshold 𝜖1, tolerance threshold
adjustments 𝛿Accept and 𝛿Reject, number of accepted particles 𝑁 , distance function 𝑔(·), priors
P(𝜃𝑠 |M), 𝑠 = 1, ..., 𝑆.

2. For 𝑖 = 1 to 𝑁 do

• Sample a candidate particle Θ∗ from the priors P(𝜃𝑠 |M), 𝑠 = 1, ..., 𝑆.

• Simulate a candidate dataset D∗ from 𝐹 (·|Θ∗,M).
• Determine the value of 𝑔(D,D∗). Then, for the current tolerence threshold 𝜖𝑖 do

– If 𝑔(D,D∗) ≤ 𝜖𝑖 , accept and store Θ(𝑖) = Θ∗. Set 𝜖𝑖 = 𝜖𝑖 − 𝛿Accept, then set 𝑖 = 𝑖+1.
– If 𝑔(D,D∗) > 𝜖𝑖 , reject and discard Θ∗. Set 𝜖𝑖 = 𝜖𝑖 + 𝛿Reject, then set 𝑖 = 𝑖.

3. Output provided: approximate marginal posteriors for 𝜃1, ..., 𝜃𝑆 from {Θ(1) , ...,Θ(𝑁 ) }.

ABC-TS algorithm is executed similar to the ABC-RS algorithm, with the exception of the tolerance
threshold at each iteration being adjusted based on whether a candidate particle was accepted or
rejected in the preceding iteration. The tolerance threshold is decreased by 𝛿Accept if a particle was
accepted in the previous iteration and increased by 𝛿Reject if a particle was rejected in the previous
iteration.

Although the ABC-TS algorithm has three tuning parameters, there are optimal choices in terms
of accepting the most preferable particles. The optimal setting effectively eliminates the importance
of choosing suitable tuning parameters, but may significantly increase the computational cost. From
Algorithm 2, the optimal tuning parameter choices are 𝜖1 = 0, 𝛿Accept = 𝜖𝑖 , and 𝛿Reject as small as the
available computational power allows. That is, after a particle is accepted, the tolerance threshold is
set to zero and then very gradually increased for each rejected particle as the algorithm searches for
the next preferable particle to accept. Depending on the specific application, the tuning parameters
can however be adjusted to a certain degree in order to increase the computational efficiency without
significantly decreasing the level of approximation.

Furthermore, the ABC-TS algorithm can act as a search mechanism for an appropriate fixed
tolerance threshold in the ABC-RS algorithm. Through suitable choices for the tuning parameters of
the ABC-TS algorithm, a convergence level can be identified by monitoring the tolerance thresholds
at which candidate particles are accepted. This converged tolerance threshold should then be an
appropriate choice for the fixed tolerance threshold in the ABC-RS algorithm. The result is that,
once convergence is achieved through the ABC-TS algorithm, one can revert back to the ABC-RS
algorithm using the identified 𝜖 to reduce the computational cost.

2.2 Distance functions
There are several approaches in the ABC literature for selecting a suitable distance function or
summary statistic (see, for example, Lintusaari et al., 2017). In this paper, the distance functions
considered are based on the discrepancy between the cumulative distribution function (CDF),
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denoted by 𝐹 (𝑥), and the empirical cumulative distribution function (ECDF), denoted by 𝐹𝑛 (𝑥).
The Kolmogorov-Smirnov (KS), Cramér-von Mises (CvM), and Anderson-Darling (AD) distance
functions are used in this paper, since they have explicit expressions for an ordered finite sample (see,
for example, Stephens, 1974).

The KS distance function measures the maximum absolute difference between the ECDF and the
CDF. The KS distance function is defined as

𝑔𝐾𝑆 = sup
𝑥

|𝐹𝑛 (𝑥) − 𝐹 (𝑥) | ,

where for an ordered sample, 𝑥 (1) < 𝑥 (2) < · · · < 𝑥 (𝑛) , the KS distance function can be written as

𝑔𝐾𝑆 = max
[

max
1≤𝑖≤𝑛

(
𝑖

𝑛
− 𝐹

(
𝑥 (𝑖)

) )
, max

1≤𝑖≤𝑛

(
𝐹

(
𝑥 (𝑖)

)
− 𝑖 − 1

𝑛

)]
.

The CvM distance function measures the difference between 𝐹 (𝑥) and 𝐹𝑛 (𝑥) over the domain of
𝐹, where more weight is placed on the centre of the distribution. The CvM distance function is
defined as

𝑔𝐶𝑣𝑀 = 𝑛

∫
(𝐹𝑛 (𝑥) − 𝐹 (𝑥))2 𝑑𝐹 (𝑥).

For an ordered sample, 𝑥 (1) < 𝑥 (2) < · · · < 𝑥 (𝑛) , the CvM distance function has the closed-form
expression

𝑔𝐶𝑣𝑀 =
1

12𝑛
+

𝑛∑︁
𝑖=1

(
2𝑖 − 1

2𝑛
− 𝐹

(
𝑥 (𝑖)

) )2
.

The AD distance function is an extension of the CvM distance function, where more weight placed
on the tails of the distribution. The AD distance function is defined as

𝑔𝐴𝐷 = 𝑛

∫ (𝐹𝑛 (𝑥) − 𝐹 (𝑥))2

𝐹 (𝑥) (1 − 𝐹 (𝑥)) 𝑑𝐹 (𝑥).

Considering an ordered sample, 𝑥 (1) < 𝑥 (2) < · · · < 𝑥 (𝑛) , the AD distance function simplifies to

𝑔𝐴𝐷 = −𝑛 − 1
𝑛

𝑛∑︁
𝑖=1

(2𝑖 − 1)
[
ln

(
𝐹

(
𝑥 (𝑖)

) )
+ ln

(
1 − 𝐹

(
𝑥 (𝑛+1−𝑖)

) ) ]
.

2.3 Threshold-search property
To illustrate the use of the ABC-TS algorithm and its threshold-search property, consider a simple
example using the exponential distribution with parameter 𝜆. Details on the sample size, true value of
𝜆, and the prior construction are not important for the discussion of the threshold-search property. In
Figure 1, we observe plots of the tolerance threshold at which 200 particles are accepted under various
settings of the hyperparameters and using the CvM distance function. Throughout the discussion
that follows, note that particles accepted at lower tolerance thresholds are typically more preferable
particles, since the discrepancy between the observed data D and the simulated data D∗ is typically
smaller.

The stability of the tolerance threshold is investigated in Figure 1a, where the initial tolerance
thresholds are set equal in all cases but with different tolerance threshold adjustments. Note that
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for Case 1 and Case 2 (to a lesser extent), the tolerance threshold is not stable and less preferable
particles are often accepted. Case 3 displays a stable behaviour and the consistent acceptance of
preferable particles, which is achieved by setting 𝛿Reject sufficiently smaller than 𝛿Accept. Regarding
the threshold-search property, the converged and stable level of the tolerance threshold in Case 3 can
be used as an appropriate choice for the fixed tolerance threshold in the ABC-RS algorithm for this
specific application.

In Figures 1b to 1d, the convergence of the tolerance threshold is investigated by modifying the
tolerance threshold adjustments, while 𝜖1 = 1 for Case 1, 𝜖1 = 0.5 for Case 2, and 𝜖1 = 0.0001 for Case
3. Divergence of the tolerance thresholds are observed in Figure 1b, where 𝛿Accept = 𝛿Reject = 0.1. To
enable convergence, one needs to decrease the value of 𝛿Reject. In Figure 1c, convergence is achieved
by setting 𝛿Reject = 0.001, while the tolerance threshold only converges around 150 accepted particles
for Case 3. Faster convergence can be achieved for Case 2 and Case 3 when increasing 𝛿Accept, as
shown in Figure 1d. The discussions from these figures again highlight the optimal tuning parameter
choices discussed earlier.

3. Life distributions
In this section, some life distributions widely used in reliability analysis are discussed, where the
probability density function (PDF) and log-likelihood function for each are provided. The likelihood
function is required to perform MLE, while it is not required for the ABC-TS algorithm. Suppose that
𝑛 items are tested and that the life test is terminated when all items have failed. The log-likelihood
function for some model M with parameter vector Θ is then given by

L = ln

(
𝑛∏
𝑖=1

𝑓 (𝑥𝑖 |Θ,M)
)
,

where 𝑓 (·) denotes the PDF and 𝑥𝑖 , 𝑖 = 1, ..., 𝑛 are the failure times.

Exponential distribution
The PDF of the exponential distribution with parameter 𝜆 (𝜆 > 0) is

𝑓E (𝑥 |𝜆 ) = 𝜆 exp (−𝜆𝑥) , 𝑥 ≥ 0,

and the log-likelihood function is given by

LE = 𝑛 ln (𝜆) − 𝜆

𝑛∑︁
𝑖=1

𝑥𝑖 .

Weibull distribution
The Weibull distribution with scale parameter 𝛼 and shape parameter 𝛽 (𝛼 > 0, 𝛽 > 0) has the PDF

𝑓W (𝑥 |𝛼, 𝛽 ) = 𝛽

𝛼

( 𝑥
𝛼

)𝛽−1
exp

(
−

( 𝑥
𝛼

)𝛽)
, 𝑥 ≥ 0,

with the log-likelihood function of the Weibull distribution given by

LW = 𝑛 ln (𝛽) − 𝑛𝛽 ln (𝛼) + (𝛽 − 1)
𝑛∑︁
𝑖=1

ln (𝑥𝑖) −
𝑛∑︁
𝑖=1

( 𝑥𝑖
𝛼

)𝛽
.
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(a) Threshold instability example. Case 1: 𝜖1 = 0.01, 𝛿Accept =

0.4346, 𝛿Reject = 0.0707. Case 2: 𝜖1 = 0.01, 𝛿Accept = 0.1,
𝛿Reject = 0.01. Case 3: 𝜖1 = 0.01, 𝛿Accept = 0.01, 𝛿Reject =

0.000005.
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(b) Threshold divergence example. Case 1: 𝜖1 = 1, 𝛿Accept =

0.01, 𝛿Reject = 0.01. Case 2: 𝜖1 = 0.5, 𝛿Accept = 0.01, 𝛿Reject =

0.01. Case 3: 𝜖1 = 0.0001, 𝛿Accept = 0.01, 𝛿Reject = 0.01.
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(c) Slow threshold convergence example. Case 1: 𝜖1 = 1, 𝛿Accept =

0.01, 𝛿Reject = 0.001. Case 2: 𝜖1 = 0.5, 𝛿Accept = 0.01, 𝛿Reject =

0.001. Case 3: 𝜖1 = 0.0001, 𝛿Accept = 0.01, 𝛿Reject = 0.001.
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(d) Fast threshold convergence example. Case 1: 𝜖1 = 1, 𝛿Accept =

0.03, 𝛿Reject = 0.001. Case 2: 𝜖1 = 0.5, 𝛿Accept = 0.03, 𝛿Reject =

0.001. Case 3: 𝜖1 = 0.0001, 𝛿Accept = 0.03, 𝛿Reject = 0.001.

Figure 1. Tolerance threshold convergence examples for various hyperparameter settings.
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Birnbaum-Saunders distribution
The PDF and log-likelihood function of the Birnbaum-Saunders distribution with shape parameter
𝛼 and scale parameter 𝛽 (𝛼 > 0, 𝛽 > 0) are, respectively, given by

𝑓BS (𝑥 |𝛼, 𝛽 ) = 1
2
√

2𝜋𝛼𝛽

((
𝛽

𝑥

)1/2
+

(
𝛽

𝑥

)3/2
)

exp
(
− 1

2𝛼2

(
𝑥

𝛽
+ 𝛽

𝑥
− 2

))
, 𝑥 > 0,

and

LBS = −𝑛 ln
(
2
√

2𝜋𝛼𝛽
)
+

𝑛∑︁
𝑖=1

ln

((
𝛽

𝑥𝑖

)1/2
+

(
𝛽

𝑥𝑖

)3/2
)
− 1

2𝛼2

𝑛∑︁
𝑖=1

(
𝑥

𝛽
+ 𝛽

𝑥
− 2

)
.

Gamma distribution
The PDF of the gamma distribution with shape parameter 𝛼 and scale parameter 𝛽 (𝛼 > 0, 𝛽 > 0) is
given by

𝑓G (𝑥 |𝛼, 𝛽 ) = 1
Γ (𝛼) 𝛽𝛼 𝑥

𝛼−1 exp
(
− 𝑥

𝛽

)
, 𝑥 > 0,

where the log-likelihood function is defined as

LG = −𝑛𝛼 ln (𝛽) − 𝑛 ln (Γ (𝛼)) + (𝛼 − 1)
𝑛∑︁
𝑖=1

ln (𝑥𝑖) −
𝑛∑︁
𝑖=1

𝑥𝑖

𝛽
.

Log-normal distribution
The PDF of the log-normal distribution with parameters 𝜇 and 𝜎 (𝜇 ∈ R, 𝜎 > 0) is given by

𝑓LN (𝑥 |𝜇, 𝜎 ) = 1
√

2𝜋𝜎𝑥
exp

(
− 1

2𝜎2 (ln (𝑥) − 𝜇)2
)
, 𝑥 > 0.

The log-likelihood function of the log-normal distribution is given by

LLN = −𝑛 ln
(√

2𝜋𝜎
)
−

𝑛∑︁
𝑖=1

ln (𝑥𝑖) −
1

2𝜎2

𝑛∑︁
𝑖=1

(ln (𝑥𝑖) − 𝜇)2 .

4. Simulation results
In this simulation study, parameter estimation is considered for the five distributions defined in
Section 3. Arbitrary true parameter values are selected for each distribution, given in Table 1,
where these parameters are estimated using MLE and the ABC-TS algorithm. Sample sizes of
𝑛 = {10, 20, 30, 50, 100, 200} are considered and 𝑀 = 100 Monte Carlo iterations are performed for
each sample size. For each Monte Carlo iteration and life distribution, a sample is generated from
the specific life distributions and then used to perform parameter estimation. The limited-memory
Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) algorithm is used to perform
MLE, since this algorithm allows for the specification of bound constraints on parameters (see, Byrd
et al., 1995).

For the ABC-TS algorithm, the initial tolerance threshold is set to 𝜖1 = 0.01 to prevent the
acceptance of undesirable candidate particles due to an unnecessary large value for 𝜖1. The number
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of accepted particles is set to 𝑁 = 200 and the three distance functions defined in Section 2 are
investigated. Considering the optimal tuning parameter choices and allowing for some relaxation
to decrease the computational burden, the tolerance threshold adjustment values are chosen as
𝛿Accept = 0.01 and 𝛿Reject = 0.000005.

For each parameter of the life distributions under consideration, independent uniform priors are
constructed around some initial parameter estimates. These uniform priors are chosen wide enough
to allow for the exploration of a range of acceptable values for the distributional parameters. Given
an initial parameter estimate �̃� for a parameter 𝜃 of some life distribution, the uniform prior on the
interval [�̃�/3 ; �̃� × 3] is imposed on the parameter 𝜃. Using the ABC-TS algorithm to generate an
approximate marginal posterior for a parameter 𝜃, the ABC estimate of 𝜃 under a squared error loss
is given by the posterior mean, i.e.,

𝜃ABC =
1
𝑁

𝑁∑︁
𝑖=1

𝜃 (𝑖) ,

which is the Monte Carlo average of the accepted particle values for the parameter 𝜃.
To compare the performance of MLE and the ABC-TS algorithm, the relative root mean squared

error (RRMSE) and relative absolute bias (RAB) for each parameter, given the respective life
distributions, is calculated over the 100 Monte Carlo iterations. The RRMSE and RAB for some
estimator 𝜃 of the parameter 𝜃 are, respectively, computed as

RRMSE
(
𝜃
)
=

1
|𝜃 |

√√√
1
𝑀

𝑀∑︁
𝑖=1

(
𝜃𝑖 − 𝜃

)2

and

RAB
(
𝜃
)
=

��𝜃 − 𝜃
��

|𝜃 | ,

where 𝜃 = 𝑀−1 ∑𝑀
𝑖=1 𝜃𝑖 .

The results for the different life distributions are given in Tables 2 to 6. For each simulation setting
in the tables, the lowest RRMSE and RAB are highlighted. The following general observations can
be made from the results provided:

• While MLE performs the best in terms of RRMSE in most cases, the ABC-TS algorithm,
specifically using the AD distance function, has comparable performance.

• In cases where parameter estimation via MLE is more complicated, such as for the Weibull
and gamma distributions, the ABC-TS often outperforms MLE.

• The ABC-TS algorithm outperforms MLE in terms of RAB, although this is not consistent in
terms of the distance function used.

• For the ABC-TS algorithm, the AD distance function has the best overall performance when
considering both RRMSE and RAB.
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Table 1. Arbitrary parameter values for the simulation study.

Exponential Weibull Birnbaum-Saunders Gamma Log-normal

𝜆 = 0.05 𝛼 = 60, 𝛽 = 2 𝛼 = 0.5, 𝛽 = 25 𝛼 = 2, 𝛽 = 15 𝜇 = 3.5, 𝜎 = 0.5

Table 2. RRMSE and RAB for the exponential distribution.

Metric results

RRMSE RAB

𝑛 Parameter MLE KS CvM AD MLE KS CvM AD

10 𝜆 0.3362 0.3754 0.3888 0.3402 0.0655 0.0510 0.0651 0.0325
20 𝜆 0.1965 0.2121 0.2134 0.1998 0.0102 0.0049 0.0009 0.0084
30 𝜆 0.1722 0.2080 0.2070 0.1801 0.0327 0.0177 0.0188 0.0097
50 𝜆 0.1505 0.1962 0.1604 0.1539 0.0046 0.0115 0.0036 0.0008
100 𝜆 0.1059 0.1283 0.1248 0.1166 0.0009 0.0019 0.0044 0.0059
200 𝜆 0.0686 0.0790 0.0745 0.0720 0.0064 0.0022 0.0048 0.0025

Table 3. RRMSE and RAB for the Weibull distribution.

Metrics results

RRMSE RAB

𝑛 Parameter MLE KS CvM AD MLE KS CvM AD

10
𝛼 0.1580 0.1697 0.1696 0.1634 0.0019 0.0064 0.0070 0.0150
𝛽 0.3421 0.3980 0.4793 0.2967 0.1190 0.1192 0.1477 0.0054

20
𝛼 0.1233 0.1333 0.1343 0.1286 0.0065 0.0086 0.0087 0.0136
𝛽 0.2199 0.2572 0.2623 0.2040 0.0924 0.0863 0.0980 0.0363

30
𝛼 0.0931 0.0995 0.0987 0.0948 0.0018 0.0015 0.0022 0.0050
𝛽 0.1637 0.2335 0.2320 0.1711 0.0387 0.0634 0.0596 0.0137

50
𝛼 0.0684 0.0685 0.0689 0.0683 0.0117 0.0092 0.0105 0.0092
𝛽 0.1366 0.1811 0.1759 0.1387 0.0559 0.0552 0.0585 0.0338

100
𝛼 0.0581 0.0583 0.0580 0.0573 0.0002 0.0002 0.0003 0.0011
𝛽 0.0919 0.1142 0.1113 0.0969 0.0226 0.0209 0.0201 0.0085

200
𝛼 0.0382 0.0378 0.0378 0.0373 0.0029 0.0019 0.0021 0.0019
𝛽 0.0579 0.0736 0.0726 0.0642 0.0016 0.0017 0.0004 0.0038
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Table 4. RRMSE and RAB for the Birnbaum-Saunders distribution.

Metrics results

RRMSE RAB

𝑛 Parameter MLE KS CvM AD MLE KS CvM AD

10
𝛼 0.2357 0.2858 0.2985 0.2394 0.1205 0.1152 0.1242 0.0340
𝛽 0.1409 0.1421 0.1390 0.1385 0.0025 0.0042 0.0017 0.0015

20
𝛼 0.1655 0.2247 0.2238 0.1830 0.0403 0.0378 0.0433 0.0069
𝛽 0.1161 0.1310 0.1299 0.1222 0.0188 0.0259 0.0263 0.0223

30
𝛼 0.1382 0.1727 0.1695 0.1506 0.0291 0.0202 0.0306 0.0004
𝛽 0.0791 0.0844 0.0841 0.0814 0.0022 0.0032 0.0052 0.0037

50
𝛼 0.0986 0.1161 0.1178 0.1022 0.0277 0.0184 0.0249 0.0056
𝛽 0.0684 0.0757 0.0754 0.0723 0.0141 0.0114 0.0124 0.0128

100
𝛼 0.0719 0.0897 0.0898 0.0782 0.0002 0.0066 0.0050 0.0138
𝛽 0.0541 0.0560 0.0556 0.0545 0.0004 0.0030 0.0024 0.0012

200
𝛼 0.0491 0.0568 0.0554 0.0498 0.0041 0.0006 0.0004 0.0034
𝛽 0.0336 0.0360 0.0362 0.0347 0.0026 0.0020 0.0029 0.0027

Table 5. RRMSE and RAB for the gamma distribution.

Metric results

RRMSE RAB

𝑛 Parameter MLE KS CvM AD MLE KS CvM AD

10
𝛼 0.7146 0.9499 1.0477 0.5784 0.3514 0.4461 0.4698 0.1636
𝛽 0.4257 0.5863 0.5801 0.5464 0.1169 0.0585 0.0505 0.0777

20
𝛼 0.3668 0.5306 0.5210 0.3220 0.1263 0.1960 0.1830 0.0488
𝛽 0.3585 0.4655 0.4498 0.4151 0.0387 0.0193 0.0114 0.0579

30
𝛼 0.2990 0.3923 0.3790 0.2809 0.1057 0.1245 0.1308 0.0434
𝛽 0.2818 0.3268 0.3390 0.3142 0.0441 0.0207 0.0256 0.0347

50
𝛼 0.2187 0.2184 0.2201 0.1988 0.0543 0.0293 0.0352 0.0118
𝛽 0.2117 0.2517 0.2427 0.2149 0.0334 0.0096 0.0015 0.0127

100
𝛼 0.1364 0.1946 0.1867 0.1488 0.0153 0.0253 0.0254 0.0028
𝛽 0.1576 0.2122 0.2010 0.1762 0.0056 0.0187 0.0133 0.0267

200
𝛼 0.0919 0.1177 0.1117 0.0945 0.0038 0.0156 0.0051 0.0054
𝛽 0.0969 0.1314 0.1272 0.1079 0.0076 0.0040 0.0124 0.0196
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Table 6. RRMSE and RAB for the log-normal distribution.

Metric results

RRMSE RAB

𝑛 Parameter MLE KS CvM AD MLE KS CvM AD

10
𝜇 0.0460 0.0498 0.0494 0.0472 0.0054 0.0064 0.0072 0.0060
𝜎 0.2020 0.2595 0.2641 0.2219 0.0777 0.0453 0.0546 0.0277

20
𝜇 0.0295 0.0314 0.0315 0.0302 0.0013 0.0002 0.0009 0.0011
𝜎 0.1550 0.1998 0.2006 0.1655 0.0562 0.0587 0.0640 0.0126

30
𝜇 0.0300 0.0320 0.0312 0.0304 0.0018 0.0016 0.0016 0.0017
𝜎 0.1270 0.1702 0.1624 0.1420 0.0224 0.0138 0.0037 0.0218

50
𝜇 0.0232 0.0241 0.0239 0.0236 0.0014 0.0014 0.0013 0.0014
𝜎 0.1036 0.1255 0.1222 0.1087 0.0179 0.0075 0.0007 0.0119

100
𝜇 0.0154 0.0156 0.0156 0.0155 0.0006 0.0003 0.0001 0.0003
𝜎 0.0803 0.0906 0.0921 0.0831 0.0177 0.0038 0.0076 0.0012

200
𝜇 0.0104 0.0106 0.0106 0.0103 0.0012 0.0008 0.0008 0.0010
𝜎 0.0492 0.0635 0.0603 0.0535 0.0034 0.0055 0.0006 0.0054

5. Conclusion
The ABC-TS algorithm introduced in this paper is a modification of the standard ABC-RS algorithm,
where the tolerance threshold is adaptively adjusted as candidate particles are accepted or rejected.
The threshold-search property of the ABC-TS algorithm is illustrated, which can be used to
determine a suitable fixed tolerance threshold for the ABC-RS algorithm. Optimal choices for
the hyperparameters of the ABC-TS algorithm are also discussed.

A simulation study on distributional parameter estimation is performed, where the results indicate
that the ABC-TS algorithm has comparable performance to that of MLE. The ABC-TS algorithm often
outperforms MLE in cases where there are no closed-form solutions for the maximum likelihood
estimators. This warrants further investigation into the performance of the ABC-TS algorithm,
specifically for parameter estimation in cases where the likelihood function becomes challenging to
work with. For example, in accelerated life testing models, distribution parameters are expanded
via a time transformation function, resulting complex likelihood functions. For these models,
approximation techniques are often required to perform parameter estimation in both the frequentist
and Bayesian paradigms.
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In this paper we re-examine the similarity threshold of Andresen’s 𝑆-Index for
spatial point patterns. Andresen’s 𝑆-Index is used widely by geographers, specifi-
cally in criminology literature, to determine the similarity between two spatial point
patterns. A spatial point pattern consists of the locations where an event of interest
occurred. The 𝑆-Index represents the proportion of spatial units that have similar
spatial patterns in both point patterns and ranges from 0 to 1. The test is subjective
in that it delineates spatial similarity and dissimilarity at a threshold of 𝑆 = 0.8 with-
out statistical motivation. We propose a technique to remove this subjectivity by
considering the second-order nature of the spatial data. An improved, more robust
test is thus set up providing more informative thresholds for the similarity test for
the second-order nature of the point pattern as well as the chosen grid size. This ap-
proach is applied to road networks in the city centres of Pretoria and Johannesburg,
South Africa. The road network is represented as a point pattern, and the similarity
of the road structure is determined with the new methodology.

Keywords: Point pattern, Road network, S-Index, Similarity test.

1. Introduction
To determine whether two spatial data sets originate from the same spatial process, spatial similarity
tests are used (Borrajo et al., 2020). Spatial data are of three main types, namely point patterns,
lattice data and geostatistical data (Cressie, 2015). In this paper, the focus is only on the spatial
similarity between spatial point patterns, for which the point location is modelled.

Only a handful of spatial similarity tests have been developed that can be divided into distance-
based and area-based methods. Recent spatial similarity tests are developed by Alba-Fernández et al.
(2016), Feuntes-Santos et al. (2017), Wheeler et al. (2018) and Kirsten and Fabris-Rotelli (2021).
However, a commonly used method of statistically comparing point patterns is the spatial point
pattern test developed by Andresen (2009). This area-based test is used to compare the similarity
between two different spatial point patterns over the same domain. The final result of this test is the
𝑆-Index which represents the proportion of spatial units that have similar spatial patterns for both
point patterns, ranging from zero to one. One of the main appeals of Andresen’s test is that the output
can be mapped, showing the user where local differences are present in the point patterns.
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MSC2020 subject classifications: 62G10, 62M30, 62P25
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Unsurprisingly, Andresen’s spatial point pattern test has been extensively used over the past decade
mainly in the geographic analysis of crime with topics ranging from crime seasonality and its variation
across space (Andresen and Malleson, 2013; Linning, 2015), to spatial crime displacement analysis
(Andresen and Malleson, 2014; Vandeviver and Steenbeek, 2019) to studies examining the stability
of crime patterns across various levels of aggregation (Andresen and Malleson, 2011). Moreover,
the test has been used to examine crime concentrations in a variety of countries including Brazil
(de Melo et al., 2015; Pereira et al., 2017), the Netherlands (Vandeviver and Steenbeek, 2019),
Canada (Andresen et al., 2017), New Zealand (Breetske and Andresen, 2018), South Africa (Schutte
and Breetske, 2018), and the United States (Wheeler et al., 2018).

Despite its relative success as a method, a number of limitations have been identified. These
include the fact that the selection of the base and the test data set is arbitrary with the value of the
𝑆-Index being, to some extent, dependent on the choice made by the user. Another limitation is the
fact that areas with no points in them in the test data set will always have a confidence interval of
0-0% (Wang, 2013). Another issue that has received very little attention in the extant literature is
the arbitrariness of the threshold values delineated by Andresen (2016) as signifying whether the
resultant 𝑆-Index value (ranging from 0 to 1) signifies whether the two point patterns are similar or
dissimilar. According to Andresen and Linning (2012) the ‘rule of thumb’ is that an 𝑆-Index value of
0.8 indicates that the two point patterns being compared are similar. The similarity threshold value
in particular appears to be arbitrarily based on prior threshold values identified for variance inflation
factors (O’Brien, 2007) and correlation coefficients (Cohen, 1988) rather than on empirical proof.

Figure 1 shows two point patterns that are 90% identical, i.e. 90% of their points are in exactly
the same location. When these point patterns are compared using the spatial point pattern test
by Andresen (2009), the 𝑆-Index is 0.7, meaning they would fail a similarity test with the current
threshold value of 0.8, even though they are 90% identical.

The aim of this research is to remove much of the subjectivity involved in identifying whether
two spatial point patterns are similar or dissimilar as determined by Andresen’s 𝑆-Index. Clearer
similarity thresholds are proposed based on the second-order nature of the data, namely how the
two original point patterns are distributed (regular or clustered). We run a series of simulations by
simulating different spatial point patterns and calculating the re-evaluated thresholds.

In Section 2, Andresen’s spatial point pattern test is explained in detail as well as the proposed
improvement of the thresholds. A simulation study is conducted in Section 3 to determine the
re-evaluated thresholds. Andresen’s spatial point pattern test is applied to road networks in the city

(a) (b)
Figure 1. Illustration of spatial point patterns being 90% similar and yielding an 𝑆-Index of 0.7
when the spatial point pattern test by Andresen (2009) is applied.
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centres of Pretoria and Johannesburg in Section 4. This is followed by a more detailed discussion in
Section 5 and Section 6 concludes.

2. Methodology
A spatial point pattern is a realisation from a stochastic mechanism called a spatial point process
(Baddeley et al., 2015). A spatial point pattern consists of the locations of a certain event denoted
by coordinates. The arrangement of the points in a spatial point pattern can be classified into
three groups as shown in Figure 2 (Baddeley et al., 2015). Figure 2(a) is an example of a regular
spatial point pattern where the points within the spatial point pattern repel each other and are spaced
throughout the domain. A completely spatially random point pattern is given in Figure 2(b) which
is a point pattern where the points are independently distributed from a Poisson point process and
form no distinct pattern. Lastly, a clustered point pattern is shown in Figure 2(c) which is a point
pattern where some of the points tend to attract each other to form groups at certain locations within
the point pattern.

2.1 Andresen’s 𝑆-Index
Consider two spatial point patterns 𝑋 𝑗 , 𝑗 = 1, 2, observed on a spatial domain. Let each spatial point
pattern consist of 𝑛 𝑗 number of points, so that the patterns are denoted by

𝑋 𝑗 = {𝑝1 𝑗 , 𝑝2 𝑗 , . . . 𝑝𝑛 𝑗 𝑗 },

where 𝑝𝑘 𝑗 is the location of the 𝑘 𝑡ℎ point in pattern 𝑋 𝑗 .
The spatial domain of 𝑋 𝑗 , 𝑗 = 1, 2 is divided into regions, 𝐴𝑖 , 𝑖 = 1, 2, . . . , 𝑚. These regions can

either be regularly (grid-like) or irregularly (for example, administration boundaries) shaped. In the
absence of pre-defined areas within the spatial domain, a regular grid is the popular choice.

The spatial point pattern similarity test, proposed by Andresen (2009), is performed on 𝑋1 (base
dataset) and 𝑋2 (test dataset) by the following algorithm:

1. Using 𝑋1, calculate the proportion of points within each 𝐴𝑖 , 𝑖 = 1, 2, . . . , 𝑚:

𝑡𝑖 =

∑𝑛1
𝑘=1 𝐼 (𝑝𝑘1 ∈ 𝐴𝑖)

𝑛1
.

(a) Regular (b) CSR (c) Clustered
Figure 2. Illustration of how the points within a spatial point pattern can be arranged. (a) Regular
spatial point pattern where the points are fairly evenly spaced. (b) Completely spatially random point
pattern where the points from no particular pattern. (c) Clustered point pattern where the points form
groups at different locations in the point pattern.
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2. Repeat the following 200 times:

2.1. Using 𝑋2, sample 85% of the points randomly. Denote the 𝑟 𝑡ℎ sample as 𝐵𝑟 = {𝑞1𝑟 , 𝑞2𝑟 ,

. . . , 𝑞𝑛𝑏𝑟 } where 𝑛𝑏 = 0.85 × 𝑛2 and 𝑞𝑘𝑟 is the location of the 𝑘 𝑡ℎ sampled point for the
𝑟 𝑡ℎ sample.

2.2. Calculate the proportion of points of 𝐵𝑟 in each 𝐴𝑖:

𝑏𝑖𝑟 =

∑𝑛𝑏
𝑘=1 𝐼 (𝑞𝑘𝑟 ∈ 𝐴𝑖)

𝑛𝑏
.

Step 2 is repeated 200 times for the sake of being conservative (Andresen, 2009). A sample of 85%
is taken following the research done by Ratcliffe (2004) that if a random sample is taken on a spatial
point pattern, the spatial structure will be preserved if at least 85% of the points in the spatial point
pattern are sampled.

3. Let bi = (𝑏𝑖1, 𝑏𝑖2, . . . , 𝑏𝑖200)′ be the vector of all the percentages of points in region 𝐴𝑖 . Let
𝑐𝑖 be the non-parametric confidence interval for region 𝐴𝑖 by taking the 2.5𝑡ℎ and the 97.5𝑡ℎ

percentiles of bi as the lower and the upper limits respectively.

4. Determine the local similarities for each 𝐴𝑖:

𝑠𝑖 = 𝐼 (𝑡𝑖 ∈ 𝑐𝑖).

Thus if the proportion of points within each 𝐴𝑖 for pattern 𝑋1 is contained in the confidence interval,
𝑐𝑖 , calculated in step 3, then the patterns are said to exhibit a similar proportion of points in 𝐴𝑖 (i.e.
𝑠𝑖 = 1). Otherwise they are significantly different (i.e. 𝑠𝑖 = 0).

4. The 𝑆-Index is a global similarity parameter that ranges from 0 (no similarity) to 1 (perfect
similarity) and is calculated as

𝑆 =

∑𝑚
𝑖=1 𝑠𝑖

𝑚
,

where 𝑚 is the number of spatial regions considered within the domain.

The test is not concerned with the statistical distribution of the points in the spatial point pattern
but only if the points in the different patterns are similarly located; this makes it a non-parametric
test.

2.2 Improved Similarity Test
In this study, we aim to provide clearer, empirically-based cut-off values as the threshold for the
similarity value 𝑆. We propose a threshold based on the second-order nature of the data; namely,
how strongly the data is clustered. This addressed using the Index of Clumping (ICS) (David and
Moore, 1954) which provides an indication of the degree of clustering in the spatial pattern. The
index of clumping is calculated as

𝐼𝐶𝑆 =
𝑠2

𝑥
− 1,
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where 𝑥 and 𝑠2 are the sample mean and variance of the number of points in each grid cell. If
𝐼𝐶𝑆 < 1, the point pattern is classified as regular and if 𝐼𝐶𝑆 > 1, the point pattern is clustered.

A series of simulations are performed to propose these new similarity thresholds for the 𝑆-Index in
a simulation study. Pairs of spatial point patterns will be simulated to be either 80% or 90% identical.
That is, 80% or 90% of the points in the two spatial point patterns are located in exactly the same
location. Andresen’s 𝑆-Index will then be applied to these simulated pairs.

We create new similarity thresholds for Andresen’s 𝑆-Index calculated as the lower outlier limit
of the 𝑆-Index values generated from the simulation study since outliers in the data comes from a
different distribution than the rest of the data (Schwertman and de Silva, 2007). The inner fences
method to identify outliers will be employed to provide the threshold values. The lower limit is given
by

𝑓1 = 𝑄1 − 1.5(𝑄3 −𝑄1).

In cases where there are no outliers for those 𝑆-Index values, the lower outlier limit will be below
all the 𝑆-Index values. In such circumstances, the new similarity threshold will be the minimum of all
the 𝑆-Index values. Accordingly, the following equation will be used to calculate the new threshold
value,

𝑓 = max{min(𝑆), 𝑓1}. (1)

3. Simulation Study
The aim of the simulation study is to calculate and propose new similarity thresholds for Andresen’s
𝑆-Index, based on the second-order nature of the point pattern. The second-order nature of point
patterns is classified as either regular, clustered or completely spatially random (CSR). A regular
point pattern has points with an inhibition distance between them, a clustered point pattern exhibits
points closer together than expected, and a CSR point pattern indicates points are randomly placed
without any spatial dependency.

3.1 Simulation Design
Regular and clustered patterns are simulated, over two different windows with an area of 100 square
units - a rectangular window and a convex hull polygonal window (see Figure 4). These windows
are commonly used in the absence of lattice data. The number of points are varied as small (±100),
medium (±500) and large (±1000).

In the simulation study, two types of point pattern simulations are considered as simulated as
follows:

1. Regular point patterns: The rSSI function in R (Baddeley et al., 2015) was used with four
different inhibition distances (𝑟 = 0.1, 0.15, 0.2, 0.3) to simulate regular point patterns. Ex-
amples of regular point pattern simulations for the different inhibition distances are shown in
Figure 5(a)-(d).

2. Clustered point patterns: The rMatClust function in R (Baddeley et al., 2015) was used by
varying the parameter values of kappa (number of clusters divided by 100), scale (1, 1.5, 2)
and mu (size of the point pattern divided by the number of clusters). The number of clusters in
each simulation has been randomly chosen at each iteration as between 8 and 12. Examples of
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(a) 𝑟 = 0.1 (b) 𝑟 = 0.15 (c) 𝑟 = 0.2 (d) 𝑟 = 0.3

(a) (b) (c)
𝜆1 (𝑠) = 5(𝑥2 + 𝑦2) 𝜆2 (𝑠) = 13(𝑥 + 𝑦) 𝜆3 (𝑠) = 25𝑦

Figure 3. Illustrations of the non-constant intensity functions in the simulation study.

clustered point pattern simulations for the different values of the scale parameter are shown
in Figure 5(e)-(g).

To create the other pattern to use in the comparison that is either 80% or 90% identical, 20%
or 10% of the points in the point pattern are replaced with other random points simulated using a
Poisson point process with the rpoispp function in R.

The point patterns are simulated at four different intensities, one constant and the other three
non-constant. The three different functions of the non-constant intensities are shown in Figure 3.
Inhomogeneity of the clustered spatial point patterns was incorporated with the kappa parameter.

Andresen’s spatial point pattern test was applied to all pairs of simulations. The point patterns were
divided into different areas, and then the 𝑆-Index was calculated. As the 𝑆-Index utilises pre-defined
regions within the domain for comparison of the two spatial point patterns, it is important that the
two point patterns are divided in the same manner. We use grids of different sizes to divide the
patterns in order to see what influence this has on the consistency of the test result. Regular grids

(a) (b) (c) (d)
Figure 4. Examples of how a 5 × 5 grid appears on the (a) rectangular window and the (b) convex
polygonal window. Examples of a (c) rectangular window and a (d) convex polygonal window with
25 irregular Voronoi cells.



AN IMPROVED SIMILARITY TEST FOR COMPARING SPATIAL POINT PATTERNS 99

(e) scale = 1 (f) scale = 1.5 (g) scale = 2
Figure 5. Examples of some of the simulations considered. (a), (b), (c), (d) are examples of the
simulated regular point patterns for the different inhibition distances considered. (e), (f), (g) are
examples of the simulated clustered point patterns for different scale parameter values.

as well as irregular grids are considered. Figure 4 shows an example of the areas overlaid on the
two different windows considered. Figure 4(a) is an example of a regular 5 × 5 grid on a rectangular
window and Figure 4(b) is an example of a regular 5× 5 grid on a convex polygonal window. Figure
4(c) and Figure 4(d) are examples of an irregular grid used on the rectangular window and the convex
polygonal window, respectively. Irregular grids were simulated as Voronoi cells. In this simulation
study, the following grids and resolutions are considered:

• Regular grid: 10 × 10, 15 × 15, 20 × 20.

• Irregular grid: 25 areas, 100 areas, 200 areas.

A regular as well as irregular grid are considered as in some applications administrative boundaries
will be available and these might be preferable to use instead of a regular grid. This type of division
will also likely consist of fewer areas compared to the regular grid, hence, the lower resolution
considered in the simulation study.

In practice, when comparing the similarity of two point patterns, a user does not know their degree
of similarity (if this were known, the test would not be needed in the first place). Final thresholds
are thus calculated using bootstrap sampling. Simple random samples from the 𝑆-Index values were
taken 999 times for the 80% and 90% similar patterns together. Threshold values were then calculated
for each sample using Equation (1) and their rounded mean used as the final threshold.

For all the simulations, a division is made into two groups according to the ICS values. If 𝐼𝐶𝑆 < 1,
the point patterns are classified as regular and if 𝐼𝐶𝑆 > 1, the point patterns are classified as clustered.

Figure 6 shows the ICS values for spatial point patterns 𝑋1 and 𝑋2 used in the simulation study.
From this figure it can be seen that the spread for the regular patterns (with ICS values less than 1)
is less than the spread for the clustered patterns (with ICS values greater than 1). In some cases,
the point patterns will be simulated as either regular or clustered but according to the ICS value will
be classified as the other. When calculating the thresholds, the ICS values are purely used in the
classification as in real applications it is the measurement used to distinguish quantitatively between
regular and clustered patterns.

3.2 Simulation Results
Figure 7 shows the final 𝑆-Index values for the simulation. Each density curve represents the
distribution of the 𝑆-Index values for each grid type and resolution. The blue curves are the
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Figure 6. Plot of the ICS values for 𝑋1 and 𝑋2 in the simulation study. The black dotted lines
indicate the cut-off point of one.

(a) 80% similar simulations, 𝐼𝐶𝑆 < 1 (b) 90% similar simulations, 𝐼𝐶𝑆 < 1

(c) 80% similar simulations, 𝐼𝐶𝑆 > 1 (d) 90% similar simulations, 𝐼𝐶𝑆 > 1
Figure 7. Visual representation of the results from the simulation study. The dotted lines indicate
the similarity percentage at which the pairs of simulations are simulated at.
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Table 1. Re-evaluated similarity thresholds for each grid size and 𝐼𝐶𝑆 category.

𝐼𝐶𝑆 < 1 𝐼𝐶𝑆 > 1

Re
gu

la
r 10 × 10 0.436 ± 0.012 0.400 ± 0.035

15 × 15 0.561 ± 0.009 0.574 ± 0.026
20 × 20 0.675 ± 0.007 0.693 ± 0.021

Ir
re

gu
la

r 25 0.134 ± 0.028 0.053 ± 0.036
100 0.444 ± 0.014 0.382 ± 0.030
200 0.556 ± 0.010 0.557 ± 0.032

distributions of the regular grid, while the green curves indicate the distributions of the irregular
grid. Figures 7(a) and 7(b) are the simulation results of the spatial similarity test applied between
two regular point patterns, where the first are patterns simulated to be 80% similar and the latter
90% similar. Similarly, Figures 7(c) and 7(d) are the simulation results of the spatial similarity test
applied to two clustered point patterns.

As can be seen from Figure 7 the finer the resolution of the grid, the more accurate the results of
the proposed spatial similarity test. A finer resolution grid results in more stable results in the case
of clustered point patterns compared to the regular point patterns. When making use of irregular
grids, a higher resolution results in better performance in estimating the similarity between the point
patterns. Even more so in the clustered point patterns compared to the regular point patterns. In
general, the regular grids do perform better than the irregular grids.

In Table 1 the results of the thresholds derived from the simulation study are shown. These
thresholds were obtained using bootstrapping methods as discussed above.

Different thresholds are derived from the different grid types and sizes as well as the different types
of point patterns. The finer the grid, the higher the threshold is with a smaller standard deviation.
This supports that a higher resolution results in more stable and accurate results.

4. Application
This similarity test is applied to road networks in Pretoria and Johannesburg city centres in South
Africa to determine whether the road structures are analogous. The road networks are given in
Figures 8(a) and 8(b) respectively. The road networks can be represented as a spatial point pattern by
placing equal numbers of equidistant points along each linear segment of the network (see Figures
8(c) and 8(d)). When the road networks are represented as such, the spatial point pattern similarity
test can be applied to assess the similarity between the patterns.

In most cases, the similarity of spatial point patterns is assessed considering the data observed
over the same domain. However, in this application, different domains necessitate a slightly different
approach. This situation will often arise in real examples. When applying the spatial similarity test,
the union of the two domains are considered before dividing the region into a grid. This is to ensure
that similarity is tested over a domain that covers both regions. This is illustrated in Figure 9(a).

Because the two road networks are located in different domains, the angle at which they should be
overlayed to obtain the best estimate of similarity should also be carefully considered. An objective
solution is to consider the similarity of the domains at a number of different rotations. One of the
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(a) Pretoria roads (b) Johannesburg roads

(c) Pretoria roads represented as points (d) Johannesburg roads represented as points
Figure 8. Road networks in the city centres of Pretoria and Johannesburg

domains is rotated before testing the similarity between the point patterns. Herein, we consider
rotations at 10 degree intervals. Figure 9(b) is an illustration of where the Pretoria region is rotated
at 10 degrees. The grid is determined considering the union of the two domains. In Figure 9(c) the
Pretoria region is rotated at 20 degrees.

Figure 10 shows the results for all the rotations considered. In each case, a regular grid of size
20 × 20 was considered. Non-overlapping grid cells, i.e. the grid cells included in only one of
the domains, are still considered in the similarity test but are classified as dissimilar (𝑠𝑖 = 0). All
similarities are relatively low, indicating that the road networks in the two city centres are not similar
when compared to the thresholds above. At a rotation of 210 degrees, the road networks are the
most similar. The results, as presented in Figure 10, provide a useful visualisation of the similarity
of the data on different domains. This approach has not been suggested before. The comparison of
different cities is complex, as the roads arise due to a number of different factors. However, road
structure in a area talks to accessibility and the use of this similarity test could be harnessed in future
for accessibility modelling.

5. Discussion
From the simulation study conducted, it is clear that a re-examination of the threshold is necessary.
Even patterns simulated to be 80% similar have traditional thresholds less than 80%. The same
is observed for the simulated 90% similarity cases. The proposed approach provides an objective
decision on similarity and considers the second-order nature of point patterns.
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(a) (b) (c)
Figure 9. Illustration of how the union of the two domains are divided into a grid. (a) Both regions
are at their original rotations, (b) The Pretoria city centre region is rotated 10 degrees, (c) The Pretoria
city centre region is rotated 20 degrees.

(a) (b)
Figure 10. Resulting similarities at the various rotations with the angle of rotation leading to the
highest similarity indicated in red.

The choice of the grid has an impact on the results, with higher thresholds observed with finer grid
sizes, both regular and irregular. This is, of course, a general observation in spatial statistics; the
grid size choice is always a contentious discussion. Since the threshold will plateau at some point as
the grid size is further reduced, the consideration of multiple sizes in a use case is suggested. The
study has shown that for higher resolution grids, the spatial similarity test proposed produces more
stable results.

Irregular regions in real applications, for example, municipal demarcations, are more common
than imposing a grid, in the past use of the traditional 𝑆-Index. Such lattice data type regions usually
have fewer areas and are pre-defined. The simulations with the least areas, 25 irregular regions,
performed the worst of all the grid sizes, indicating that the use of these pre-defined demarcations
may skew similarity results. In such cases, imposing a grid and investigating a re-aggregation of
points may be a more objective approach.

6. Conclusion
The proposed improved similarity test provides objectivity in decisions, as well as a data-driven angle
to this objectivity. The methodology proposed re-examines the similarity threshold of a well-used
spatial similarity test by taking the second-order nature of the spatial data into account. An empirical,
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data-driven approach with a simulation study was used to calculate new threshold values.
The improved test was applied to the road networks in the city centres of Pretoria and Johan-

nesburg in South Africa. The application to road networks on different domains shows a real data
complication. The approach considering various rotations added further objectivity to similarity
understanding. Research of spatial linear networks is still growing and this application can be in-
vestigated in more depth in future. This work can inform the design of transportation infrastructure
projects that prioritise accessibility, efficiency, and environmental sustainability. The similarity of
road networks could further be used to eliminate the dependency of the road network when consid-
ering the analysis of events occurring in the proximity of a road network such as in Modiba et al.
(2022).

There are many avenues for future work based on this first objective re-examination of the 𝑆-
index. The simulation of clustered point patterns is not robust due to the complex nature of clustered
structures, for example, inhomogeneous cluster sizes and shapes. Real clustered data requires more
understanding and warrants further investigation in testing for similarity in such complex situations.
Additionally, the simulation study considered well-chosen hyperparameters but could be extended
to fully understand the impact of these, especially related to the cluster structure complexities. The
ICS classification is binary, and due to the abundance of variation in cluster structures, more ICS
categories for clustered point patterns may provide a better understanding of the patterns in general,
as well as further improvement in similarity quantification. Determination of an optimal grid size,
and the assessment of its impact, would add strength to the proposed methodology and warrants
future investigation. Concrete guidelines for the grid choice would be hugely beneficial.
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An informal road network is a system of roads which develop without formal
planning or design. These networks can be modelled as spatial linear networks.
Predicting how informal settlements will densify in future is important, since it is
a metric that can be used to make decisions regarding infrastructure. The existing
informal road network, as well as accessibility to points of interest on the road
network, will inform where this densification will occur. Accessibility to points of
interest are influenced by many factors, such as distance. In this paper, topography
is included in addition to distance to assess accessibility. This is achieved by
developing a novel routing algorithm which calculates shortest paths considering
both distance and topography. Using these routing calculations, which may differ
from traditional routing calculations using only distance, accessibility patterns are
analysed, and statistically significant hot- and coldspots are identified, which can be
used to make predictions on which areas might densify in future.

Keywords: Accessibility, Coldspots, Hotspots, Informal settlements, Spatial linear networks.

1. Introduction
The United Nations Sustainable Development Goals (SDGs) outline universal targets for improving
global quality of life. Goal 91 of these SDGs targets the development of accessible infrastructure
and Goal 112 focuses on making settlements inclusive. Together, these goals aim to provide access
to road networks and essential facilities, promote sustainable urban development, and ensure that
infrastructure and services are accessible to all, especially in vulnerable communities.

Melusi is a burgeoning settlement located in Western Pretoria3. The Melusi settlement is subdi-
vided by formal and informal roads. An informal road network is a system of roads which develop
without formal planning or design. The surrounding landscape also varies, with sloped hills and
dam structures likely influencing the locations of dwellings. Kekana et al. (2023) provide various
challenges that informal settlements face, such as limited availability of clean water and transport.
This research analyses the road network in Melusi as a spatial linear network.

Corresponding author: R.N. Thiede (renate.thiede@up.ac.za)
MSC2020 subject classifications: 62H11, 62P12, 62P25
1 https://sdgs.un.org/goals/goal9#targets_and_indicators
2 https://sdgs.un.org/goals/goal11#targets_and_indicators
3 https://saprin.mrc.ac.za/grtinspired.html

107



108 VAN DER WALT, VAN ZYL, THIEDE & FABRIS-ROTELLI

A spatial linear network can be defined as the collection of line segments on a plane, where each
line segment consists of a line with a vertex at each respective endpoint (Ang et al., 2012). Vertices
on this plane are therefore connected by these line segments, and each line segment has an associated
length in Euclidean space. Consequently, there is a cost associated with the traversal of these linear
networks when they are situated in geographic space (Barthélemy, 2011).

This research explores spatial linear network optimisation in the Melusi informal settlement.
Factors that were considered included in the optimisation process are topography and distance.
When optimising a spatial linear network, distance is a crucial factor to be considered. Finding the
shortest path between two points in a network can be done using one of many well-established shortest
path algorithms. The Floyd-Warshall algorithm (Floyd, 1962; Warshall, 1962), Dijkstra’s algorithm
(Dijkstra, 1959) and the Bellman-Ford algorithm (Bellman, 1958; Ford, 1956) are prime examples
(Magzhan and Jani, 2013). These algorithms structure a shortest path problem as a graph, with
nodes and edges. Dijkstra’s algorithm and the Bellman-Ford algorithm find the shortest path from
the input node to every other node. The Floyd-Warshall algorithm will determine the shortest path
for all pairs of nodes. Dijkstra’s algorithm (Dijkstra, 1959) will be extended in this paper, to account
for topography in the calculation of shortest paths. This is to account for the relevance of changes
in topography for pedestrians and cyclists, since an individual will need to exert more physical effort
to traverse extreme topographical changes. It is also an especially relevant consideration in informal
settlements, since many individuals do not have access to private motor vehicles.

Furthermore, statistically significant hot-and-coldspots within Melusi will be identified to predict
areas most likely to attract new dwellings, emphasizing the relationship between accessibility and
settlement growth.

In the sections to follow, a novel routing algorithm will be described which considers topography
in addition to distance when calculating shortest paths. The identification of hotspots and coldspots
can finally be used for prediction of future densification.

2. Methodology
In order to determine accessibility within informal settlements, a novel routing algorithm is described
in which topography and distance are both considered during shortest path calculations. Accessibility
between two locations is measured by distance, with shorter distances indicating better access.
Evaluating the connection between a location and a point of interest enables determine whether
the area is well-served or under-served. However, accounting for topography is equally crucial,
particularly in informal settlements where foot traffic and informal transit systems dominate. Steep
terrain, road types, and overall road quality can significantly impact access to essential facilities,
creating mobility barriers for residents. While proximity to services is a key factor in accessibility
assessments, neglecting the effects of topography may further hinder infrastructure development and
service delivery in these communities.

2.1 Shortest path algorithms
Shortest path solutions are usually modelled by graph structures (Magzhan and Jani, 2013). These
graph structures can be used to represent geographical data. A graph 𝐺 = (𝑁, 𝐸) (Zhang and
Chartrand, 2006) can be defined as a mathematical system consisting of two sets of elements: 𝑁 ,
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nodes and 𝐸 , edges. Nodes in the graph are connected by edges. The point where an edge is
connected to a node is called an endpoint. A weighted graph (Zhang and Chartrand, 2006) is a
graph where each edge has an associated weight. Furthermore, graphs used to determine shortest
paths may be undirected or directed. In an undirected graph, edges do not have a specified direction.
An edge connecting nodes A and B is bidirectional, meaning that it could be traversed from A to
B, or from B to A. A directed graph, on the other hand, is a graph where edges have a specified
direction. An edge that connects node A to node B could then be traversed from A to B, but vice
versa. Herein, we will make use of undirected graphs.

A spatial linear network is a collection of line segments, where each line segment consists of a
line (or an edge) with a vertex (or a node) at each endpoint (Barthélemy, 2011). These line segments
are situated in space and have associated costs of travel.

In this research, weighted, undirected graph structures are used to represent spatial linear networks.
These graph structures capture the cost and direction of traversal associated with the linear network,
as well as topographical information associated with each node and edge. To optimise these networks,
different shortest path algorithms are considered and compared. A slope estimation method will also
be described. The sfnetworks data structure in R will be used to model spatial networks. Such a
network is simply called an sfnetwork (van der Meer et al., 2023).

2.1.1 Dijkstra’s shortest path algorithm
Dijkstra’s algorithm (Dijkstra, 1959) finds the shortest path from an input node to every other node.
This algorithm was selected as the basis for the proposed custom routing algorithm to come. This
is because Dijkstra’s algorithm is more time efficient on large and complex networks compared to
Floyd-Warshall and Bellman-Ford, and since no negative weights will be present, it does not matter
that Dijkstra cannot handle negative weights. It was also only necessary to compare the shortest
paths from a small set of nodes to a small set of other nodes, therefore the entire set of shortest paths
did not need to be calculated. Pseudocode for Dijkstra’s algorithm can be found in Algorithm 1 in
the Appendix.

2.1.2 Slope estimation
In their paper on evaluating methods of slope determination, Warren et al. (2004) confirm the use
of Digital Elevation Models (DEMs) as an established tool for slope determination. They discuss a
basic approach in which a slope percentage is calculated,

Slope % =

(
Δ𝑧

Δ𝑠

)
× 100,

where Δ𝑧 = change in elevation between two points, and Δ𝑠 = distance between the same two points.

2.1.3 Proposed custom routing algorithm
In order to take topography as well as distance into account when calculating shortest paths on spatial
linear networks, it was decided that the existing Dijkstra’s shortest path algorithm could be modified
to achieve this, as previously noted.

The first step was to calculate an adjacency list. This adjacency list was calculated from the full
set of edges in the sfnetwork, where the full set of edges contained each initial edge (e.g., the edge
between node A to node B which contains its distance and elevation change) as well as each reversed
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Figure 1. Node 1 with three neighbouring nodes.

Table 1. Information in the adjacency list for an example node 1.

Neighbouring node Distance to neighbouring node (𝑚) Elevation change (𝑚)

2 0.118 0
3 2.60 0
4 61.0 -2

edge (e.g. the edge between node B to node A would be explicitly added, also containing its distance
and elevation change). This approach ensures that the algorithm will pick up the reverse traversal that
was possible on each edge, i.e. that every edge in the network should be bidirectional. The adjacency
list finally contains a table per node with outward edges, where each table contains the neighbours
of that node, as well as the applicable information (the distance to the neighbour and the elevation
change to the neighbour). Consider a node called node 1, with 3 neighbouring nodes, illustrated in
Figure 1. An example of the adjacency list entry for node 1 can be seen in Table 1.

After the adjacency list is created, the elevation penalty function is defined as the absolute elevation
of the edge, divided by the distance of the edge, multiplied by 100. This elevation penalty function
can be altered without altering the core algorithm, to customise the application.

Lastly, the custom routing algorithm based on Dijkstra’s shortest path algorithm could be imple-
mented. This algorithm computes the shortest path between a given start node and end node, taking
distance and topography into account. Pseudocode for the algorithm is given in Algorithm 2 in the
Appendix. Key steps of the algorithm are as follows:

1. Initialise a distance table with ∞ as the initial distance between the starting node and every
other node, and 0 is the distance between the starting node and itself. The distance table will
track the shortest known distance between the start node and every other node.

2. Initialise a priority queue. Priority queues form an essential part in efficiently implementing
Dijkstra’s algorithm (Chen et al., 2007). In R, the tibble data structure was used to implement
priority queues in this algorithm. This queue is used to efficiently process the next node with
the smallest distance.

3. Initialise the list that is used to construct the shortest path between the start node and the end
node.

4. While the priority queue is not empty, the following logic is looped over:
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(a) Get the node 𝑣𝑖 in the priority queue with the smallest distance 𝑑 (𝑣𝑠 , 𝑣𝑖).
(b) Retrieve all the neighbours 𝑣 𝑗 of the current node 𝑣𝑖 . Compute the alternative distance

to the neighbours by routing through the current node 𝑣𝑖 . In this step, the alternative
distance 𝑑𝑎𝑙𝑡 (𝑣𝑠 , 𝑣 𝑗 ) is calculated as

𝑑𝑎𝑙𝑡 (𝑣𝑠 , 𝑣 𝑗 ) = 𝑑 (𝑣𝑠 , 𝑣𝑖) + 𝑤(𝑣𝑖 , 𝑣 𝑗 ) + elevation penalty,

where 𝑤(𝑣𝑖 , 𝑣 𝑗 ) is the weight of the edge between nodes 𝑣𝑖 and 𝑣 𝑗 . Since we are using
distance as the weight, 𝑤(𝑣𝑖 , 𝑣 𝑗 ) is thus the length of the edge from node 𝑣𝑖 to 𝑣 𝑗 . The
elevation penalty inflates the distance of edges with a high slope percentage, making
them less likely to be selected in the shortest path calculation.

(c) If the newly calculated distance 𝑑𝑎𝑙𝑡 (𝑣𝑠 , 𝑣 𝑗 ) is smaller than the previously known distance
𝑑 (𝑣𝑠 , 𝑣 𝑗 ) to the neighbour 𝑣 𝑗 , the algorithm updates the distance in the distance table,
records the previous node 𝑝 [𝑣 𝑗 ] = 𝑣𝑖 , and adds the neighbour 𝑣 𝑗 to the priority queue.

(d) Once the end node 𝑣𝑡 is reached, the shortest path from the start node 𝑣𝑠 to the end node
𝑣𝑡 is reconstructed using the predecessor data structure 𝑝.

Results from the custom routing algorithm are then compared to those of built-in algorithms in R,
which consider only distance.

2.2 Hot route methodology
Chakravorty (1995) defines a hotspot as a smaller area within a broader region that contains an
above-average concentration of points as relative to its surrounding areas. A linear hotspot is defined
as a line segment that indicates an above-average density of spatial point patterns compared to line
segments in its vicinity (Modiba et al., 2022). To identify linear hot- and coldspots, an intensity
measure is required. Diggle (2013) proposed measuring the intensity of a point pattern as the average
amount of points per specified area. This intensity function, denoted as 𝜆(𝑥) represents the expected
density of points at location 𝑥 and is defined as:

𝜆(𝑥) = lim
|𝑑𝑥 |→0

(
E[𝑁 (𝑑𝑥)]
|𝑑𝑥 |

)
.

In the equation, 𝑥 represents a location in the specified are, while 𝑑𝑥 represents an infinitesimal
region around 𝑥. |𝑑𝑥 | represents the area of the region 𝑑𝑥. 𝐸 [𝑁 (𝑑𝑥)] represents the expected number
of points in a specified area. The limit |𝑑𝑥 | → 0, ensures that the intensity function captures local
variations in point density rather than averaging over a larger region.

Tompson et al. (2009) developed the hot route methodology specifically for points situated directly
on a linear network. Modiba et al. (2022) extended the idea to points situated in the surrounding area
of the network. In Modiba et al. (2022), a point can be assigned to a line segment using one of two
methods. In the first method, a point can be assigned to a single line segment by mapping it onto the
nearest line segment. In the second method, a point can be assigned to multiple line segments by
making use of weights. The weights are determined by how far a point is from each line segment.
The weighted counts for a given radius 𝑟 are computed using the equation 𝑐𝑤

𝑖𝑘
(𝑟) = ∑𝑚

𝑗=1 𝑤
𝑗

ℓ𝑖𝑘
1 𝑗

ℓ𝑖𝑘
(𝑟),

where the indicator function
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1 𝑗

ℓ𝑖𝑘
=

{
1 if | |𝑝 𝑗

ℓ𝑖𝑘
− 𝑥 𝑗 | | ≤ 𝑟,

0 otherwise,

determines whether a point 𝑥 𝑗 lies within a specified distance 𝑟 from a given line segment ℓ𝑖𝑘 . If the
distance between the point’s projected location 𝑝

𝑗

ℓ𝑖𝑘
on the segment and the point itself is less than

or equal to 𝑟 the function takes the value of 1, otherwise 0. In this equation 𝑖 = 1, 2, ..., 𝑛 indexes
different line segments, while 𝑗 = 1, 2, ..., 𝑚 indexes the points in the study area. The term 𝑤

𝑗

ℓ𝑖𝑘

represents the weight between point 𝑥 𝑗 and line segment ℓ 𝑗𝑘 , which is determined by the inverse
distance between them. The weight is given by 𝑤𝑖 𝑗 = | |𝑝 𝑗

ℓ𝑖𝑘
− 𝑥 𝑗 | |−1 as proposed by (Suryowati et al.,

2018).
Using the weighted approach, the weight assigned to a point increases if the point is closer to a

particular line segment compared to nearby line segments. Weights are assigned only to points that
fall inside a radius 𝑟 of the line segment of interest, where 𝑟 is chosen appropriately. We use a weight
count of points for each line segment. A small weight will indicate that a point is further away from
a certain line segment. The event rate per distance for each line segment ℓ𝑖𝑘 is,

𝑟𝑖𝑘 =
𝑐𝑖𝑘

|ℓ𝑖𝑘 |
or

𝑐𝑤
ℓ𝑖𝑘

|ℓ𝑖𝑘 |
, (1)

where 𝑐𝑖𝑘 or 𝑐𝑤
ℓ𝑖𝑘

are the counts and |ℓ𝑖𝑘 | denotes the standardised length of the line segment. The
𝑟𝑖𝑘’s visualises the concentration of points along each line segment.

To identify statistically significant line segments (hot- or coldspots), we compare the amount of
points in the vicinity of each line segment to that of its neighboring segments, then identify those with
above-average and below-average counts. Modiba et al. (2022) proposed the following definition
for neighbouring line segments. A weight matrix 𝐸 = [𝑒𝑠𝑡 ] represents the arrangement of the
neighbours, where line segments ℓ𝑠 and ℓ𝑡 are labelled neighbours if 𝑒𝑠𝑡 = 1. Here 𝑠 and 𝑡 are indices
in 𝐼 = {𝑖, 𝑘 : 𝑖 = 1, 2, ..., 𝑛, 𝑘 = 1, 2, ..., 𝑘𝑖}.

Definition 1. Let ℓ𝑘1 and ℓ𝑘2 denote multiple line segments characterised as

ℓ𝑘1 = {𝑝𝑘1 = (𝑥𝑘1 , 𝑦𝑘1 ) : 𝑦𝑘1 = 𝑚𝑘1𝑥𝑘1 + 𝑐𝑘1 }
and

ℓ𝑘2 = {𝑝𝑘2 = (𝑥𝑘2 , 𝑦𝑘2 ) : 𝑦𝑘2 = 𝑚𝑘2𝑥𝑘2 + 𝑐𝑘2 }.
Let 𝑑ℓ𝑘1 ,ℓ𝑘2

= min | |𝑝𝑖 − 𝑝 𝑗 : 𝑝𝑖 ∈ ℓ𝑘1 , 𝑝 𝑗 ∈ ℓ𝑘2 | | be the smallest distance between ℓ𝑘1 and ℓ𝑘2 and
𝑀𝑘1 , the midpoint of ℓ𝑘1 .

1. If 𝑑ℓ𝑘1 ,ℓ𝑘2
= 0 then ℓ𝑘1 is a linear neighbour of ℓ𝑘2 .

2. If 𝑑ℓ𝑘1 ,ℓ𝑘2
≤ 𝑟 then ℓ𝑘1 is a radial linear neighbour of ℓ𝑘2 .

3. If 𝑑𝑀𝑘1 ,ℓ𝑘2
= min | |𝑀𝑘1 − 𝑝 𝑗 : 𝑝 𝑗 ∈ ℓ𝑘2 | | ≤ 𝑟 , then ℓ𝑘1 is considered a radial midpoint linear

neighbour of ℓ𝑘2 .

Considering all three spatial structures defined in Definition 1 are essential (Modiba et al., 2022).
It allows for a detailed assessment over a chosen radius 𝑟, therefore ensuring accurate identification
of significant hot- or coldspots.
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2.3 Hotspot detection
Traditional hotspot detection employs the Getis−Ord statistic to locate statistically significant hotspots
by evaluating the sum of features relative to their neighbours against the overall sum of the features
(Getis and Ord, 1992). In this approach, the features refer to the event rates for each line segment.
The adapted Getis−Ord statistic (Modiba et al., 2022) tests the null hypothesis of complete spatial
randomness versus the alternative hypothesis of a pattern existing in space. The statistic is defined as

𝐺𝑖𝑘 =

∑
𝑡∈𝐼,𝑠=𝑖𝑘 𝑒𝑠𝑡𝑟𝑟𝑘∑𝑛

𝑖=1 𝑟𝑖𝑘
. (2)

In this equation, 𝐺𝑖𝑘 represents the Getis–Ord hotspot score for a given line segment ℓ𝑖𝑘 . The
numerator consists of a weighted sum of event rates, where 𝑒𝑠𝑡 denotes the observed event rate for
segment 𝑠 at time 𝑡, and 𝑟𝑟𝑘 is a spatial weight reflecting the relationship between segment ℓ𝑖𝑘 and
its neighbouring segments. The denominator normalises this sum by the total weight assigned to the
segment, ensuring that the statistic accounts for differences in local densities across the network.

To identify significant linear hotspots and coldspots, 𝑧-scores and 𝑝-values are used to assess
the probability of observing the value under the null hypothesis of complete spatial randomness.
A statistically significant hotspot is identified by 𝐺∗

𝑖𝑘
> 0 and 𝑝-value ≤ 𝛼, whereas a statistically

significant coldspot is identified by 𝐺∗
𝑖𝑘

< 0 and 𝑝-value ≤ 𝛼.

3. Data
The South African Population Research Infrastructure Network (SAPRIN) has the potential to sig-
nificantly improve health, social and economic well-being in disadvantaged and rapidly changing
populations. Their promise entails generating accessible and up-to-date health and demographic data
sourced from collaborative longitudinal studies conducted within diverse communities.

3.1 Boundary
The general area of Melusi is specified on the SAPRIN website. The western boundary of Melusi
is the border between the Gauteng and North West provinces. The southern, northern and eastern
borders were not explicitly stated in the data. Therefore, prominent roads were used to further
demarcate the examined area. It was decided that the N4 would be the southern boundary of the area
being considered in this application, and the R80 would specify the northern and eastern boundaries.
These boundaries were used to draw a polygon around the borders of Melusi, using Google Earth
software, shown in Figure 2.

3.2 Data points
Dwelling location data was obtained SAPRIN (ethics application: NAS256/2024). The data contains
the latitude and longitude coordinates of approximately 930 residency locations. The data serve as a
representative sample of the Melusi area. These dwellings are visualised in Figure 3.

3.3 Road network
OpenStreetMap is an open-source platform that provides geographic data. The OpenStreetMap data
of the South African road network for 2021 was used, which corresponds to the time in which the
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Figure 2. Melusi polygon drawn using road demarcations as general boundaries, Map Data (c)
Google 2024.

Melusi dwelling coordinates were collected. The South African road network was filtered using
QGIS software to obtain only a subset of the roads within the Melusi polygon, shown in Figure 3.

3.4 Points of Interest
The locations of points of interest (POI) were also obtained through OpenStreetMap. The locations
of interest are filtered to contain schools, police stations and hospitals that fall within the Melusi
boundary. These three essential POIs were selected as they provide fundamental services that directly
affect health, safety, and educational opportunities, which are crucial for the sustainable development
of informal settlements. These POIs are represented by polygons. In order to perform shortest path
algorithms a point location of these polygons are required. The exact point is calculated by taking
the center of the polygon, then snapping the centroid to the nearest node on the road network. This
results in point pattern data for each of the points of interest on the road network. In total there were
37 schools, 2 hospitals and 3 police stations. The nearest existing nodes in the road network were
identified to represent each POI. The house locations as well as POIs on the road network can be
seen in Figure 3.

3.5 Topography
A Digital Elevation Model (DEM) provides topographical information of an area. Using the DEM
for the Melusi area, the elevation information of each node in the spatial linear network could be
obtained. The change in elevation associated with each edge was calculated by using this elevation
information, where the change in elevation was calculated as the difference in elevation between two
nodes in the spatial linear network. A positive change in elevation indicated a downward slope and
a negative change in elevation indicated an uphill slope. These attributes, along with the distance
of each road segment, were used to calculate the slope percentage of each road segment, where the
slope percentage is related to the change in elevation in two points divided by the distance between
the same two points, as discussed previously. The elevation model of Melusi can be seen in Figure
4, where elevation is measured in meters above sea level.
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Figure 3. Schools, hospitals and police stations within Melusi boundary.

Figure 4. Elevation variation within Melusi landscape, measured in meters (m) above sea level.

4. Results
The objective of this research was to explore accessibility through spatial linear network optimisation
in the Melusi informal settlement, specifically considering the accessibility from dwellings to specific
points of interests, namely hospitals, schools and police stations. Factors to be considered were
topography and distance. To implement this, a custom routing algorithm was developed in which
both distance and topography were taken into account, and compared to established routing algorithms
in which distance is the sole factor in route determination. In addition, hot and cold spot detection
was performed to identify potential areas for future expansion. All implementation was done in R (R
Core Team, 2024).

4.1 Custom routing algorithm results
This section compares results from the proposed custom routing algorithm considering both distance
and topography to Dijkstra’s algorithm, in which distance is the only factor considered. The shortest
path between each cluster centre, and each point of interest was calculated. Results related to schools
are given below. This can be applied to other points of interest in the area, such as hospitals and
police stations, as well.

All schools within the Melusi boundary were considered, including primary schools and high
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schools with varying languages of instruction. This totalled 37 schools, and therefore 74 routing
solutions were calculated with the respective algorithms. Of these 74 routing solutions, 44 routing
solutions differed when using the proposed custom routing algorithm compared to the built-in
solution. Figure 5 shows all the routes as they were originally calculated using the built-in solution.
The cluster centres are represented by red asterisks, and the schools are represented by yellow
asterisks. Each route is represented by a unique colour, for ease of interpretation. Figure 6 shows
all the routes calculated by the custom routing algorithm, similarly displaying each route in the same
unique colour as its corresponding route in Figure 5. Some routes only differ by a small number of
nodes.

To more clearly visualise the differences between the two routing approaches, Figure 7 shows all
the built-in routing solutions plotted in orange, and all the custom routing solutions overlaid in blue.
As before, red asterisks represent cluster centres, and yellow asterisks represent schools.

Where routes do differ between the built-in routing solutions and the custom routing solutions,
some routes only differ by a few nodes. This might indicate that the informal road network that has
naturally developed in Melusi, which is frequented by pedestrians, has already taken topography into
account in the establishment of any informal road segments. The road network has been developed
for convenience of the community, and ease of movement for pedestrians was likely a contributing
factor in the development of the existing road structure.

4.2 Statistically significant hot-or-coldspots
The rate of houses per line segment is calculated using the weighted rate of events calculation in
Equation 1. A radius 𝑟 = 50 was chosen to ensure house locations are weighed to road segments
nearby. The radius also ensures that the line segment neighbours given in Definition 1 are satisfied.

Statistically significant line segments are identified using the Getis-Ord statistic in Equation 2.
All three neighbourhood structures are consider in the calculation as defined in Definition 1. Fig-
ure 8 visualises statistically significant hotspots. Three levels of significance are chosen, 𝛼 =

1%, 5% and 10%. A statistically significant hotspot is identified by 𝐺∗
𝑖𝑘

> 0 and 𝑝-value ≤ 𝛼. Fig-
ure 9 visualises statistically significant coldspots. A statistically significant coldspot is identified by
𝐺∗

𝑖𝑘
< 0 and 𝑝-value ≤ 𝛼.

Formal settlements expand in the vertical and horizontal plane. These settlements face fewer
restrictions regarding how far or high they can grow, allowing them to accommodate increasing
populations more flexible. As the population grows in formal settlements hotspots, areas of high
activity or density increase, but so do colder spots, as the expansion creates a more diverse spatial
distribution of activity.

In contrast, informal settlements display distinct patterns of growth. Unlike formal settlements,
which expand both upward and outward, informal settlements primarily expand outward until they
encounter a boundary. These boundaries may be imposed by surrounding formal settlements, natural
environmental characteristics, or infrastructural constraints. As a result, the expansion of informal
settlements is often constrained, leading to a saturation point where hotspots reach a population
limit. When this happens, the proportion of neutral and cold spots within the settlement increases
as the population grows, reflecting the spatial and structural limitations inherent in informal urban
expansion. Figure 8 and Figure 9 indicate the expansion patterns mentioned previously.

This understanding allows us to predict where residents will settle next. Coldspots near essen-
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Figure 5. Routing solutions yielded by built-in shortest path algorithm from cluster centres (red
asterisks) to schools (yellow asterisks). Each route is represented by a unique colour.

Figure 6. Routing solutions yielded by custom routing algorithm from cluster centres (red asterisks)
to schools (yellow asterisks). Each route is represented by the same unique colour as its corresponding
route in Figure 5.

Figure 7. Built-in routing solutions in orange and custom routing solutions in blue from cluster centres
(red asterisks) to schools (yellow asterisks). Orange routes represent built-in routing solutions, and
blue routes represent custom routing solutions.
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Figure 8. Statistically significant hotspots.

Figure 9. Statistically significant coldpots.

tial facilities are likely to experience the most growth, as accessibility drives settlement patterns.
Similarly, neutral areas adjacent to existing hotspots can also attract residents, as these areas offer
proximity to activity without the saturation of established hotspots.

5. Conclusion
This research introduced a novel routing algorithm that integrates topography in addition to distance,
and shows that different routing solutions can arise when topography is considered. Statistically sig-
nificant hot-and coldspots are identified to evaluate future densification within informal settlements.

Many aspects of this study can be expanded on in future work. The elevation penalty used
throughout can be fine-tuned, since this application penalised all slope changes. It might be beneficial
to penalise uphill slope changes more, when multiple paths diverge at a point with similar slope
percentages. It might also be useful to promote some downhill slope changes, e.g. if the slope
change is very slight, it might be an easier route to take.

Future work can also investigate how routing solutions differ when using a custom routing algorithm
taking topography as well as distance into account, compared to routing algorithms which consider
only distance, when exploring formal settlements. This is relevant since this research was only
applied to an informal settlement where convenient movement of pedestrians was likely already
considered as a factor in the development of the road structure.

Furthermore, future research could explore the temporal evolution of hot- and coldspots within
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informal settlements. By analysing how hotspots shift over time, it would be possible to predict future
settlement growth, and assess how accessibility influences long-term spatial patterns. This could
provide valuable insights for urban planning and infrastructure development in rapidly changing
environments.

The identification of hot- and coldspots within the settlement provides further insight into acces-
sibility and densification. Coldspots and neutral regions, particularly those near essential facilities,
present opportunities for future growth as residents seek areas with better access to key services.
Understanding these spatial dynamics helps anticipate informal settlement expansion and informs
potential infrastructure planning.
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Appendix

Algorithm 1 Dijkstra’s Algorithm
while 𝑢 is not empty do

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 ← node in 𝑢 with minimum 𝑑 [𝑛𝑜𝑑𝑒]
for each 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 that is in 𝑢 do

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝐸𝑑𝑔𝑒 ← edge connecting 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 and 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ← 𝑑 [𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒] + 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝐸𝑑𝑔𝑒
if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ < 𝑑 [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟] then

𝑑 [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟] ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ

𝑝 [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟] ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒

end if
end for
Remove 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 from 𝑢

end while
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Algorithm 2 Modified Dijkstra’s Algorithm with Elevation Penalty
Initialise priority queue 𝑢 with all nodes
while 𝑢 is not empty do

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 ← node in 𝑢 with minimum 𝑑 [𝑛𝑜𝑑𝑒]
for each 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 that is in 𝑢 do

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝐸𝑑𝑔𝑒 ← edge connecting 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 and 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← distance of 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝐸𝑑𝑔𝑒
𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝐶ℎ𝑎𝑛𝑔𝑒 ← elevation change of 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝐸𝑑𝑔𝑒
𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑃𝑒𝑛𝑎𝑙𝑡𝑦 ←

��� 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝐶ℎ𝑎𝑛𝑔𝑒

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

��� × 100
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ← 𝑑 [𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒] + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑃𝑒𝑛𝑎𝑙𝑡𝑦
if 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ < 𝑑 [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟] then

𝑑 [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟] ← 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

𝑝 [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟] ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒

end if
end for
Remove 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 from 𝑢

end while
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