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ON AN OMNIBUS TEST FOR THE PARAMETRIC
PROPORTIONAL HAZARDS MODEL

J. S. Allison, E. Bothma, M. Smuts and I. J. H. Visagie
Subject Group Statistics, North-West University, Potchefstroom, South Africa

We propose an omnibus test of fit for the parametric Cox proportional hazards model in
the presence of random right censoring. The proposed test results from a modification of
an existing test for the uniform distribution. This test is demonstrated to be able to detect
deviations from the hypothesised model in two cases; first when the baseline distribution is
misspecified and second when the regression component of the model is misspecified. Two
modified classical tests are considered and a Monte Carlo study shows that the newly proposed
test outperforms these tests for the majority of alternatives included. As a result of independent
interest, we outline the procedure required to use the newly modified test in the framework of
independent and identically distributed random variables.

Keywords: Kaplan-Meier estimate, Parametric bootstrap, Proportional hazard model, Unifor-
mity.

1. Introduction
The parametric Cox proportional hazards (CPH) model is widely used in medical research as well
as financial applications; see, for example, Bover et al. (1996), Klein and Moeschberger (2006)
as well as Smuts and Allison (2020). In these fields it is often important to study the effect of
explanatory variables on time-to-event outcomes. The parametric CPH model specifies the baseline
survival function as well as the form of the regression function of the model. As a result the
fitted model includes parameters which allow for a simple interpretation which is a desirable feature
when using the model in practice. However, in order to ensure that the inference drawn from the
fitted model is valid, one has to test the assumptions of the model. Testing the validity of the
model requires simultaneously testing the assumption of the specified baseline distribution and the
regression function included in the model. A testing procedure for this goodness-of-fit problem has
been proposed for use with full samples in Cockeran et al. (2019).
Random right censoring frequently occurs in the fields mentioned above, meaning that the assump-

tions of the parametric CPHmodel should be tested based on censored data. Consider, for example, a
medical study estimating the distribution of lifetimes of patients with a specific disease. For a given
patient this distribution will likely depend on several covariates such as the patient’s smoking habits.
Some of the patients’ lifetime’s will be observed while other will not; for instance, one of the patients
may relocate to another country and leave the study, meaning that this patient’s lifetime is censored.
In this case testing the goodness-of-fit of the parametric CPH model is complicated by the presence
of the censoring mechanism.
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Lin and Spiekerman (1996) proposes a test for the baseline distribution of the parametric CPH
model. However, there are situations in which one wishes to not only test the assumption of the
baseline distribution, but the entire model simultaneously. In this case, it is possible to modify
classical tests such as the Kolmogorov-Smirnov and Craḿer-von Mises in order to test the fit of the
entire model; this procedure is illustrated in this paper. In addition, we also propose a new test for the
parametric CPH model based on a test for uniformity found in Meintanis (2009). The main idea of
the test rests on fitting the CPH model and applying the inverse of the probability integral transform
to obtain a censored sample of variables, the lifetime distribution of which is approximately uniform
under the null hypothesis. These statements are made exact in Section 2. Furthermore, we modify the
mentioned test to accommodate censoring when testing simple hypothesis or composite hypotheses
in the classical goodness-of-fit framework of independent and identically distributed (i.i.d.) random
variables; the required procedures are outlined later in the paper.
Some notation is introduced before proceeding. Let 𝑌1, . . . , 𝑌𝑛 be independent lifetime variables

with continuous distribution and survival functions 𝐹 and 𝑆 respectively and let 𝐶1, . . . , 𝐶𝑛 be
i.i.d. censoring variables with distribution function 𝐺, independent of 𝑌1, . . . , 𝑌𝑛. We assume non-
informative censoring throughout. Below we denote the transpose of a vector 𝑣 by 𝑣⊤. Let

𝑇𝑗 = min(𝑌 𝑗 , 𝐶 𝑗 ), 𝛿 𝑗 =
{
1, if 𝑌 𝑗 ≤ 𝐶 𝑗 ,

0, if 𝑌 𝑗 > 𝐶 𝑗 ,
and x 𝑗 = (𝑥 𝑗 ,1, . . . , 𝑥 𝑗 ,𝑚)⊤, 𝑗 = 1, . . . , 𝑛,

where x 𝑗 is a possible vector valued set of 𝑚 realised covariates. Further let 𝑆(𝑡 |x 𝑗 ) denote the
conditional survival function given an observed set of covariates. Based on the observed triplets
(𝑇𝑗 , 𝛿 𝑗 , x 𝑗 ), 𝑗 = 1, . . . , 𝑛 we wish to test the composite hypothesis that the conditional survival
function can be modelled by a parametric Cox model, i.e.

𝐻0 : 𝑆𝜃,𝛽 (𝑡 |x 𝑗 ) = 𝑆𝜃 (𝑡)e
𝛽⊤x 𝑗

, (1)

where 𝑆𝜃 is a specified parametric baseline survival function indexed by a parameter 𝜃 (possibly
a vector) and 𝛽 = (𝛽1, . . . , 𝛽𝑚)⊤ denotes the vector of regression parameters associated with the
covariates. Denote the order statistics of 𝑌1, . . . , 𝑌𝑛 and 𝑇1, . . . , 𝑇𝑛 by 𝑌(1) < · · · < 𝑌(𝑛) and
𝑇(1) < · · · < 𝑇(𝑛) , respectively. Note that 𝛿 ( 𝑗 ) and x( 𝑗 ) represent the indicator variable and set of
covariates corresponding to 𝑇( 𝑗 ) , respectively.
The remainder of the paper is structured as follows. In Section 2 we indicate how three existing

tests are modified to accommodate random right censoring. Since the null distribution of each of
the test statistics depends on the unknown censoring distribution, we propose a parametric bootstrap
procedure in Section 2 in order to compute critical values for the tests under consideration. Section 3
contains the results of aMonte Carlo study where the empirical powers of the newly modified tests are
studied and compared. ThisMonte Carlo study considers various deviations from the null hypothesis.
Section 4 concludes and provides some directions for further research.

2. The proposed test
Under the null hypothesis in (1), 𝑆𝛽,𝜃 (𝑌𝑖 |x𝑖) follows a standard uniform distribution (i.e. uniform
on the interval (0,1)). This is a direct consequence of the probability integral transform. Let 𝛽 and
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�̂� denote consistent estimators, under 𝐻0, for 𝛽 and 𝜃, respectively (throughout the paper we make
use of maximum likelihood estimation), whence 𝑆𝛽,𝜃 (𝑌𝑖 |x𝑖) should approximately follow a standard
uniform distribution. Let

𝑈 𝑗 = 𝑆𝛽,𝜃 (𝑇𝑗 |x 𝑗 ) = 𝑆𝜃 (𝑇𝑗 )e
𝛽⊤x 𝑗

.

Under 𝐻0, (𝑈 𝑗 , 𝛿 𝑗 ) are censored observations for which the lifetime distribution is approximately
standard uniform.
Above we have demonstrated that any test for censored uniformity on the basis of (𝑈 𝑗 , 𝛿 𝑗 ) is in

effect a test of the fit of the CPHmodel itself. Note that there are a number of misspecifications of the
model in (1) that could lead to the rejection of the null hypothesis. These include an incorrect choice
of the baseline distribution, a different form of the parametric regression function (e.g., 1 + 𝛽⊤x
instead of e𝛽⊤x) and covariates dependent on time. Due to page restrictions, we investigate only the
first two of these types of deviations in the Monte Carlo study in Section 3.
To test for uniformity we will use the Kolmogorov-Smirnov (𝐾𝑆𝑛) and Cramér-von Mises (𝐶𝑉𝑛)

tests which are modified in Koziol and Green (1976) and Barr and Davidson (1973), respectively,
for the random censoring case. In addition, we also modify a complete sample test for uniformity
proposed in Meintanis (2009), where a test statistic based on the difference between the character-
istic function (CF) of the standard uniform distribution and the empirical characteristic function is
introduced. The proposed test statistic in the complete sample case is

𝑅𝑛,𝑎 = 𝑛
∫

|𝜑𝑛 (𝑡) − 𝜑𝑢 (𝑡) |2e−𝑎 |𝑡 |d𝑡, (2)

where 𝜑𝑛 (𝑡) =
∫ ∞
−∞ e

𝑖𝑡 𝑥d𝐹𝑛 (𝑥) = 𝑛−1
∑𝑛

𝑗=1 e𝑖𝑡𝑌𝑗 is the empirical CF, 𝜑𝑢 (𝑡) = 𝑡−1 (sin 𝑡 + 𝑖(1 − cos 𝑡))
is the CF of the standard uniform distribution, 𝐹𝑛 (𝑥) is the empirical distribution function, and 𝑎 > 0
is a user defined tuning parameter. In the presence of random right censoring, we replace 𝜑𝑛 (𝑡) in
(2) with

𝜑𝑛 (𝑡) =
∫ ∞

−∞
e𝑖𝑡 𝑥d�̃�𝑛 (𝑥),

where �̃�𝑛 (𝑥) is the Kaplan-Meier estimate of the distribution 𝐹. After some straightforward algebra,
the modified test statistic can be shown to have the calculable form

�̃�𝑛,𝑎 =
𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

Δ 𝑗Δ𝑘
2𝑎(

𝑈 𝑗 −𝑈𝑘

)2
+ 𝑎2

+ 4 tan−1
(
1
𝑎

)
− 2𝑎 log

(
1 + 1

𝑎2

)

− 4
𝑛∑︁
𝑗=1

[
tan−1

(
𝑈 𝑗

𝑎

)
+ tan−1

(
1 −𝑈 𝑗

𝑎

)]
,

with

Δ 𝑗 =
𝛿 ( 𝑗 )
𝑛

𝑗−1∏
𝑘=1

[
1 +

(
1 − 𝛿 (𝑘 )

𝑛 − 𝑘

)]
, 𝑗 = 1, . . . , 𝑛 − 1, and Δ𝑛 =

𝑛−1∏
𝑗=1

(
𝑛 − 𝑗

𝑛 − 𝑗 + 1

)
,

where an empty product is understood to be 1. Note that Δ 𝑗 corresponds to the size of the jump of
the Kaplan-Meier estimate of the distribution function at 𝑇𝑗 . The test rejects for large values of �̃�𝑛,𝑎.
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In the current context the null distributions of all test statistics depend on the unknown censoring
distribution 𝐺. As a result, when approximating the null distribution of a test statistic, we should
take care to estimate 𝐺 and sample censoring times from this estimated distribution. As a result, we
propose the bootstrap algorithm below which can be used to estimate the critical value of each of the
tests. For ease of notation, let 𝑄 := 𝑄((𝑈1, 𝛿1), . . . , (𝑈𝑛, 𝛿𝑛)) be a generic test statistic.

1. Given (𝑇𝑗 , 𝛿 𝑗 , x 𝑗 ), 𝑗 = 1, . . . , 𝑛, calculate �̂� and 𝛽 under 𝐻0.

2. Calculate the Kaplan-Meier estimate, �̃�𝑛, of the censored distribution function 𝐺.

3. Sample 𝐶∗
1 , . . . , 𝐶

∗
𝑛 from �̃�𝑛.

4. Generate𝑌 ∗
1 , . . . , 𝑌

∗
𝑛 from 𝑆𝜃,𝛽 . This is accomplished by generating𝑈1, . . . ,𝑈𝑛 from a standard

uniform distribution and setting 𝑌 ∗
𝑗 = 𝑆

−1
𝜃,𝛽

(𝑈exp(−𝛽
⊤x 𝑗 )

𝑗 ), 𝑗 = 1, . . . , 𝑛.

5. Let 𝑇∗
𝑗 = min(𝑌 ∗

𝑗 , 𝐶
∗
𝑗 ) and 𝛿∗𝑗 = 𝐼 (𝑌 ∗

𝑗 ≤ 𝐶∗
𝑗 ), 𝑗 = 1, . . . , 𝑛.

6. Calculate �̂�∗ and 𝛽∗ based on (𝑇∗
𝑗 , 𝛿

∗
𝑗 , x∗𝑗 ), 𝑗 = 1, . . . , 𝑛, under 𝐻0.

7. Let𝑈∗
𝑗 = 𝑆𝜃∗ ,𝛽∗ (𝑇∗

𝑗 |x 𝑗 ), 𝑗 = 1, . . . , 𝑛.

8. Calculate the test statistic 𝑄∗ = 𝑄((𝑈∗
1 , 𝛿

∗
1), . . . , (𝑈∗

𝑛, 𝛿
∗
𝑛)).

9. Repeat steps 3–8 𝐵 times to obtain 𝑄∗
1, . . . , 𝑄

∗
𝐵. Let 𝑄

∗
(1) , . . . , 𝑄

∗
(𝐵) denote the ordered values

of the test statistics.

10. The estimated critical value is 𝐶𝑛,𝐵 = 𝑄∗
(⌊𝐵(1−𝛼) ⌋ ) , with ⌊· ⌋ denoting the floor function.

By simply removing all reference to the covariates x 𝑗 , 𝑗 = 1, . . . , 𝑛, from the above algorithm,
we obtain an algorithm which can be used to approximate critical values for the newly proposed
test in the classical goodness-of-fit testing framework (in which observations are assumed to be
realisations from i.i.d. random variables). In this framework, we can test a simple hypothesis by
transforming the observed sample using the specified distribution function. In the case where the null
hypothesis specifies a parametric family of distributions, we may estimate the necessary parameters
and perform the requisite transformation using the estimated parametric distribution function (as is
done above). In either case, if the null hypothesis is true, then we obtain censored realisations, the
lifetime distribution of which should be approximately standard uniform and the testing procedure
proposed above remains valid.

3. Monte Carlo simulation
In this section the finite sample performance of 𝐾𝑆𝑛, 𝐶𝑀𝑛 and �̃�𝑛,𝑎 is analysed. The 𝐾𝑆𝑛 and
𝐶𝑀𝑛 tests are ubiquitous in the literature and we do not provide their details here, we merely note
that these tests are obtained by replacing the empirical distribution function used in the classical
goodness-of-fit testing framework by the Kaplan-Meier estimate.
The methodology described in the previous section is general and can be applied to test for any

specified baseline distribution. However, due to the page limitations imposed on this publication, the
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Table 1. Density functions of the baseline distributions.

Baseline distribution Density Notation
Weibull 𝜃𝜆(𝑥𝜆) 𝜃−1 exp(−(𝜆𝑥) 𝜃 ) 𝑊 (𝜆, 𝜃)
Gamma (Γ(𝜃))−𝜃𝜆𝜃𝑥 𝜃−1 exp(−𝜆𝑥) Γ(𝜆, 𝜃)
Lognormal (𝜃𝑥

√
2𝜋)−1 exp(−log2 (𝑥 − 𝜆) (2𝜃2)−1) 𝐿𝑁 (𝜇, 𝜎2)

Chi square (2𝜈/2Γ(𝜈/2))−1𝑥𝜈/2−1 exp(−𝑥/2) 𝜒2 (𝜈)

results shown below are limited to the the case where baseline distribution is Weibull. This baseline
is chosen due to its flexibility and its popularity in practical applications.
We present empirical sizes and powers of the tests for two scenarios below.
Scenario 1. The null hypothesis 𝐻0 corresponds to the CPH model with a certain baseline

distribution against an alternative 𝐻𝐴 with a different baseline distribution, i.e., we consider the
powers achieved by the various testswhen the baseline distribution ismisspecifiedwhile the regression
component of the model is specified correctly.

Scenario 2. Under 𝐻0 and 𝐻𝐴 the model has the same baseline distribution, but the regression
function under 𝐻𝐴 is either 1 + 𝛽⊤x 𝑗 or log(1 + 𝛽⊤x 𝑗 ), i.e., we consider the powers achieved when
the baseline is correctly specified but the regression component of the model is misspecified.

3.1 Setting
The nominal significance level is set to 10%. We employ the so-called “warp-speed” bootstrap
discussed in Giacomini et al. (2013) to obtain the empirical powers reported in this section. This
methodology is popular for the calculation of empirical powers; see, for example, Allison et al. (2019).
All size and power estimates are calculated based on 50 000 independent Monte Carlo samples for
sample sizes 𝑛 = 100 and 𝑛 = 200. The reported powers are calculated in the case of 10% and 20%
censoring. As censoring distribution we use a uniform distribution on the interval (0, 𝑏), where 𝑏 is
a suitably chosen constant so as to achieve the desired censoring proportion (obtained using a simple
optimisation algorithm).
Throughout the study we use a single continuous covariate 𝑥 𝑗 , randomly generated from a standard

uniformdistribution. The alternative distributions used for the baseline survival function are displayed
in Table 1.
All calculations and simulations are performed in R, see R Core Team (2019). All parameter

estimation is performed using maximum likelihood estimation. For this purpose we use Brent
optimisation, see Brent (1971), built into R’s optim function.
For ease of interpretation, we print the highest power (including ties) against each deviation from

the null hypothesis in bold in each of the power tables presented in this section.
Scenario 1 above, the misspecification of the baseline distribution, is considered in Tables 2 and

3. Table 2 shows empirical sizes and powers when the censoring proportion is set to 10%, while
Table 3 contains sizes and powers in the presence of 20% censoring. When comparing the powers in
these two tables a number of remarks are in order. First, when considering the size of the test shown
in the first line of these tables, we see that the tests typically reject in fewer instances than the 10%
specified by the significance level, especially in the case where the sample size is 100. Second, as
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Table 2. Empirical powers against misspecified baseline distributions with 10% censoring.

Distribution 𝐾𝑆100 𝐶𝑉100 �̃�100,.2 �̃�100,.5 𝐾𝑆200 𝐶𝑉200 �̃�200,.2 �̃�200,.5

𝑊 (2, 2) 7 6 6 6 8 7 8 7
Γ(1, 3) 15 13 15 14 24 22 24 24
𝜒2 (10) 22 21 23 23 36 37 39 39
𝐿𝑁 (0.5, 4) 33 27 4 36 56 49 73 62

Table 3. Empirical powers against misspecified baseline distributions with 20% censoring.

Distribution 𝐾𝑆100 𝐶𝑉100 �̃�100,.2 �̃�100,.5 𝐾𝑆200 𝐶𝑉200 �̃�200,.2 �̃�200,.5

𝑊 (2, 2) 8 7 8 6 10 9 10 8
Γ(1, 3) 11 11 11 11 17 16 17 16
𝜒2 (10) 15 16 16 15 24 26 27 25
𝐿𝑁 (0.5, 4) 16 8 17 13 28 13 31 24

Table 4. Empirical powers against misspecified regression function with 10% censoring.

Regression function 𝐾𝑆100 𝐶𝑉100 �̃�100,.2 �̃�100,.5 𝐾𝑆200 𝐶𝑉200 �̃�200,.2 �̃�200,.5

1 + 𝑥 18 18 18 16 27 29 29 24
1 + 3𝑥 18 19 19 17 28 30 30 25
log(1 + 𝑥) 12 16 13 13 15 23 17 18
log(1 + 3𝑥) 11 15 12 12 13 21 16 16

Table 5. Empirical powers against misspecified regression function with 20% censoring.

Regression function 𝐾𝑆100 𝐶𝑉100 �̃�100,.2 �̃�100,.5 𝐾𝑆200 𝐶𝑉200 �̃�200,.2 �̃�200,.5

1 + 𝑥 26 23 28 19 45 40 48 32
1 + 3𝑥 26 23 29 19 44 40 48 32
log(1 + 𝑥) 9 11 11 8 14 19 19 12
log(1 + 3𝑥) 9 11 12 8 15 18 19 12
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expected, the powers of the tests generally increase with sample size and decrease with the censoring
proportion. Third, although none of the tests outperform the others uniformly, �̃�𝑛,0.2 and 𝐶𝑉𝑛 are
clearly quite powerful when compared to their competitors.
Next we turn our attention to Scenario 2 above, the misspecification of the regression component.

This scenario is considered in Tables 4 and 5. Again, the results associated with 10% and 20%
censoring are shown in two separate tables. As before, the powers of the tests generally increase with
sample size and decrease with the censoring proportion. Again, �̃�𝑛,0.2 and 𝐶𝑉𝑛 prove to be the most
powerful tests. In addition to comparing the powers for different specifications of the regression
component of the model, Tables 4 and 5 show powers associated with different choices for the value
of 𝛽; specifically, this parameter is set either to 1 or 3. We note that the powers achieved against the
different values of 𝛽 are very similar for the cases considered.

4. Conclusion
The Monte Carlo study presented above shows that the 𝐶𝑉𝑛 and �̃�𝑛,0.2 tests are especially powerful.
When considering the empirical powers associated with a sample size of 100, 𝐶𝑉𝑛 outperforms the
competing tests, while the �̃�𝑛,0.2 is more powerful when the sample size is increased to 200. The
powers associated with the smaller of these sample sizes do not differ much between the mentioned
tests, while there is a pronounced difference in the case of the larger sample size. As a result, we
recommend using �̃�𝑛,𝑎 for practical purposes.
For practical implementation of the new test one needs a so-called compromise choice of the tuning

parameter 𝑎. This is a choice of the tuning parameter that provides reasonably high power for a wide
range of alternatives. Based on the limited Monte Carlo study presented we suggest using 𝑎 = 0.2.
However, a more comprehensive power study is needed including different baseline distributions as
well as other forms of misspecification in order to fully investigate the role of the parameter 𝑎.
The asymptotic properties of the new tests are unknown and should be derived. Specifically one

needs to show that the test is consistent against a wide class of alternatives (or misspecifications).
Furthermore, deriving the asymptotic null distributions of the test statistics for given censoring
distributions are unknown at present. The above are matters of ongoing research.
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A NOTE ON THE PROBABILISTIC DETERMINANT OF
INDEPENDENT GENERALISED BETA ENTRIES

Johan Ferreira, Andriëtte Bekker, Tanita Botha and Seite Makgai
Department of Statistics, University of Pretoria, Pretoria, South Africa
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Random determinants play an essential role within multivariate analysis, but their distribu-
tions often present theoretical and computational challenges. To circumvent these challenges,
this note investigates two lower bounds for the probabilistic analysis of the determinant em-
anating from a matrix consisting of independent but not necessarily identically distributed
generalised beta entries. The 2 × 2 and 3 × 3 cases receive particular attention, and a brief
simulation study discusses the results.

Keywords: Chebyshev, Determinant, Generalised beta, Inference, Moments, Vysochanksij-
Petunin.

1. Introduction
The behaviour of a random determinant has been studied to some extent to date. Early theoretical
literature with this specific focus include Alagar (1978), Williamson and Downs (1988), Dembo
(1989), and Wise and Hall (1991), with Saha and Chakraborty (2021) as a more recent contribution.
This continued open problem in distribution theory was already under consideration as far back as the
1950’s with the work of Nyquist et al. (1954) and Nicholson (1958). In particular, the investigation
of the behaviour of random determinants is essential in geometric probability as well as wireless
communication systems (see Alagar, 1978). In these cases, specific choices for the underlying distri-
bution were used to statistically infer on the probabilistic behaviour of the determinant when a matrix
with independent and identically distributed (i.i.d.) entries of these specific choices was considered.
Considered models include the normal, exponential, gamma, and Weibull candidates (see Alagar,
1978, and Saha and Chakraborty, 2021). Furthermore, these and similar theoretical considerations
have enjoyed applications in chemometrics and wireless communications, as illustrated by Aris and
Mah (1963), Kim et al. (2010), Li et al. (2016), and Jabloun (2017) more recently.
For matrices of arbitrary dimension, the analytic consideration of the determinant is challenging

and cumbersome. In this preliminary work, we report on the 2 × 2 and 3 × 3 cases when the matrix
entries are independent generalised beta variates. This generalised beta distribution, proposed by
McDonald and Xu (1995), has been considered extensively in literature in a variety of applications
due to its attractive analytical and computational features, as well as its analytical form which
includes a wealth of often considered models in the statistical arena. These include the generalised
gamma, Pareto, usual beta, inverse beta, log-normal, and the usual normal model. The theoretical
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consideration of this generalised beta as an underlying choice when one is interested in the inferential
aspects of the determinant from a matrix with these elements, is thus meaningful and unifying in the
study of random determinants with independent entries within the current published literature.
Our direct interest lies in investigating aspects of the determinant 𝐷 = 𝑔(𝑎𝑖 𝑗 ), when the 𝑎𝑖 𝑗 are

independent but not necessarily identically distributed generalised beta variates, and 𝑔(·) simply
denotes the analytical form of the expansion for the determinant in terms of the 𝑎𝑖 𝑗 . In particular,
we determine bounds for 𝐷 and subsequently determine lower bounds for the probability of 𝐷 being
observed within these bounds using Chebyshev’s inequality as well as the Vysochanksij-Petunin
inequality. This focus using probabilistic inequalities circumvents the need for exact distributional
derivations, many of which often result in inelegant theoretical representations (see Alagar, 1978)
or approximations to the exact distributions of products of independent variates and their linear
combinations (see Marques et al., 2021). Furthermore, the purposeful consideration of these two
inequalities aim to illustrate the known “loose” inequality that Chebyshev offers, and to observe a
tighter bound which may be more meaningful than Chebyshev in practice, that of Vysochanksij-
Petunin. Williamson and Downs (1987) specifically mentions the challenge in computing explicit
analytical forms of functions of random variables, and the meaningful consideration of lower order
moments for probabilistic analysis. Furthermore, the consideration of the generalised beta positions
the user uniquely to consider any of the submodels that this distribution includes; and so, this note
generalises the work of Saha and Chakraborty (2021) in addition to considering non-identically
distributed variates.
In Section 2, relevant properties of the generalised beta distribution are reviewed together with

Chebyshev’s and Vysochanksij-Petunin’s inequalities. Section 3 contains a numerical illustration to
discuss the theoretical arguments, and Section 4 wraps up with a brief discussion and final thoughts.

2. Generalised beta as candidate and the determinant
Let 𝑎𝑖 𝑗 = 𝑦. The density of the generalised beta distribution is given by (see McDonald and Xu,
1995)

𝑓 (𝑦) = |𝑧 |𝑦𝑧𝑝−1 (1 − (1 − 𝑣) ( 𝑦
𝑚 )𝑧)𝑞−1

𝑚𝑧𝑝𝐵(𝑝, 𝑞) (1 + 𝑣( 𝑦
𝑚 )𝑧) 𝑝+𝑞 , (1)

for 0 < 𝑦𝑧 < 𝑚𝑧/(1 − 𝑣) and 0 otherwise, 0 ≤ 𝑣 ≤ 1, and 𝑧, 𝑚, 𝑝, 𝑞 positive real numbers. Here,
𝐵(·, ·) denotes the usual beta function. The moments of this distribution are given by

𝐸 (𝑌 ℎ) =
𝑚ℎ𝐵(𝑝 + ℎ

𝑧 , 𝑞)
𝐵(𝑝, 𝑞) 2𝐹1

(
𝑝 + ℎ

𝑧
,
ℎ

𝑧
; 𝑝 + 𝑞 + ℎ

𝑧
; 𝑣

)
, (2)

where 2𝐹1 (·) denotes the Gauss hypergeometric function. The first and second moments are of
immediate interest:

𝐸 (𝑌 ) =
𝑚𝐵(𝑝 + 1𝑧 , 𝑞)
𝐵(𝑝, 𝑞) 2𝐹1

(
𝑝 + 1

𝑧
,
1
𝑧
; 𝑝 + 𝑞 + 1

𝑧
; 𝑣

)
= 𝜇1 (3)

and

𝐸 (𝑌2) =
𝑚2𝐵(𝑝 + 2𝑧 , 𝑞)

𝐵(𝑝, 𝑞) 2𝐹1

(
𝑝 + 2

𝑧
,
2
𝑧
; 𝑝 + 𝑞 + 2

𝑧
; 𝑣

)
= 𝜇2. (4)
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Chebyshev’s inequality provides a lower bound to investigate the probabilistic behaviour of a random
variable, in this case 𝐷 (Bain and Engelhardt, 1987):

𝑃( |𝐷 − 𝐸 (𝐷) | ≤ 𝑟𝑆𝐷 (𝐷)) = 𝑃(𝐸 (𝐷) − 𝑟𝑆𝐷 (𝐷) < 𝐷 < 𝐸 (𝐷) + 𝑟𝑆𝐷 (𝐷)) ≥ 1 − 1
𝑟2
, (5)

where (2) is used directly to determine 𝐸 (𝐷) and 𝑆𝐷 (𝐷), which denote the mean and standard
deviation of 𝐷, respectively. In (5), 𝑟 denotes the 𝑟th standard deviation from the mean. The
Vysochanksij-Petunin lower bound (see Klyushin et al., 2002) is given by

𝑃( |𝐷 − 𝐸 (𝐷) | ≤ 𝜆𝑆𝐷 (𝐷)) = 𝑃(𝐸 (𝐷) − 𝜆𝑆𝐷 (𝐷) < 𝐷 < 𝐸 (𝐷) + 𝜆𝑆𝐷 (𝐷)) ≥ 1 − 4
9𝜆2

(6)

and serves as a refinement of (5) which potentially addresses the lack of tightness of (5), via the
inclusion of a scaling factor 49 in the bound directly. In this case, 𝜆 plays a similar role as 𝑟 in (5),
and note that 𝜆 ≥

√︁
8/3. Subsequently, 𝑣𝑎𝑟 (𝐷) denotes the variance operator.

2.1 For the 2 × 2 case
The determinant for the 2 × 2 case can be written as

𝐷 =

����𝑎 𝑏

𝑐 𝑑

���� = 𝑎𝑑 − 𝑏𝑐 (7)

and thus, when 𝑎, 𝑏, 𝑐, 𝑑 are independent random generalised beta variates:

𝐸 (𝐷) = 𝐸 (𝑎𝑑 − 𝑏𝑐)
= 𝐸 (𝑎)𝐸 (𝑑) − 𝐸 (𝑏)𝐸 (𝑐)
= 𝜇1,𝑎𝜇1,𝑑 − 𝜇1,𝑏𝜇1,𝑐 ,

where 𝜇1,𝑎 denotes the first moment (3) for variable 𝑎 and similarly for the others, and

𝑣𝑎𝑟 (𝐷) = 𝑣𝑎𝑟 (𝑎𝑑 − 𝑏𝑐)
= 𝐸 (𝑎𝑑 − 𝑏𝑐)2 − (𝐸 (𝑎)𝐸 (𝑑) − 𝐸 (𝑏)𝐸 (𝑐))2
= 𝐸 (𝑎2)𝐸 (𝑑2) + 𝐸 (𝑏2)𝐸 (𝑐2) − 2𝐸 (𝑎)𝐸 (𝑑)𝐸 (𝑏)𝐸 (𝑐) − (𝐸 (𝑎)𝐸 (𝑑) − 𝐸 (𝑏)𝐸 (𝑐))2
= 𝜇2,𝑎𝜇2,𝑑 + 𝜇2,𝑏𝜇2,𝑐 − 2𝜇1,𝑎𝜇1,𝑑𝜇1,𝑏𝜇1,𝑐 − 𝜇21,𝑎𝜇21,𝑑 + 2𝜇1,𝑎𝜇1,𝑑𝜇1,𝑏𝜇1,𝑐 − 𝜇21,𝑏𝜇21,𝑐
= 𝜇2,𝑎𝜇2,𝑑 + 𝜇2,𝑏𝜇2,𝑐 − 𝜇21,𝑎𝜇21,𝑑 − 𝜇21,𝑏𝜇21,𝑐 , (8)

where 𝜇2,𝑎 denotes the second moment (4) for variable 𝑎 and similarly for the others. It follows from
(8) that

𝑆𝐷 (𝐷) =
√︃
𝜇2,𝑎𝜇2,𝑑 + 𝜇2,𝑏𝜇2,𝑐 − 𝜇21,𝑎𝜇21,𝑑 − 𝜇21,𝑏𝜇21,𝑐 .

In the case where the variables are identically distributed, this simplifies to

𝑆𝐷 (𝐷) =
√︃
2𝜇22 − 2𝜇41.

These expressions are used in (5) for an inferential investigation into the behaviour of 𝐷 for specific
choices of the parameters of (1) for the independent distributed entries of 𝐷.
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2.2 For the 3 × 3 case
The determinant for the 3 × 3 case can be written as

𝐷 =

������
𝑎 𝑏 𝑐

𝑑 𝑒 𝑓

𝑔 ℎ 𝑖

������ = 𝑎𝑒𝑖 − 𝑎 𝑓 ℎ − 𝑏𝑑𝑖 + 𝑏 𝑓 𝑔 + 𝑐𝑑ℎ − 𝑐𝑒𝑔 (9)

and thus

𝐸 (𝐷) = 𝜇1,𝑎𝜇1,𝑒𝜇1,𝑖 − 𝜇1,𝑎𝜇1, 𝑓 𝜇1,ℎ − 𝜇1,𝑏𝜇1,𝑑𝜇1,𝑖 + 𝜇1,𝑏𝜇1, 𝑓 𝜇1,𝑔 + 𝜇1,𝑐𝜇1,𝑑𝜇1,ℎ − 𝜇1,𝑐𝜇1,𝑒𝜇1,𝑔
as before, and

𝑣𝑎𝑟 (𝐷)
= 𝑣𝑎𝑟 (𝑎𝑒𝑖 − 𝑎 𝑓 ℎ − 𝑏𝑑𝑖 + 𝑏 𝑓 𝑔 + 𝑐𝑑ℎ − 𝑐𝑒𝑔)
= 𝐸 (𝑎𝑒𝑖 − 𝑎 𝑓 ℎ − 𝑏𝑑𝑖 + 𝑏 𝑓 𝑔 + 𝑐𝑑ℎ − 𝑐𝑒𝑔)2 − (𝐸 (𝐷))2
= 𝜇2,𝑎𝜇2,𝑒𝜇2,𝑖 + 𝜇2,𝑎𝜇2, 𝑓 𝜇2,ℎ + 𝜇2,𝑏𝜇2,𝑑𝜇2,𝑖 + 𝜇2,𝑏𝜇2, 𝑓 𝜇2,𝑔 + 𝜇2,𝑐𝜇2,𝑑𝜇2,ℎ + 𝜇2,𝑐𝜇2,𝑒𝜇2,𝑔

− 𝜇2,𝑎𝜇1,𝑒𝜇1, 𝑓 𝜇1,ℎ𝜇1,𝑖 − 𝜇2,𝑖𝜇1,𝑎𝜇1,𝑏𝜇1,𝑑𝜇1,𝑒 − 𝜇2,𝑒𝜇1,𝑎𝜇1,𝑐𝜇1,𝑔𝜇1,𝑖 − 𝜇2,𝑎𝜇1,𝑒𝜇1, 𝑓 𝜇1,ℎ𝜇1,𝑖
− 𝜇2, 𝑓 𝜇1,𝑎𝜇1,𝑏𝜇1,𝑔𝜇1,ℎ − 𝜇2,ℎ𝜇1,𝑎𝜇1,𝑐𝜇1,𝑑𝜇1, 𝑓 − 𝜇2,𝑖𝜇1,𝑎𝜇1,𝑏𝜇1,𝑑𝜇1,𝑒 − 𝜇2,𝑏𝜇1,𝑑𝜇1, 𝑓 𝜇1,𝑔𝜇1,𝑖
− 𝜇2,𝑑𝜇1,𝑏𝜇1,𝑐𝜇1,ℎ𝜇1,𝑖 − 𝜇2, 𝑓 𝜇1,𝑎𝜇1,𝑏𝜇1,𝑔𝜇1,ℎ − 𝜇2,𝑏𝜇1,𝑑𝜇1, 𝑓 𝜇1,𝑔𝜇1,𝑖 − 𝜇2,𝑔𝜇1,𝑏𝜇1,𝑐𝜇1,𝑒𝜇1, 𝑓
− 𝜇2,ℎ𝜇1,𝑎𝜇1,𝑐𝜇1,𝑑𝜇1, 𝑓 − 𝜇2,𝑑𝜇1,𝑏𝜇1,𝑐𝜇1,ℎ𝜇1,𝑖 − 𝜇2,𝑐𝜇1,𝑑𝜇1,𝑒𝜇1,𝑔𝜇1,ℎ − 𝜇2,𝑒𝜇1,𝑎𝜇1,𝑐𝜇1,𝑔𝜇1,𝑖
− 𝜇2,𝑔𝜇1,𝑏𝜇1,𝑐𝜇1,𝑒𝜇1, 𝑓 − 𝜇2,𝑐𝜇1,𝑑𝜇1,𝑒𝜇1,𝑔𝜇1,ℎ
+ 𝜇1,𝑎𝜇1,𝑏𝜇1,𝑒𝜇1, 𝑓 𝜇1,𝑔𝜇1,𝑖 + 𝜇1,𝑎𝜇1,𝑐𝜇1,𝑑𝜇1,𝑒𝜇1,ℎ𝜇1,𝑖 + 𝜇1,𝑎𝜇1,𝑏𝜇1,𝑑𝜇1, 𝑓 𝜇1,ℎ𝜇1,𝑖
+ 𝜇1,𝑎𝜇1,𝑐𝜇1,𝑒𝜇1, 𝑓 𝜇1,𝑔𝜇1,ℎ + 𝜇1,𝑎𝜇1,𝑏𝜇1,𝑑𝜇1, 𝑓 𝜇1,ℎ𝜇1,𝑖 + 𝜇1,𝑏𝜇1,𝑐𝜇1,𝑑𝜇1,𝑒𝜇1,𝑔𝜇1,𝑖
+ 𝜇1,𝑎𝜇1,𝑏𝜇1,𝑒𝜇1, 𝑓 𝜇1,𝑔𝜇1,𝑖 + 𝜇1,𝑏𝜇1,𝑐𝜇1,𝑑𝜇1, 𝑓 𝜇1,𝑔𝜇1,ℎ + 𝜇1,𝑎𝜇1,𝑐𝜇1,𝑑𝜇1,𝑒𝜇1,ℎ𝜇1,𝑖 .
+ 𝜇1,𝑏𝜇1,𝑐𝜇1,𝑑𝜇1, 𝑓 𝜇1,𝑔𝜇1,ℎ + 𝜇1,𝑎𝜇1,𝑐𝜇1,𝑒𝜇1, 𝑓 𝜇1,𝑔𝜇1,ℎ + 𝜇1,𝑏𝜇1,𝑐𝜇1,𝑑𝜇1, 𝑓 𝜇1,𝑔𝜇1,𝑖
− (𝜇1,𝑎𝜇1,𝑒𝜇1,𝑖 − 𝜇1,𝑎𝜇1, 𝑓 𝜇1,ℎ − 𝜇1,𝑏𝜇1,𝑑𝜇1,𝑖 + 𝜇1,𝑏𝜇1, 𝑓 𝜇1,𝑔 + 𝜇1,𝑐𝜇1,𝑑𝜇1,ℎ − 𝜇1,𝑐𝜇1,𝑒𝜇1,𝑔)2.

(10)

We thus have that 𝑆𝐷 (𝐷) from (10) can be written as

𝑆𝐷 (𝐷) =
√︁
𝑣𝑎𝑟 (𝐷),

In the case where the variables are identically distributed, note that

𝑆𝐷 (𝐷) =
√︃
6𝜇32 − 18𝜇2𝜇41 + 12𝜇61.

These expressions are used in (5) for an inferential investigation into the behaviour of 𝐷 for specific
choices of the parameters of (1) for the independent distributed entries of 𝐷.

3. A numerical illustration
For the 2 × 2 case, we follow the algorithm below to numerically investigate the behaviour of 𝐷 by
using (5) under the assumption of identically distributed elements:
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1. Initialise parameters 𝑝, 𝑞, 𝑧, 𝑚, 𝑣 for particular choices.

2. Simulate the entries for the 2 × 2 case from the distribution with density (1).

3. Calculate the determinant of each simulated matrix.

4. Calculate the theoretical bounds for (5) and (6) for the particular parameter choices in Step 1.

5. Determine whether the (empirical) determinant in Step 3 lies within the (theoretical) bounds
of Step 4.

6. Repeat this process 𝑛 times.

7. Determine the number of times that 𝐷 was found to be within the bounds of (5) and (6) (i.e.
empirical probability of inclusion) and the corresponding lower bound(s) on the probability.

In this way, the empirical behaviour of 𝐷 can be juxtaposed and judged according to the theoret-
ical bounds under consideration in this note. We investigate certain models contained in (1) (see
McDonald and Xu, 1995) for illustrative purposes, namely the generalised beta of the first kind
(𝑝 = 3, 𝑞 = 1, 𝑧 = 2, 𝑚 = 2.5, 𝑣 = 0 – Model 1), the power (𝑝 = 3, 𝑞 = 1, 𝑧 = 1, 𝑚 = 2.5, 𝑣 = 0 –
Model 2), and the generalised gamma (𝑝 = 3, 𝑞 → ∞, 𝑧 = 2, 𝑚 = 2.5, 𝑣 = 0 – Model 3), to observe
that the bound does indeed hold from Chebyshev’s- and Vysochanksij-Petunin’s inequality. In the
case where 1.00 is observed, this indicates that across the entire simulated sample all values of 𝐷
were indeed found to be between the bounds of (5) for the corresponding value of 𝑟 . Here, the bound
is given by 1 − 𝑟−2 (Bound 1) and 1 − 4

9𝜆
−2 (Bound 2) respectively for different values of 𝑟 and 𝜆,

and for different samples sizes.
This numerical illustration is done using the R software, v. 4.1.0. In Table 1 for each model, the

bound holds across different values of 𝑟 and 𝜆, and also for the considered range of sample sizes.
Bain and Engelhardt (1987) mention that Chebyshev’s bound (see (5)) is not necessarily tight, and
it is evident that the bound of (6) may provide the practitioner with more detailed insight into the
probabilistic analysis of 𝐷 with a tighter lower bound. It is a direct consequence of the construction
of these bounds that Vysochanksij-Petunin’s bound will always be tigher than that of Chebyshev’s.
However, the sustained relevance of Chebyshev’s bound (5) is highlighted by the fact that (6) retains
a restriction on choice of 𝜆, whereas there is no distinct restriction on 𝑟 – as is illustrated for the case
when 𝑟, 𝜆 = 1.5.

Table 1. Empirical probabilities of (5) and (6) for different considered sub-models of (1), different
values of 𝑟 and 𝜆, and different sample sizes.

𝑛 = 50 𝑛 = 500 𝑛 = 5000

𝑟 , 𝜆 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Bound 1 Bound 2

1.5 0.92 0.84 0.86 0.880 0.880 0.894 0.8619 0.8586 0.8664 0.5556 N/A
1.75 1.00 0.98 1.00 0.992 0.986 0.994 0.9884 0.9892 0.9866 0.6913 0.8549
2 1.00 1.00 1.00 1.000 1.000 1.000 0.9994 0.9998 0.9990 0.7500 0.8889
2.2 1.00 1.00 1.00 1.000 1.000 1.000 1.0000 1.0000 1.0000 0.7934 0.9122
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4. Discussion and future directions
The importance of analysing a determinant probabilistically has been illustrated within multivariate
analysis. In this note, the generalised beta distribution of McDonald and Xu (1995) is considered,
and expressions derived under the assumption of independence but allowing for elements to not be
identically distributed for both the 2 × 2 and the 3 × 3 cases. A simulation study indicates that both
lower bounds do indeed hold for the considered underlying model (1), and particular consideration
of Vysochanksij-Petunin’s inequality for this probabilistic analysis of the determinant illustrated due
to its tighter nature, compared to the often considered Chebyshev’s inequality. Specific interest in the
implementation of such tighter bounds would be of meaning in the calculation of very tight capacity
bounds for multiple-input-multiple-output systems in communications systems, which 1) relies on the
determinant of randommatrices for inferential purposes, 2) requires a tight bound for implementation
such that complex expressions of the capacity (which is a determinant) may be approximated or even
substituted with the lower bounds for practical reasons and execution, and 3) regularly relies on the
description and analysis of 2×2 and 3×3matrices as well as the practical assumption of independence
(Zhang et al., 2005). Subsequent work includes expanding this computational aspect to matrices of
higher dimension, and to consider dependence between elements.
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A NEW FIXED POINT CHARACTERISATION BASED TEST
FOR THE PARETO DISTRIBUTION IN THE PRESENCE OF

RANDOM CENSORING

L. Ndwandwe, J. S. Allison and I. J. H. Visagie
School of Mathematical and Statistical Sciences, North-West University, South Africa

We propose a new goodness-of-fit test for the Pareto Type I lifetime distribution in the
presence of random right censoring. The test is based on a fixed point characterisation, which
is a generalisation of the well-known Stein method for the approximation of distributions. The
empirical power performance of the new test is compared to the modified Cramér-von Mises
and Kolmogorov-Smirnov tests for two different censoring proportions and two alternative
lifetime distributions by means of a limited Monte Carlo study.

Keywords: Fixed point characterisation, Goodness-of-fit testing, Pareto distribution, Random
censoring.

1. Introduction
The Pareto distribution, nowadays commonly known as the Pareto Type I distribution, was first
introduced by Pareto (1897). It has became a popular model to use in economics, finance and
actuarial science, especially where phenomena characterised by heavy tails are studied (see, Nofal
and El Gebaly, 2017, Ismaïl, 2004, Dyer, 1981, Malik, 1970 and Fisk, 1961). Due to the popularity
of this distribution, goodness-of-fit tests have been developed in order to test the hypothesis that an
observed dataset is realised from the Pareto distribution. For a recent overview and discussion of
some of these tests, see Chu et al. (2019) and the references therein.
The Pareto distribution is also used to model lifetimes in survival analysis and reliability theory;

see, e.g., Amin (2007), Ouyang andWu (1994) and Davis and Feldstein (1979). In many of these type
of applications random right censoring is present and one would like to test the hypothesis that the
lifetime distribution follows the Pareto Type I distribution. Apart from the traditional Kolmogorov-
Smirnov and Cramér-von Mises tests, no other tests are available in the statistical literature to test
the goodness-of-fit of the Pareto distribution when random censoring is present. In this paper we
propose a new fixed point characterisation based test for the Pareto distribution in the presence of
random right censoring.
Before proceeding, we introduce some notation. Let 𝑋, 𝑋1, . . . , 𝑋𝑛 be independent and identically

distributed (i.i.d.) positive random variables with unknown continuous distribution function 𝐺. Let
𝐶1, . . . , 𝐶𝑛 be i.i.d. censoring variableswith unknown continuous distribution function𝐻. We assume
non-informative censoring throughout. The observed values are the pairs (𝑇𝑗 , 𝛿 𝑗 ), 𝑗 = 1, . . . , 𝑛,
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where 𝑇𝑗 = min(𝑋 𝑗 , 𝐶 𝑗 ) and 𝛿 𝑗 = 𝐼 (𝑋 𝑗 < 𝐶 𝑗 ), with 𝐼 (·) denoting the indicator function. The order
statistics of 𝑇1, . . . , 𝑇𝑛 are denoted by 𝑇(1) < · · · < 𝑇(𝑛) and 𝛿 ( 𝑗 ) represents the indicator variable
corresponding to 𝑇( 𝑗 ) . Denote the Pareto Type I distribution with shape parameter 𝛽 > 0 by

𝐹𝛽 (𝑥) = 1 − 𝑥−𝛽 , 𝑥 ≥ 1.
Formally, we are interested in testing the composite hypothesis

𝐻0 : 𝑋 ∼ 𝐹𝛽 , (1)

for some 𝛽 > 0 against general alternatives.
Based on the data (𝑇𝑗 , 𝛿 𝑗 ) we may estimate the distribution function underlying the lifetime using

the Kaplan-Meier estimator, �̃�𝑛;

1 − �̃�𝑛 (𝑡) =




1, 𝑡 ≤ 𝑇(1) ,∏𝑘−1
𝑗=1

(
𝑛− 𝑗

𝑛− 𝑗+1
) 𝛿( 𝑗)

, 𝑇(𝑘−1) < 𝑡 ≤ 𝑇(𝑘 ) , 𝑘 = 2, . . . , 𝑛,∏𝑛
𝑗=1

(
𝑛− 𝑗

𝑛− 𝑗+1
) 𝛿 ( 𝑗 )

, 𝑡 > 𝑇(𝑛) .

The remainder of the article is organised as follows. In Section 2 the new test statistic is introduced
and discussed. The results of a Monte Carlo study, where the size and power performance of the
newly proposed test are compared to those of the two classical distribution function based tests
(modified to account for censoring), are given in Section 3. The paper concludes in Section 4 with
some suggestions for future research.

2. Test statistic
Throughout the paper, 𝛽 is estimated using maximum likelihood. Simple calculations show that the
maximum likelihood estimator of 𝛽 based on the observed data is

𝛽(𝑇1, . . . , 𝑇𝑛) =
∑𝑛

𝑗=1 𝛿 𝑗∑𝑛
𝑗=1 log𝑇𝑗

.

Note that 𝑋 ∼ 𝐹𝛽 ⇐⇒ 𝑋𝛽 ∼ 𝐹1. As a result, the tests used below are based on the transformed
variables 𝑌 𝑗 = 𝑇

𝛽 (𝑇1 ,...,𝑇𝑛 )
𝑗 , 𝑗 = 1, . . . , 𝑛. This is justified by the fact that

𝛽(𝑌1, . . . , 𝑌𝑛) =
∑𝑛

𝑗=1 𝛿 𝑗∑𝑛
𝑗=1 log𝑌 𝑗

=

∑𝑛
𝑗=1 𝛿 𝑗

𝛽(𝑇1, . . . , 𝑇𝑛)
∑𝑛

𝑗=1 log𝑇𝑗
=
𝛽(𝑇1, . . . , 𝑇𝑛)
𝛽(𝑇1, . . . , 𝑇𝑛)

= 1.

We propose a test statistic based on a fixed point characterisation of the Pareto distribution. Betsch
and Ebner (2018) provide these characterisations (which are generalisations of the well-known Stein’s
method) for a large class of distributions. The fixed point characterisation of 𝐹1 is given in Theorem
1.

Theorem 1. Let 𝑌 be a continuous random variable with support [1,∞), distribution function 𝐺
and 𝐸 [𝑌−1] < ∞. 𝑌 ∼ 𝐹1 if, and only if,

𝐸

[
2
𝑌
(min(𝑌, 𝑡) − 1)

]
= 𝐹1 (𝑡), ∀𝑡 ≥ 1.

18 NDWANDWE, ALLISON & VISAGIE



Theorem 1 implies that 𝑌 ∼ 𝐹1 if, and only if,
𝜑(𝑡) := 𝑉𝑌 (𝑡) − 𝐹1 (𝑡) = 0, (2)

for all 𝑡 > 1, where 𝑉𝑌 (𝑡) := 𝐸
[ 2
𝑌 (min(𝑌, 𝑡) − 1)

]
.

Using the Kaplan-Meier estimator, 𝑉𝑌 (𝑡) can be estimated as

�̂�𝑌 (𝑡) =
∫ ∞

1

2
𝑦
(min(𝑦, 𝑡) − 1)𝑑�̃�𝑛 (𝑦) = 2

𝑛∑︁
𝑗=1

Λ 𝑗

𝑌 𝑗
(min(𝑌 𝑗 , 𝑡) − 1), (3)

where Λ 𝑗 , 𝑗 = 1, . . . , 𝑛 is the jump size in �̃�𝑛 (𝑌( 𝑗 ) ), given by

Λ1 =
𝛿 (1)
𝑛
, Λ𝑛 =

𝑛−1∏
𝑗=1

(
𝑛 − 𝑗

𝑛 − 𝑗 + 1

) 𝛿( 𝑗)
and

Λ 𝑗 =
𝛿 ( 𝑗 )

𝑛 − 𝑗 + 1
𝑗−1∏
𝑙=1

(
𝑛 − 𝑙

𝑛 − 𝑙 + 1

) 𝛿(𝑙)
, 𝑗 = 2, . . . , 𝑛 − 1.

Under the hypothesis stated in (1), the distribution function underlying𝑌1, . . . , 𝑌𝑛 is approximately
𝐹1, at least for large 𝑛. As a result,

�̂�𝑛 (𝑡) := �̂�𝑌 (𝑡) − 𝐹1 (𝑡)
should be close to 0 for all 𝑡 > 1. Therefore, we propose the test statistic

𝑆𝑛,𝑎 =
∫ ∞

1
�̂�2𝑛 (𝑡)𝑡−𝑎𝑑�̃�𝑛 (𝑡) =

𝑛∑︁
𝑘=1

Λ𝑘
©­«
2

𝑛∑︁
𝑗=1

Λ 𝑗

𝑌 𝑗
[min(𝑌 𝑗 , 𝑌𝑘) − 1] + 𝑌−1

𝑘 − 1ª®¬
2

𝑌−𝑎
𝑘 ,

where 𝑡−𝑎 is a weight function ensuring the existence of the integral and 𝑎 > 2 is a tuning parameter.
The test rejects the null hypothesis for large values of 𝑆𝑛,𝑎. Since the null distribution of the test
statistic is a function of the unknown censoring distribution 𝐻, we propose the following bootstrap
algorithm to estimate the critical value.

1. Based on the pairs (𝑇𝑗 , 𝛿 𝑗 ), 𝑗 = 1, . . . , 𝑛, estimate 𝛽 by 𝛽 =
∑𝑛

𝑗=1 𝛿 𝑗/(
∑𝑛

𝑗=1 log𝑇𝑗 ).
2. Obtain a parametric bootstrap sample 𝑋∗

1 , . . . , 𝑋
∗
𝑛 by sampling from 𝐹𝛽 .

3. Obtain a non-parametric bootstrap sample 𝐶∗
1 , . . . , 𝐶

∗
𝑛 by sampling from the Kaplan-Meier

estimate of the distribution of the censoring times.

4. Let

𝑇∗
𝑗 = min(𝑋∗

𝑗 , 𝐶
∗
𝑗 ) and 𝛿∗𝑗 =

{
1, if 𝑋∗

𝑗 ≤ 𝐶∗
𝑗

0, if 𝑋∗
𝑗 > 𝐶

∗
𝑗 .

5. Calculate 𝛽∗ =
∑𝑛

𝑗=1 𝛿
∗
𝑗/(

∑𝑛
𝑗=1 log𝑇∗

𝑗 ) and obtain the transformed bootstrap values 𝑌 ∗
𝑗 = 𝑇

∗
𝑗
𝛽∗
.

6. Calculate the test statistic, say 𝑆∗ = 𝑆((𝑌 ∗
1 , 𝛿

∗
1), (𝑌 ∗

2 , 𝛿
∗
2), . . . , (𝑌 ∗

𝑛 , 𝛿
∗
𝑛)), based on the data

(𝑌 ∗
𝑗 , 𝛿

∗
𝑗 ), 𝑗 = 1, . . . , 𝑛.

7. Repeat steps 2–6 B times to obtain 𝑆∗1, . . . , 𝑆
∗
𝐵. Use the (1− 𝛼)th quantile of 𝑆∗1, . . . , 𝑆∗𝐵 as the

estimated critical value for the test.
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3. Simulation study
In this section the empirical power performance of the newly proposed test 𝑆𝑛,𝑎 is compared to that
of the modified Kolmogorov-Smirnov (𝐾𝑆𝑛) and Cramér-von-Mises (𝐶𝑉𝑛) tests. For a discussion on
these two modified tests, see D’Agostino and Stephens (1986) as well as Koziol and Green (1976). A
significance level of 𝛼 = 0.05 is used throughout and critical values of all the tests are obtained using
the bootstrap algorithm from Section 2. Estimated powers are shown for samples of size 𝑛 = 50
and 𝑛 = 100. The reported empirical powers are calculated in the case of 10% and 20% censoring
for various alternative lifetime distributions. The alternative distributions used are the gamma and
lognormal distributions, both shifted by 1 to ensure that these distributions have the same support as
that of the Pareto distribution. The gamma distribution is denoted Γ(𝜃) and has density

ℎ(𝑥) = 1
Γ(𝜃) (𝑥 − 1)

𝜃−1𝑒−(𝑥−1) , 𝑥 ≥ 1.

The lognormal distribution is denoted 𝐿𝑁 (𝜃) and has density

ℎ(𝑥) = exp
(
−1
2
(log(𝑥 − 1)/𝜃)2

) (
𝜃 (𝑥 − 1)

√
2𝜋

)−1
, 𝑥 ≥ 1.

Empirical sizes are presented for the Pareto distributions with parameters 2 and 3, denoted by 𝐹2 and
𝐹3 in Tables 1 to 4. The censoring distribution used is the uniform distribution on the interval (1, 𝑐),
where 𝑐 > 1 is chosen to produce the desired censoring proportion. For computational efficiency,
power calculations are done using the warp-speed bootstrap proposed by Giacomini et al. (2013).
For another example of the warp-speed bootstrap methodology used to calculate empirical powers,
see Allison et al. (2019). All calculations are performed in R (R Core Team, 2020).
Tables 1 to 4 contain the percentage (rounded to the nearest integer) of 10 000 independent Monte

Carlo samples for which the hypothesis stated in (1) was rejected. Each of these tables show the
empirical powers associated with a given combination of sample size and censoring proportion. We
display the highest power against each alternative in bold.
The power tables indicate that each of the tests maintain the specified significance level of 5%

closely. The powers achieved by the tests increase with an increase in sample size and decrease
as the censoring proportion increases. When considering the powers achieved against the various
alternatives we see that the𝐶𝑉𝑛 test is less powerful than the other tests considered for the alternatives
above. However, this may be a result of the specific censoring distribution used. A more extensive
Monte Carlo study will be required if more general conclusions are to be drawn regarding the power
of the 𝐶𝑉𝑛 test.
Based on Tables 1 to 4, it seems that the 𝐾𝑆𝑛 test is quite powerful against gamma alternatives

while 𝑆𝑛,𝑎 achieves the highest powers against lognormal alternatives. Furthermore, it seems that
smaller values of the tuning parameter in 𝑆𝑛,𝑎 generally lead to higher powers.

4. Concluding remarks
To use our newly proposed test in a real world setting, a choice of the tuning parameter is necessary.
Based on the Monte Carlo study above we suggest choosing 𝑎 = 2.1 as this choice generally produces
high powers for the alternatives considered. Tenreiro (2019) andAllison and Santana (2015) proposed
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Table 1. Empirical powers for 𝑛 = 50 with 10% censoring.

Distribution 𝐾𝑆𝑛 𝐶𝑉𝑛 𝑆𝑛,2.1 𝑆𝑛,2.2 𝑆𝑛,2.5

𝐹2 5 4 5 5 5
𝐹3 5 4 5 5 5
Γ(0.9) 29 13 14 12 8
Γ(1) 47 15 28 26 17
𝐿𝑁 (1.2) 51 4 66 64 60
𝐿𝑁 (1.5) 8 4 12 12 11

Table 2. Empirical powers for 𝑛 = 100 with 10% censoring.

Distribution 𝐾𝑆𝑛 𝐶𝑉𝑛 𝑆𝑛,2.1 𝑆𝑛,2.2 𝑆𝑛,2.5

𝐹2 5 4 5 5 5
𝐹3 5 5 5 5 5
Γ(0.9) 54 16 23 20 12
Γ(1) 78 23 49 44 29
𝐿𝑁 (1.2) 86 12 93 93 90
𝐿𝑁 (1.5) 12 5 21 20 19

Table 3. Empirical powers for 𝑛 = 50 with 20% censoring.

Distribution 𝐾𝑆𝑛 𝐶𝑉𝑛 𝑆𝑛,2.1 𝑆𝑛,2.2 𝑆𝑛,2.5

𝐹2 5 4 5 5 4
𝐹3 4 4 5 5 4
Γ(0.9) 22 10 14 13 10
Γ(1) 37 10 27 25 21
𝐿𝑁 (1.2) 42 8 58 58 58
𝐿𝑁 (1.5) 7 5 10 10 10

Table 4. Empirical powers for 𝑛 = 100 with 20% censoring.

Distribution 𝐾𝑆𝑛 𝐶𝑉𝑛 𝑆𝑛,2.1 𝑆𝑛,2.2 𝑆𝑛,2.5

𝐹2 5 5 5 5 5
𝐹3 5 5 5 5 5
Γ(0.9) 41 10 25 23 17
Γ(1) 68 11 52 49 39
𝐿𝑁 (1.2) 77 14 92 92 91
𝐿𝑁 (1.5) 10 5 19 19 20
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methods to choose tuning parameters in certain settings data-dependently. Unfortunately, neither of
these methods are applicable in our situation as our critical values must be obtained using the
bootstrap. A data-dependent choice for this type of scenario is still an open problem in the goodness-
of-fit literature.
Another challenging possibility for future research is to develop the asymptotic theory relating to

the newly proposed test. The dependence introduced by the presence of censoring complicates the
derivation of the asymptotic results. Recently Fernández and Rivera (2020) studied Kaplan-Meier U-
and V-statistics in the presence of random censoring. The results found in the mentioned paper may
prove useful as tools to derive the asymptotic null distribution of the newly proposed test statistic.
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