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Wasserstein distance as discriminator within the Dirichlet family

Tanita Botha, Johan Ferreira and Andriëtte Bekker

Department of Statistics, University of Pretoria, Pretoria, South Africa
Centre of Excellence in Mathematical and Statistical Sciences, University of the Witwatersrand, Johannesburg,

South Africa

The Dirichlet distribution is a cornerstone consideration when working with
data on the unitary simplex. Several generalisations of the Dirichlet distribution
have been developed with more flexible structures which can be applied to data
that exhibit departures from the usual Dirichlet, such as multimodality and positive
correlation. To gain a deeper insight into the impact of fitting generalisations of the
Dirichlet to data that exhibit these structural departures, the Wasserstein distance
is considered and investigated between different members of the Dirichlet family.
Since this distance gives an intuitive measure of the distance and difference between
two (multivariate) distributions, this paper explores the differences between several
(competitive) Dirichlet constructions to highlight and examine the effect that these
structural changes may result in.

Keywords: Flexible, Generator, Mixture, Noncentral, Poisson.

1. Introduction
The Wasserstein distance (𝑑𝑊 ), originally introduced in Vaserstein (1969), is known as a funda-
mental metric in the space of probability measures. The Wasserstein distance has different names
(Sommerfeld and Munk, 2018) such as the Mallows distance, the Monte-Kantorovich-Rubinstein
distance in the physical sciences, the earth mover’s distance in computer science or the optimal
transport distance in optimisation, and bears a clear and intuitive interpretation namely “the amount
of work required to turn one probability distribution into another.” In statistics, it has been used to
prove convergence in the context of limit laws (Sommerfeld and Munk, 2018) and has more recently
been implemented as a measure of prior impact in Bayesian analysis of computational data (Ley
et al., 2017; Ghaderinezhad et al., 2020, 2021). Two recent studies have employed the Wasserstein
distance to predict the remaining useful life of rotation machinery using conditional Wasserstein
distance-based generative adversarial networks (Man et al., 2022) and research aiming to improve
the communication security of Internet of Vehicles nodes in intelligent transportation using models
such as the Wasserstein Distance Based Generative Adversarial Network (WaGAN) model (Liu et al.,
2022).

The Kolmogorov-Smirnov (KS) distance is closely related to 𝑑𝑊 ; however, the main drawback
from using the KS is that this distance measure finds the maximal difference point between the two

Corresponding author: Tanita Botha (tanita.botha@up.ac.za)
MSC2020 subject classifications: 62E15, 62P12, 60E15

Proceedings of the 63rd Annual Conference of the South African Statistical Association
© 2022 South African Statistical Association

1



distributions rather than considering the whole space between the two distributions. 𝑑𝑊 gives an
intuitive measure which can be used to discriminate between two distributions under consideration;
but it is necessary to exercise caution as its computation may become complex in high dimensional
settings. A high 𝑑𝑊 indicates that the two distributions are far apart and hence differ greatly while
a small 𝑑𝑊 indicates a sense of similarity between the two considered distributions; this measure is
defined in the following definition.

Definition 1. The Wasserstein distance 𝑑𝑊 (𝑃1, 𝑃2) (Vallender, 1974) is calculated using the cumu-
lative distribution functions 𝐹𝑖 (𝜐; 𝑥) of two distributions 𝑃1 and 𝑃2, where 𝜐 ∈ R is the parameter of
interest and 𝑥 represents the data (Ghaderinezhad et al., 2021):

𝑑𝑊 (𝑃1, 𝑃2) =
∫ 𝑏

𝑎
|𝐹1 (𝜐; 𝑥) − 𝐹2 (𝜐; 𝑥) |𝑑𝜐,

where 𝑎 and 𝑏 denote the bounds of the support of 𝜐. 𝑑𝑊 can also be extended to 𝑚 > 1 parameters
𝜐1, ..., 𝜐𝑚 as follows:

𝑑𝑊 (𝑃1, 𝑃2) =
∫ 𝑏1

𝑎1

...

∫ 𝑏𝑚

𝑎𝑚

|𝐹1 (𝜐1, ..., 𝜐𝑚; 𝑥) − 𝐹2 (𝜐1, ..., 𝜐𝑚; 𝑥) |𝑑𝜐1...𝑑𝜐𝑚 (1)

where 𝑎𝑖 and 𝑏𝑖 are the bounds of the support of 𝜐 𝑗 , 𝑗 = 1, . . . , 𝑚.

The Dirichlet distribution, a multivariate generalisation of the beta distribution, is used often
when working with data on the unitary simplex. This paper aims to explore the differences between
members of the Dirichlet family by using 𝑑𝑊 to increase understanding regarding the effect that
structural changes have between these distributions. Some of the considered members include the
Dirichlet generator, of which numerous flexible candidates can be “generated”, as explored in Botha
et al. (2021) as well as the noncentral Dirichlet construction in Botha et al. (2022), which depends
on the noncentrality parameters through the confluent hypergeometric function of several variables.
Mixtures of Dirichlet are also considered, such as the flexible Dirichlet distribution as proposed by
Ongaro and Migliorati (2013), which is expressed as a finite mixture of Dirichlet components, as well
as the double flexible Dirichlet distribution as proposed by Ascari et al. (2021), which is a further
generalisation of the Dirichlet structure, which takes advantage of the finite mixture structure of the
flexible Dirichlet distribution, as well as the capabilities of modelling positive correlations. These
mixtures’ properties and structures were further explored in Ferreira et al. (2022). Computational
focus is in the two-dimensional case for illustrative purposes in this paper.

The paper is outlined as follows. In Section 2 the considered distributions are briefly revisited.
In Section 3, a practical investigation will explore to what extent the 𝑑𝑊 discriminates between the
different Dirichlet family members under consideration. Section 4 contains conclusions and future
work.

2. Preliminary definitions and properties
In this section, the multivariate models of interest are briefly reviewed. The Dirichlet distribution is
known for elegant mathematical properties and ease of parameter estimation (Ongaro and Migliorati,
2013), but is poorly parametrised and cannot model many different types of dependence patterns
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(Ascari et al., 2021). The following sections review the different (generalised) siblings within the
considered Dirichlet family which will be considered in this paper. Let p = (𝑝1, . . . , 𝑝𝐾 ).

2.1 Dirichlet Distribution
The Dirichlet distribution will be our base model of interest.

Definition 2. Suppose p is distributed as a Dirichlet distribution (of type 1, see Sánchez et al., 2006)
of order 𝐾 ≥ 2 and parameters 𝚷 = (𝜋1, 𝜋2, . . . , 𝜋𝐾+1) for 𝜋𝑖 > 0, 𝑖 = 1, . . . , 𝐾 + 1, with respect
to the Lebesgue measure on the Euclidean space R𝐾 , then its probability density function (pdf) is
given by

𝑓 (p;𝚷) =
Γ(𝜋+)∏𝐾+1
𝑖=1 Γ(𝜋𝑖)

(
𝐾+1∏
𝑖=1

𝑝𝜋𝑖−1
𝑖

)
(2)

on the 𝐾 dimensional simplex, defined by

𝑝1, 𝑝2, . . . , 𝑝𝐾 > 0,
𝑝1 + 𝑝2 + · · · + 𝑝𝐾 < 1,

𝑝𝐾+1 = 1 − 𝑝1 − · · · − 𝑝𝐾 ,

which is denoted by A, where Γ(·) denotes the usual gamma function, 𝜋+ =
∑𝐾+1
𝑖=1 𝜋𝑖 and 𝑝𝐾+1 is

the vertex boundary to be triangular on the unit simplex.

The contours of this considered model are denoted by “D”.

2.2 Noncentral Dirichlet Distribution
The noncentral Dirichlet distribution, constructed via the use of Poisson weights (inspired by Ferreira
et al. (2016) and the model of interest in Botha et al. (2022)) is defined as:

Definition 3. Suppose p is noncentral Dirichlet distributed, then the pdf is given by:

ℎ1 (p;𝚷,𝚲)

=
∞∑︁
𝑗1=0

· · ·
∞∑︁

𝑗𝐾+1=0

exp( 𝜆1
2 ) ( 𝜆1

2 ) 𝑗1
𝑗1!

. . .
exp( 𝜆𝐾2 ) ( 𝜆𝐾2 ) 𝑗𝐾

𝑗𝐾 !
exp( 𝜆𝐾+1

2 ) ( 𝜆𝐾+1
2 ) 𝑗𝐾+1

𝑗𝐾+1!

× Γ(𝜋1 + 𝑗1 + · · · + 𝜋𝐾 + 𝑗𝐾 + 𝜋𝐾+1 + 𝑗𝐾+1)
Γ(𝜋1 + 𝑗1)Γ(𝜋𝐾 + 𝑗𝐾 )Γ(𝜋𝐾+1 + 𝑗𝐾+1) 𝑝

𝜋1+ 𝑗1−1
1 . . . 𝑝

𝜋𝐾+ 𝑗𝐾−1
𝐾 (1 −

𝐾∑︁
𝑖=1

𝑝𝑖) 𝜋𝐾+1+ 𝑗𝐾+1−1

= 𝑓 (p;𝚷)exp

(
−
𝐾+1∑︁
𝑖=1

𝜆𝑖
2

)

×
∑︁
𝜙

(𝜋1 + · · · + 𝜋𝐾+1) 𝑗1+···+ 𝑗𝐾+1

(𝜋1) 𝑗1 . . . (𝜋𝐾+1) 𝑗𝐾+1 𝑗1! . . . 𝑗𝐾+1!

(
𝜆1
2
𝑝1

) 𝑗1
. . .

(
𝜆𝐾
2
𝑝𝐾

) 𝑗𝐾 (
𝜆𝐾+1

2
(1 −

𝐾∑︁
𝑖=1

𝑝𝑖)
) 𝑗𝐾+1

(3)

where the vector p ∈ A is thus a noncentral Dirichlet variate with parameters𝚷 = (𝜋1, 𝜋2, . . . , 𝜋𝐾+1)
for 𝜋𝑖 > 0, 𝑖 = 1, . . . , 𝐾 + 1, 𝚲 = (𝜆1, . . . , 𝜆𝐾 , 𝜆𝐾+1) denoting corresponding noncentral parameters
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with 𝜆𝑖 > 0 ∀ 𝑖 = 1, ..., 𝐾 + 1 and where
∑
𝜙 =

∑∞
𝑗1=0· · ·

∑∞
𝑗𝐾+1=0. Note: this is also a shape mixture

as each 𝑝𝑖 in this noncentral model is indexed by a component-specific shape parameter 𝑗 , and also,
the Dirichlet distribution (see (2)) is recovered in the case when 𝜆𝑖 → 0 ∀ 𝑖 = 1, ..., 𝐾 + 1.

The contours of this considered model are denoted by “NC”.

2.3 Dirichlet Generator Distribution
The Dirichlet generator distribution, proposed as an alternative candidate to the Dirichlet distribution
in Botha et al. (2021), consists of numerous flexible candidates and has the following form:

Definition 4. Suppose p is Dirichlet generator distributed. Then its pdf is given by

ℎ2 (p;𝚷) = 𝐶𝑝𝜋1−1
1 𝑝𝜋2−1

2 . . . 𝑝𝜋𝐾−1
𝐾 (1 −

𝐾∑︁
𝑖=1

𝑝𝑖) 𝜋𝐾+1−1𝑔(𝜃
𝐾∑︁
𝑖=1

𝑝𝑖), (4)

with 𝐶 a normalising constant such that

𝐶−1 =
∫

· · ·
∫

A
𝑝𝜋1−1

1 𝑝𝜋2−1
2 . . . 𝑝𝜋𝐾−1

𝐾 (1 −
𝐾∑︁
𝑖=1

𝑝𝑖) 𝜋𝐾+1−1𝑔(𝜃
𝐾∑︁
𝑖=1

𝑝𝑖)𝑑p.

The vector p ∈ A is thus a Dirichlet generator variate with parameters 𝚷 = (𝜋1, . . . , 𝜋𝐾+1), scalar
𝜃 ∈ R, and whichever additional parameters 𝑔(·) imposed to ensure that the pdf ℎ(·) is non-negative.
The following conditions also apply:

1. 𝑔(·) is a Borel-measurable function;

2. 𝑔(·) admits a Taylor series expansion;

3. 𝑔(0) = 1.

The usual Dirichlet distribution with pdf (2) is thus a special case of (4) when 𝜃 = 0. Other
flexible candidates, which resulted in instances allowing for non-negative correlation, include the
three hypergeometric functions (0𝐹0; 0𝐹1 and 1𝐹1), as investigated in Botha et al. (2021) which are
commonly considered functions representing exponential, binomial and the confluent hypergeometric
functions.

The contours of this considered model are denoted by “GD”.

2.4 Flexible Dirichlet Distribution
The flexible Dirichlet distribution as proposed by Ongaro and Migliorati (2013) is defined as follows:

Definition 5. Suppose p is distributed as a flexible Dirichlet distribution. Then its pdf is given by

ℎ3 (p;𝚷, 𝜏,β) =
𝐾+1∑︁
𝑟=1

𝛽𝑟 𝑓 (p,𝚷 + 𝜏e𝑟 )

=
Γ(∑𝐾+1

𝑖=1 𝜋𝑖 + 𝜏)∏𝐾+1
𝑖=1 Γ(𝜋𝑖)

(
𝐾+1∏
𝑖=1

𝑝𝜋𝑖−1
𝑖

) [
𝐾+1∑︁
𝑟=1

𝛽𝑟 𝑝
𝜏
𝑟

Γ(𝜋𝑟 )
Γ(𝜋𝑟 + 𝜏)

]
, (5)
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where the vector p ∈ A is thus a flexible Dirichlet variate with parameters𝚷 = (𝜋1, 𝜋2, . . . , 𝜋𝐾+1) for
𝜋𝑖 > 0, 𝑖 = 1, . . . , 𝐾 + 1, β = (𝛽1, · · · , 𝛽𝐾+1) with 0 ≤ 𝛽𝑖 < 1 and

∑𝐾+1
𝑖=1 𝛽𝑖 = 1, the scale parameter

𝜏 > 0, e𝑟 is the vector with elements equal to zero except for the 𝑟-th entry that is equal to 1. The
flexible Dirichlet also includes the Dirichlet as a special case if 𝜏 = 1 and 𝛽𝑖 = 𝜋𝑖

𝜋+ , 𝑖 = 1, 2, ..., 𝐾 + 1.

The contours of this considered model are denoted by “FD”.

2.5 Double Flexible Dirichlet Distribution
The double flexible Dirichlet distribution, an extension of the flexible Dirichlet distributions, and
proposed by Ascari et al. (2021) has the following form:

Definition 6. Suppose p is distributed as a double flexible Dirichlet distribution. Then its pdf is
given by

ℎ4 (p;𝚷, 𝜏,β) =
𝐾+1∑︁
𝑟=1

𝐾+1∑︁
𝑠=1

𝛽𝑟𝑠 𝑓 (p,𝚷 + 𝜏(e𝑟 + e𝑠))

=
Γ(∑𝐾+1

𝑖=1 𝜋𝑖 + 2𝜏)∏𝐾+1
𝑖=1 Γ(𝜋𝑖)

(
𝐾+1∏
𝑖=1

𝑝𝜋𝑖−1
𝑖

)

×

𝐾+1∑︁
𝑟=1

𝐾+1∑︁
𝑠=1

𝑟≠𝑠

𝛽𝑟𝑠𝑝
𝜏
𝑟 𝑝

𝜏
𝑠

Γ(𝜋𝑟 )Γ(𝜋𝑠)
Γ(𝜋𝑟 + 𝜏)Γ(𝜋𝑠 + 𝜏) +

𝐾+1∑︁
𝑟=1

𝛽𝑟𝑟 𝑝
2𝜏
𝑟

Γ(𝜋𝑟 )
Γ(𝜋𝑟 + 2𝜏)


, (6)

where the vector p ∈ A is thus a double flexible Dirichlet variate with parameters𝚷 = (𝜋1, 𝜋2, . . . , 𝜋𝐾+1)
for 𝜋𝑖 > 0, 𝑖 = 1, . . . , 𝐾 + 1, 0 ≤ 𝛽𝑟𝑠 < 1 and

∑𝐾+1
𝑟=1

∑𝐾+1
𝑠=1 𝛽𝑟𝑠 = 1, the scale parameter 𝜏 > 0, and

e𝑟 ,𝑠 is the vector with elements equal to zero except for the 𝑟, 𝑠-th entry that is equal to 1.

The contours of this considered model are denoted by “DFD”. A particular valuable aspect of this
model is its ability to model positive correlation of p (Ferreira et al., 2022) which is theoretically not
possible with the usual Dirichlet distribution.

3. Practical Investigation
Using 𝑑𝑊 (1), this section investigates the effect that the different structural changes had on the
members of the considered Dirichlet family. The Dirichlet distribution is included as a base to
compare against but the differences between all members were included to ensure all possible
combinations of changes are investigated (see Figure 3). The structural changes which will be
explored include shifts in the distributions, distributional concentration changes, and the effect of
modes. This knowledge can advise and guide model selection, discrimination between similar
models, and measure model similarity which can advise future investigation and implementation
such as utilising alternative distributional structures as priors in (multivariate) Bayesian analysis.
The "transport" (Schuhmacher et al., 2020) package in R (R Core Team, 2021) has functions which
can be used to estimate the Wasserstein distance between two distributions, and can be extended to
any order between two sets of samples from different distributions (Ghaderinezhad et al., 2020).
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3.1 Considered Distributions
Figures 1 and 2 introduce the contour plots of the distributions that will be considered in this practical
investigation. Figure 1 displays the Dirichlet, noncentral Dirichlet and Dirichlet generator family
members and Figure 2 the flexible Dirichlet as well as two different 𝛽 combinations for the double
flexible Dirichlet distribution. It is essential to note that each column holds the same parameter
values for 𝜋 across all considered plots:

• The contours in the first column always consist of 𝜋1 = 4, 𝜋2 = 4 and 𝜋3 = 4.

• The contours in the second column always consist of 𝜋1 = 2, 𝜋2 = 4 and 𝜋3 = 4.

• The contours in the third column always consist of 𝜋1 = 10, 𝜋2 = 4 and 𝜋3 = 4,

and the rows containing the different considered candidates. Within these contours the different
parameter constructions are adjusted in order to apply and investigate the structural changes with the
use of 𝑑𝑊 . These changes are obtained through the different distributional parameters (λ, 𝜃, 𝜏,β)
for each of the distributions introduced in Section 2.

Figure 3 consists of a heat map which displays 𝑑𝑊 between all considered distributions. It can be
seen that those comparisons with the green and yellow colours resulted in larger 𝑑𝑊 results with 𝑑𝑊
decreasing as the colours become darker blue.

3.2 Structural Change 1: Shift changes
When investigating the shift changes in all distributions, which occurs when the πs are changed, it
can be seen that the smaller shifts (seen when comparing column 1 with column 2 – see Figures 4
and 5) results in smaller 𝑑𝑊 results while the larger shift changes (seen when comparing column 1
and column 3) leads to larger 𝑑𝑊 . This is expected as we know that 𝑑𝑊 measures the amount of
work required to turn one distribution to another which will be greater for the larger shifts.

3.3 Structural Change 2: Noncentral effect
For this investigation, the structural shift as well as the noncentral effect were explored comparing
the Dirichlet (2) and noncentral Dirichlet (3) distribution. Even though the shifts seem similar to the
small shifts investigated in Section 3.2, the noncentral effect that also comes into effect increased the
size of the 𝑑𝑊 . This is expected as it is no longer just a structural shift that needs to be considered
but also a slight change in the distributional form. The third comparison shows a much smaller 𝑑𝑊
which, when compared to the other plots, show that the smaller centroid shift had a much smaller
effect than the larger centroid shift in the other two plots.

3.4 Structural Change 3: Influence of modes
The first investigation considers the addition of three modes and is done by comparing the Dirichlet
distribution (2) and the double flexible Dirichlet distribution (6) – see Figure 7. We see a slightly
higher 𝑑𝑊 in the third plot with the distribution more closely condensed around the centroid. This is
the case for both investigations in this section.

The second investigation compares the base model from the Dirichlet distribution (2) with the 6
modes of the DFD distribution (6) – see Figure 8. We can see that the 𝑑𝑊 are larger than in the
instance when we compared against 3 modes in the above step.
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Figure 1. Contours of Dirichlet (2), noncentral Dirichlet (3), and Dirichlet generator (4) distributions.
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Figure 2. Contours of the flexible (5) and double flexible Dirichlet (6) distributions.
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Figure 3. 𝑑𝑊 results between all distributions considered with parameters as indicated in Figure 1
and 2.
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Figure 4. Shifted contours of the distributions being considered.
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Figure 5. Shifted contours of the distributions being considered.
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Figure 6. Contours when investigating the noncentral effect.

Figure 7. Contours when investigating the first mode’s effect.

Figure 8. Contours when investigating the second mode’s effect.
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4. Conclusions and future work
The valuable insights found in this paper highlight the benefit of using this distance measure to
discriminate between the members from the family of Dirichlet distributions considered here. Un-
derstanding how these distributions differ and how they are related guides the use of these distributions
in both practical and theoretical domains. When different structures of distributions are available it is
important to determine if the use and implementation of a more complex (multivariate) distributional
form will add value to an investigation and how these generalisations differ from the base Dirichlet
distribution.

Future work include investigations into the use Wasserstein Impact Measure (WIM), as introduced
by Ghaderinezhad et al. (2021), when the generalised Dirichlet distributions are considered as priors
in a Bayesian analyses. In this way, the practitioner may determine if a more complex prior added
valuable information to the posterior distribution or if the base, less complicated Dirichlet distribution,
should rather be used as a prior.
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The conventional parametric approach for financial risk measure estimation in-
volves determining an appropriate quantitative model, as well as a suitable historical
sample period in which the model can be trained. While a lion’s share of the exist-
ing literature entertains the identification of the most appropriate model for different
types of financial assets, or across conflicting market conditions, little is known
about the optimal choice of a historical sample period size (or window size) to train
the model and estimate model parameters. In this paper, we propose a method to
identify an optimal window size for model training when estimating risk measures,
such as the widely-utilised Value-at-Risk (VaR) or Expected Shortfall (ES), under
the generalised hyperbolic subclasses. We show that the accuracy of VaR estimates
may increase significantly through our proposed method of optimal window size
detection. In particular, our results demonstrate that, by relaxing the usual restric-
tion of a fixed window size over time, superior VaR forecasts may be produced as a
result of improved model parameter estimates.

Keywords: Hyperbolic, MSCI, Normal-inverse Gaussian, Value-at-Risk, Variance-gamma,
Window size.

1. Introduction
An increasing number of studies in the ongoing literature has been dedicated to modelling the
behaviour and characteristics of financial time series. Noticeably, a significant portion of these
studies also includes contributions toward the estimation of financial risk measures. To adequately
estimate financial risk measures, a robust methodology that can unequivocally describe the continuous
movements of the time series needs to be identified at the onset. Subsequently, a procedure is
implemented to accurately estimate the respective risk measures. Such a procedure typically involves
specifying a sample period size (or window size) to employ the historical data for model training and
the estimation of model parameters. This is usually imposed through a rule-of-thumb method instead
of an adequate optimisation approach. However, errors in the estimation of model parameters may
be exacerbated through an opaque choice of window sizes, leading to inferior risk measure estimates.
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Notwithstanding the above, there is a shortfall in the current literature on the identification of an
optimal window size to effectively estimate model parameters when forecasting risk measures (such
as VaR or ES). In practice, window sizes are often arbitrarily selected without any clear consensus
or robust methodology. However, evidence from a number of prior research papers suggest that most
estimation procedures (parametric or non-parametric) are sensitive to changes in window size (see,
for example, Chen and Spokoiny, 2009; Halbleib and Pohlmeier, 2012; Sharma, 2012; Laker et al.,
2017). In particular, a larger window size often results in low variance of estimates but raises the risk
of modelling bias. On the contrary, small window sizes produce estimates that react efficiently to
changing market conditions, but suffers from larger variations. Hence, the identification of an optimal
window size becomes a critical task. Related studies on improving parameter estimation includes, but
is not limited to, exponential smoothing, structural breaks, regime switching and adaptive point-wise
estimation (see Čížek et al., 2009).

A wealth of models and methods for risk measure estimation have already been proposed in the
existing body of knowledge. Prominent methodologies include, among others, the use of extreme
value analysis (McNeil and Frey, 2000), the generalised lambda distribution (Corlu and Corlu, 2015)
and quantile regression (Engle and Manganelli, 2004). In this paper, we focus on another popular
class of distributions for describing financial returns, namely the generalised hyperbolic distributions
(GHDs), when estimating risk measures. Such family of distributions are particularly suitable for
capturing stylised facts, such as asymmetric and varying tail behaviours (including semi-heavy and
heavy tails), embedded within financial data. The novel work of Eberlein and Keller (1995) was
among the first to apply these extreme value distributions to financial modelling. The successes of
GHDs in modelling financial data were further advocated by various subsequent studies, such as
Eberlein and Prause (2002), Aas and Haff (2006), Hu and Kercheval (2007), and Huang et al. (2014),
among others.

In this paper, we first deploy a GARCH(1,1) model in describing the daily returns volatility of our
chosen dataset, the MSCI All Country World Index (ACWI). Specifically, we allow the distribution
of the resulting GARCH(1,1) innovations to follow different subclasses of the GHDs (namely, the
hyperbolic (HYP), the normal-inverse Gaussian (NIG), the generalised hyperbolic skewed-t (GHSt)
and the variance-gamma (VG) subclasses). We show that the resulting VaR estimates, using the
above models, can change considerably across different window sizes on the same out-of-sample set.
This challenges the common practice of utilising an arbitrary fixed window size, and motivates a
need for determining optimal window sizes when estimating risk measures.

We contribute to the existing literature by proposing a method to identify the required optimal
window size, and show that such a method may effectively improve the estimation of model parameters
and the resulting VaR forecasts. Furthermore, we proceed with a method that follows a daily
rolling window procedure to detect an optimal size for each iteration. Our findings demonstrate the
importance of relaxing the usual fixed window size restriction, and allow for time-varying window
sizes when forecasting VaR. To the best of the authors’ knowledge, there exists no literature relating
to window size optimisation in VaR estimation under the GHD framework. In addition, although
prior research exists in identifying systematic breaks (or structural breaks) and the maximum period
of stability (see, for example, Spokoiny, 2009; Härdle et al., 2003), very few have been applied under
the GHD framework. Hence, our study also provides further insight towards the limited research on
GHDs’ benefits in financial risk modelling.
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The remainder of this paper proceeds as follows. In Section 2, we present the VaR methodology.
Discussions around the subclasses of GHDs and optimal window size derivations are provided in
Sections 3 and 4, respectively. Finally, we reveal our empirical results in Section 5 and conclude the
paper in Section 6.

2. Value-at-Risk
While there are criticisms on the use of VaR, it remains a popular benchmark risk measure among
banks and financial institutions for evaluating and estimating financial risks. In particular, it is
directly linked to the adequate amount of market risk capital that financial entities must set aside to
compensate for unprecedented large losses, as recommended by the Basel Committee on Banking
Supervision. Even with the ongoing migration towards the more sophisticated Expected Shortfall
as a measure of risk, in accordance with Basel III, VaR continues to be widely utilised by market
participants in conjunction. Hence, further research to improve the forecast of VaR may continue to
bear fruit for the fragile financial sector.

Formally, VaR is defined as a threshold amount such that the probability of the realised loss on a
portfolio, over a given time horizon, exceeding this value is equal to a pre-specified confidence level.
For a sequence of daily log-returns, 𝑅𝑡 , on an existing portfolio, we assume 𝑅𝑡 = 𝜇𝑡 +𝜎𝑡𝑍𝑡 , where 𝑍𝑡
represents the innovation characterised by some marginal distribution 𝐹𝑍 (𝑧). The parameters 𝜇𝑡 and
𝜎𝑡 are measurable with respect to Ω𝑡−1, all information on the process up to time 𝑡 − 1. Furthermore,
if 𝐹𝑅 (𝑟) denotes the distribution of 𝑅𝑡 , we can deduce that

𝐹𝑅𝑡+1 |Ω𝑡 (𝑟) = 𝑃 (𝜇𝑡+1 + 𝜎𝑡+1𝑍𝑡+1 ≤ 𝑟 | Ω𝑡 ) = 𝐹𝑍
(
𝑟 − 𝜇𝑡+1
𝜎𝑡+1

)
. (1)

Consequently, we can express VaR for day 𝑡 + 1, with probability of exceedance equal to 1 − 𝑝, as

VaR𝑝 (𝑡 + 1) = 𝜇𝑡+1 + 𝜎𝑡+1𝑧𝑝 , (2)

where 𝑧𝑝 denotes the lower 𝑝𝑡ℎ quantile of 𝑍𝑡 . For forecasting purposes, we need to first specify a
model for the dynamics of the mean, 𝜇𝑡+1, and volatility, 𝜎𝑡+1. We utilise the celebrated GARCH(1,1)
process for the volatility and the AR(1) process for the mean, i.e.,

𝜎2
𝑡+1 = 𝛼0 + 𝛼1𝜀

2
𝑡 + 𝛽𝜎2

𝑡 and 𝜇𝑡+1 = 𝜙𝑅𝑡 , (3)

where 𝜀𝑡 = 𝜎𝑡𝑍𝑡 , 𝛼0 > 0, 𝛼1 ≥ 0, 𝛽 ≥ 0, 𝛼1 + 𝛽 < 1, and 𝜙 is the AR(1) coefficient.
Following McNeil and Frey (2000), we fit the GARCH(1,1) model using a pseudo maximum

likelihood (PML) procedure, which minimises the assumptions about the distribution of innovations,
and estimates 𝜇𝑡+1 and 𝜎𝑡+1 using standard one-day ahead forecasts. We further suggest this to be
amalgamated with the assumption that the innovations are distributed according to a GHD subclass,
and estimate the resulting 𝑧𝑝 accordingly. This may then be implemented in a rolling window
procedure to produce daily out-of-sample forecasts of VaR. Consequently, as per standard procedure,
the resulting forecasts are then backtested against the realised daily returns observed. We utilised two
widely-accepted backtests for VaR, namely, the Kupiec likelihood ratio test (Kupiec, 1995) and the
Christoffersen conditional coverage test (Christoffersen et al., 2001). While the former tests for the
unconditional coverage of the correct number of exceedances in our VaR estimates, the latter tests
for the conditional coverage.
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3. Generalised hyperbolic distributions (GHD)
GHDs, such as the HYP, NIG, VG and GHSt distributions, have the ability to cater for asymmetric,
heavy and semi-heavy tailed datasets. They enable researchers to model data across a wide variety of
disciplines, including finance and economics. By adequately capturing the above-mentioned stylised
facts embedded in financial data, the resulting VaR estimates may also be greatly improved (see,
for example, Huang et al., 2014). In this section, we shall introduce the full GHD and its range of
subclasses.

3.1 The full GHD model
The probability density function (pdf) of the full GHD is given by

𝑓𝐺𝐻𝐷 (𝑥) =
(
𝛼2 − 𝛽2)𝜆/2 (

𝛿2 + (𝑥 − 𝜇)2) (𝜆−1/2)/2
𝐾𝜆−1/2

(
𝛼
√︁
𝛿2 + (𝑥 − 𝜇)2

)
exp(𝛽(𝑥 − 𝜇))

√
2𝜋𝛼𝜆−1/2𝛿𝜆𝐾𝜆

(
𝛿
√︁
𝛼2 − 𝛽2

) , (4)

where 𝐾 𝑗 is the modified Bessel function of the third kind with order 𝑗 (Abramowitz and Stegun,
1972), and 𝜇 is the location parameter. It should also be noted that the domain of the parameters
must satisfy the following conditions

𝛿 > 0, |𝛽 | < 𝛼, if 𝜆 = 0,
𝛿 > 0, |𝛽 | ≤ 𝛼, if 𝜆 < 0,
𝛿 ≥ 0, |𝛽 | < 𝛼, if 𝜆 > 0,

where 𝛿 serves as a scaling factor, 𝛼 determines the shape, 𝛽 determines the skewness, and𝜆 influences
the kurtosis (Necula, 2009). We utilise the maximum likelihood estimation (MLE) for parameter
estimates of all GHD subclasses. The various subclasses of the GHD can be obtained by considering
different assumptions and asymptotic behaviours of the parameters above. We demonstrate this in
the sequel.

3.2 The Hyperbolic (HYP) distribution
The HYP distribution (with 𝜆 = 1) allows us to determine the shape of the distribution by controlling
both the gradient and skewness parameters. The HYP distribution is characterised by having a
hyperbolic log-density function and exponential tails. A random variable follows the HYP distribution
if its pdf is given by

𝑓𝐻𝑌𝑃 (𝑥) =
√︁
𝛼2 − 𝛽2

2𝛼𝛿𝐾1

(
𝛿
√︁
𝛼2 − 𝛽2

) 𝑒−𝛼√𝛿2+(𝑥−𝜇)2+𝛽 (𝑥−𝜇) , (5)

where 𝐾1 denotes the Bessel function of the third kind with order 1. The parameters 𝛼 and 𝛽, with
𝛼 > 0 and 0 ≤ |𝛽 | < 𝛼, represent the gradient and the skewness, respectively. Finally, 𝛿 > 0 is the
scale parameter and 𝜇 ∈ 𝑅 is the location parameter.

3.3 The Normal-Inverse Gaussian (NIG) distribution
The NIG distribution is well-known for its ability to capture the asymmetric semi-heavy tails of
financial returns (Andersson, 2001; Venter and de Jongh, 2002). In particular, the NIG distributions
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are most appropriate when the two extreme tails of the returns distribution to be modelled are not
too heavy (Aas and Haff, 2006). The pdf of the NIG, as a subclass of GHDs with 𝜆 = −1/2, can be
expressed as

𝑓𝑁𝐼𝐺 (𝑥) = 𝛼𝛿

𝜋
𝑒𝛿
√
𝛼2−𝛽2+𝛽 (𝑥−𝜇)

𝐾1

(
𝛼
√︁
𝛿2 + (𝑥 − 𝜇)2

)
√︁
𝛿2 + (𝑥 − 𝜇)2

, (6)

where 𝐾1 denotes the Bessel function of the third kind with order 1.

3.4 The Variance-Gamma (VG) distribution
The VG distribution has tails that decrease less rapidly than that of a Gaussian distribution. Such a
characteristic makes the VG a suitable model for phenomena where extreme values are more probable
than in the case of a Gaussian distribution, such as logarithmic returns from financial assets (Madan
and Seneta, 1990). We attain the pdf of the VG distribution from the full GHD when 𝜆 > 0 and
𝛿 → 0. Hence, we have

𝑓𝑉𝐺 (𝑥) =
(
𝛼2 − 𝛽2)𝜆 |𝑥 − 𝜇 |𝜆−1/2𝐾𝜆−1/2 (𝛼 |𝑥 − 𝜇 |)√

𝜋Γ(𝜆) (2𝛼)𝜆−1/2 𝑒𝛽 (𝑥−𝜇) , (7)

where 𝐾 (𝜆−1/2) denotes the Bessel function of the third kind with order 𝜆 − 1/2.

3.5 The Generalised Hyperbolic Skewed-t (GHSt) distribution
Finally, the pdf of the GHSt distribution is obtained by letting 𝛼 → |𝛽 | in the full GHD. This results
in the following expression

𝑓𝐺𝐻𝑆𝑡 (𝑥) =
21/2+𝜆𝛿−2𝜆 |𝛽 |1/2−𝜆𝐾1/2−𝜆

(√︃
𝛽2 (

𝛿2 + (𝑥 − 𝜇)2) ) exp(𝛽(𝑥 − 𝜇))

Γ(−𝜆)√𝜋
(√︁
𝛿2 + (𝑥 − 𝜇)2

)1/2−𝜆 , (8)

for 𝛽 ≠ 0 and 𝜆 < 0. If 𝛽 = 0, we obtain the non-central (scaled) Student’s 𝑡-distribution. Notably,
the GHSt distribution exhibits one heavy polynomial tail and one semi-heavy exponential tail. This
unique property makes the GHSt distribution particularly dissimilar to the range of subclasses
mentioned above. More importantly, it allows the GHSt distribution to uniquely model skewed data
with dissimilar tail behaviours, which are commonly observed in financial data (Aas and Haff, 2006).

4. Optimal window size
The choice of an appropriate window size can affect the resulting model parameter estimates, and
consequently the accuracy of the final VaR forecasts. However, identifying an optimal window size
remains a difficult task. In the current literature, most analyses are conducted by utilising a fixed
window size that is arbitrarily chosen according to a rule-of-thumb, or is only tested against a few
alternative choices in order to determine an appropriate size. The chosen window size is then used
to perform a rolling window procedure to estimate VaR at each time step of the out-of-sample data.
Even though such methods of window size selection are deemed reasonable by prior studies, it can
produce biased parameter estimations and inadequate VaR forecasts as a result. To remedy such
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drawback, a more effective procedure that can accommodate varying window sizes at each time step
needs to be derived. Moreover, for robustness, the said procedure needs to optimise some criterion
related to time homogeneity. In our current study, we deploy five different criteria for selecting an
optimal window size at each rolling window iteration. The window sizes are chosen to either (i)
minimise or maximise the standard deviation; (ii) minimise or maximise the kurtosis; or (iii) include
a change-point with a fixed right-end point. While the reasons for our choice of (i) and (ii) are more
apparent for risk measure focus, with the estimation of tail events, the justification for (iii) is more
inline with the notion of structural breaks detection in a given dataset.

A change-point is defined as a location in the dataset in which the statistical properties of the
sequence experiences a significant change. We identify change-points optimally using the at-most-
one-change-point (AMOC) procedure (Silva and Teixeira, 2008) and the binary segmentation (Bin-
Seg) procedure (Scott and Knott, 1974), with variance as the optimisation measure. The detection
of a change-point can be viewed as a hypothesis test, whereby the null, 𝐻0, corresponds to no
change-point, and the alternative, 𝐻1, advocates the existence of a change-point. The likelihood ratio
method (i.e., AMOC) involves calculating the maximum likelihood under both hypotheses above.
Subsequently, the ratio is maximised over all possible change-point locations. The BinSeg approach,
on the other hand, is a generalisation of the AMOC, whereby the data sequence is segmented into
two parts once a change-point is detected. Finally, each segment is then tested for change-points and
the process continues until a pre-specified threshold is reached, or until no further change-points are
identified.

5. Data and Empirical Results
In our study of optimal window size detection and the proposed varying window size approach, we
use daily log-returns of the MSCI ACWI index over a 15-year period, ranging from 27 August 2001
to 25 August 2016. The MSCI ACWI is a flagship global index that aims to capture equity returns
of large- and mid-cap stocks across 23 developed and 24 emerging markets. This offers investors a
fully integrated view of exposure to all sources of equity returns using just a single index.

Table 1 shows the descriptive statistics of the original return series over the entire sample period,
as well as the resulting innovations after fitting the GARCH(1,1) model to the same data. The large
excess kurtosis of the original return series is a common characteristic found in financial data, which
implies a vast tail deviation from that of the Gaussian distribution. In addition, we observe that the
resulting GARCH(1,1) innovations still exhibit heavy tails, albeit to a lesser degree. These are both
well-known stylised facts of financial time series (Cont, 2001).

Notably, the heavy-tails of the residuals are even more pronounced when we implement a rolling

Table 1. Summary statistics for MSCI ACWI and its GARCH innovations.

Data Mean Std. dev. Min Max Excess Skewness
kurtosis

ACWI −0.000130 0.010289 −0.089030 0.073713 8.172448 0.396315

Innovations 0.041017 0.999549 −3.841127 6.237750 1.311213 0.303292
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Figure 1. Rolling excess kurtosis for ACWI returns and its GARCH innovations (1000-day rolling
window size).

window procedure to analyse the varying kurtosis over time. Figure 1 records the time-varying
excess kurtosis of the original return series, as well as the corresponding innovations, when iterated
at each time step through a 1000-day rolling window procedure. It is evident that the conditional
kurtosis can deviate significantly from that of a Gaussian distribution at isolated time periods within
the return series (as depicted by the sudden spikes and long periods of consistent non-zero values).

To encapsulate the effects of window size selection, we first conduct a VaR estimation procedure
using a fixed window size approach. Our estimation procedure is then repeated across a range of
different window sizes on the same dataset. Specifically, we will estimate the rolling window daily
VaR at each time step of the out-of-sample period (from day 1501) using fixed window sizes ranging
from 100 to 1500 days (at 25-day increments). For each window size, we forecast the daily VaR
using the GARCH(1,1) filter with a conditional distribution following a GHD subclass. Finally, the
sequence of VaR estimates are then backtested against the actual daily returns observed, and the
respective 𝑝-values recorded.

Under both the Kupiec likelihood ratio and the Christoffersen conditional coverage tests, where
the null hypothesis advocates for the model being ‘correct’ or well-specified, a higher 𝑝-value is
desired. In Table 2, we present the mean, standard deviation, minimum, maximum and coefficient
of variation (CV) of the different 𝑝-values obtained for both backtests across the various GHD
subclasses. Interestingly, across all GHD subclasses evaluated, a range of 400-500 days appears to
be the optimal choice when implementing a fixed window size. Figures 2 to 6 presents the changing
𝑝-values, for both the Kupiec and Christoffersen tests, across the range of fixed window sizes. These
observations provide further empirical evidence that the performance of VaR models may depend
heavily on the appropriate choice of window sizes. Apart from our explicit evidence to infer 400-500
days as an optimal range for window sizes, we observe that a larger window size tends to consistently
produce inferior VaR estimates across all GHD subclasses. On the contrary, smaller window sizes,
which allows more emphasis on recent market data, tends to provide more ideal VaR estimates.

To implement a varying window size selection process, within a rolling window procedure, an
optimising criterion is needed to determine an adequate window size at each iteration. We shall utilise
a wide range of different criteria and compare the resulting model performances through the two
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Table 2. Summary statistics of VaR backtesting 𝑝-values from Kupiec and Christoffersen tests, using
rolling fixed window sizes ranging from 100 to 1500 days, at the 97.5% VaR level.

GHD VaR test Mean Std. dev. Min Max Window size CV
subclass for max

𝐺𝐻𝐷 Kupiec 0.006118 0.006207 0.000731 0.037242 400 1.014557
Christoffersen 0.021915 0.018777 0.002515 0.107563 400 0.856805

𝐻𝑌𝑃 Kupiec 0.006556 0.006174 0.000478 0.027580 400/475 0.941610
Christoffersen 0.023240 0.019076 0.001644 0.084333 400/475 0.820814

𝑁𝐼𝐺 Kupiec 0.006569 0.006794 0.000310 0.037242 400 1.034228
Christoffersen 0.023146 0.020220 0.001061 0.107563 400 0.873588

𝑉𝐺 Kupiec 0.003027 0.003771 0.000198 0.027580 400 1.245834
Christoffersen 0.011702 0.011861 0.000676 0.084333 400 1.013565

𝐺𝐻𝑆𝑡 Kupiec 0.005125 0.005726 0.000478 0.037242 400 1.117432
Christoffersen 0.018682 0.017402 0.001644 0.107563 400 0.931458

Figure 2. 𝑝-values of Kupiec and Christoffersen tests for rolling fixed window sizes ranging from
100 to 1500 days when using GHD.

Figure 3. 𝑝-values of Kupiec and Christoffersen tests for rolling fixed window sizes ranging from
100 to 1500 days when using HYP.
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Figure 4. 𝑝-values of Kupiec and Christoffersen tests for rolling fixed window sizes ranging from
100 to 1500 days when using NIG.

Figure 5. 𝑝-values of Kupiec and Christoffersen tests for rolling fixed window sizes ranging from
100 to 1500 days when using VG.

Figure 6. 𝑝-values of Kupiec and Christoffersen tests for rolling fixed window sizes ranging from
100 to 1500 days when using GHSt.
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Table 3. VaR backtesting 𝑝-values from Kupiec and Christoffersen tests under varying window sizes
across different optimising criteria.

GHD VaR Max. Min. std. Max Min Change-point
subclass test std. dev. dev. Kurtosis Kurtosis AMOC BinSeg

𝐺𝐻𝐷 Kupiec 0.176607 < 0.000001 0.002444 0.005169 0.020189 0.027580
Christoffersen 0.332875 0.000004 0.010141 0.019968 0.065124 0.084333

𝐻𝑌𝑃 Kupiec 0.176607 < 0.000001 0.002444 0.005169 0.020189 0.010451
Christoffersen 0.332875 0.000001 0.010140 0.019968 0.065124 0.037132

𝑁𝐼𝐺 Kupiec 0.140315 < 0.000001 0.003574 0.003574 0.010451 0.014609
Christoffersen 0.287102 0.000001 0.014331 0.014331 0.037132 0.049541

𝑉𝐺 Kupiec 0.176607 < 0.000001 0.001652 0.005169 0.020189 0.014609
Christoffersen 0.332875 < 0.000001 0.007076 0.019968 0.065124 0.049541

𝐺𝐻𝑆𝑡 Kupiec 0.140315 < 0.000001 0.001652 0.002444 0.010451 0.014609
Christoffersen 0.287102 < 0.000001 0.007076 0.010141 0.037132 0.049541

standard backtests. Firstly, we select an optimal window size for each iteration of the rolling window
according to a maximum standard deviation, minimum standard deviation, maximum kurtosis and
minimum kurtosis, over the different window sizes ranging from 100 to 1500 days (at 25-day
increments). Secondly, we utilise two change-points procedures, namely, AMOC and BinSeg, for
identifying the change-point(s) within each rolling window (with the base window size set to 1500
days). For AMOC, the period between the change-point and the most right-end point in a given
rolling window is selected. For BinSeg, the period between the largest change-point and the most
right-end point of the rolling window is selected instead. Finally, the different VaR estimates are
obtained through the various optimal window sizes detected per criteria and backtested accordingly.

Table 3 presents the Kupiec test and Christoffersen test 𝑝-values for the varying window size
procedure using the different optimisation methods mentioned above. The minimum standard devia-
tion, maximum kurtosis and minimum kurtosis appears to be inadequate as optimising criteria, each
exhibiting poorer results in comparison to the average performance of the alternative fixed window
size approach (as shown in Table 2). Surprisingly, while producing superior results to that of the
above-mentioned trio, the two change-point procedures seem to be marginally better or on par with
the average performance of using fixed window sizes (at a 5% confidence level). However, both
AMOC and BinSeg are still less robust than using an optimal fixed window of 400 days (when such a
window size may be determined a priori). The selection of varying window sizes through maximum
standard deviation overwhelmingly outperforms the alternative criteria, as well as the fixed window
approach. It also consistently produces the highest 𝑝-values among all criteria across the various
GHD subclasses. Overall, our results also demonstrate that a GARCH(1,1) with a conditional distri-
bution of either the GHD, HYP or VG is the most robust model for forecasting VaR in MSCI ACWI
returns.

Figure 7 shows the changing window sizes at each rolling window iteration for the maximum
standard deviation, AMOC and BinSeg optimising criteria. Notably, the changes in optimal varying
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Figure 7. Varying window sizes over time using various selection criteria (red = max standard
deviation, green=AMOC, blue=BinSeg).

window sizes over time also reflect the market conditions that ensued. For instance, the recommended
optimal window size contracts sharply during periods of market distress, which adequately allows
rolling windows to capture more recent data that better represents the prevailing market downturn.
This is clearly exemplified by the infamous 2008 Global Financial Crisis, the subsequent Eurozone
crisis, as well as the 2015-2016 selloff triggered by the Chinese stock market turbulence (as depicted
in Figure 7). While both the maximum standard deviation and BinSeg criteria are efficient in
following market trends, the AMOC, with the restriction of at most one change-point detection, tend
to suffer from excessive lags in its response.

6. Limitations and concluding remarks
In this paper, we examine how the accuracy of VaR estimates, under conditional GHD subclasses,
may vary depending on the choice of an appropriate window size when estimating model parameters.
Forecasting performances were measured according to the widely-accepted Kupiec likelihood ratio
and the Christoffersen conditional coverage tests. Evidently, our analyses showed that the robustness
of VaR models rely heavily on the appropriate selection of window sizes for parameter estimation. In
order to identify an optimal window size (for each rolling window iteration), we investigated several
possible optimisation methods to enable a time-varying window size procedure, and compared our
results to that of the classical fixed window implementation. The optimising criteria employed to
select a suitable varying window size were given by either maximising or minimising the standard
deviation, maximising or minimising the kurtosis, using an AMOC procedure, or using a BinSeg
procedure. It is worthwhile noting that the AMOC and BinSeg procedures appeared to be only as
good as the average performance of the fixed window size approach, and worse off when an optimal
fixed window size is utilised. Maximising the standard deviation under the varying window size
approach seemed to produce the best risk forecasting results under the GHD framework. Our findings
advocate the critical need to optimise window sizes prior to parameter estimation when forecasting
VaR. Moreover, it is necessary to relax the usual restriction of a fixed window size, and allow for
time-varying window sizes instead. Lastly, it is necessary to evaluate a range of optimising criteria
in order to identify the most appropriate criterion to deploy.

An important caveat to our study is the limited number of criteria investigated for optimal window
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size selection. Further research may include implementing other attractive methods, such as the
adaptive pointwise estimation (see Čížek et al., 2009) or segment neighbourhood procedure for
change-point identification (see Auger and Lawrence, 1989), and analysing the accuracy of resulting
VaR forecasts. Additionally, it may be worthwhile to explore whether the suitability of selection
criteria, or procedure, may change significantly under different market conditions (when certain
stylised facts may become extreme), or when different distributional assumptions for the data series
are implemented. Finally, with the recommended migration towards Expected Shortfall (as per the
latest Basel Accords), further studies of optimal window sizes detection to improve ES estimation is
paramount.
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An investigation on the use of Bernstein polynomials in entropy
estimation

Shawn C. Liebenberg
North-West University

Entropy estimation has become an important component in many fields of research.
Among the many developed procedures for estimating entropy, spacing and kernel
density based procedures have become the most prominent. Kernel density estimation
is plagued by boundary bias that potentially carry over to the corresponding entropy
estimators. This study introduces two new Bernstein based entropy estimators and
aims to investigate Bernstein polynomial density estimation in entropy estimation as
a remedy to the boundary bias problem. It was found that the Bernstein based entropy
estimators performed very well against the spacing and kernel density estimators
used in this study.
Keywords: Bernstein polynomials, Bias reduction, Density estimation, Entropy estimation.

1. Introduction
Entropy is generally thought of as a measure of uncertainty in the outcome of a random process. Since
the introduction of entropy by Shannon (1948), it has become a building block of information theory.
It has further found use in areas such as the study of languages (see Ratnaparkhi, 1997), Biology
(see Adami, 2004), economics (see Maasoumi and Racine, 2002) and astronomy (Cincotta et al.,
1999). From a data analysis point of view, the estimation of entropy is of increasing importance. An
abundance of literature exists on this topic ranging from the nonparametric estimation of differential
entropy of a continuous random variable (see Beirlant et al., 1997) to more generalised entropy
measures used in data analysis (see Pompe, 1994). In this paper, our interest lies in the estimation
of the entropy for a random variable 𝑋 and specifically in estimating the entropy with the use of
Bernstein polynomial density estimators. To formally proceed, let 𝑋1, 𝑋2, . . . 𝑋𝑛 be independent,
identically distributed (i.i.d.) valued random variables of size 𝑛 with absolutely continuous density
function 𝑓 (𝑥) and distribution function 𝐹 (𝑥). Furthermore, let 𝑋(1) , 𝑋(2) , . . . 𝑋(𝑛) be order statistics
such that 𝑋(1) < 𝑋(2) < · · · < 𝑋(𝑛) . The entropy of the random variable 𝑋 is then defined as

H 𝑓 = E [− log 𝑓 (𝑥)] = −
∫ ∞

−∞
𝑓 (𝑥) log 𝑓 (𝑥)d𝑥. (1)

Vasicek (1976) considered the nonparametric estimation of this quantity by noting that (1) can be
expressed in the form

H 𝑓 =
∫ 1

0
log

{
d

d𝑝
𝐹−1 (𝑝)

}
d𝑝 =

∫ 1

0
log

{
1

𝑓 (𝐹−1 (𝑝))

}
d𝑝. (2)
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Consequently, by replacing the distribution function 𝐹 (𝑥) by its empirical counterpart 𝐹𝑛 (𝑥) =
𝑛−1 ∑𝑛

𝑖=1 𝐼 (𝑋𝑖 ≤ 𝑥) and using a difference operator rather than the differential operator, the slope
can be estimated by d/d𝑝 𝐹−1 (𝑝) = (𝑛/2𝑟){𝑋(𝑖+𝑟 ) − 𝑋(𝑖−𝑟 ) }. This ultimately leads to the entropy
estimator

𝐻𝑉𝑛,𝑟 = 𝐻𝑟 (𝑋1, 𝑋2, . . . , 𝑋𝑛) = 1
𝑛

𝑛∑︁
𝑖=1

log
{ 𝑛
2𝑟

(
𝑋(𝑖+𝑟 ) − 𝑋(𝑖−𝑟 )

)}
, (3)

where 𝑟 is a positive, integer valued window-width such that 𝑟 ≤ 𝑛/2, and 𝑋(𝑖) = 𝑋(1) , if 𝑖 < 1 and
𝑋(𝑖) = 𝑋(𝑛) , if 𝑖 > 𝑛. Since the inception of the Vasicek entropy estimator, many adjusted or modified
versions have been suggested. Van Es (1992) proposed another spacing based entropy estimator
derived from estimation of the functionals of the density

𝐻𝑉𝐸𝑛,𝑟 =
1

𝑛 − 𝑟
𝑛−𝑟∑︁
𝑗=1

log
{
𝑛 + 1
𝑟

(
𝑋( 𝑗+𝑟 ) − 𝑋( 𝑗 )

)} + 𝑛∑︁
𝑘=𝑟

1
𝑘
+ log(𝑟) − log(𝑛 + 1).

Ebrahimi et al. (1994) proposed a weighted version of Vasicek’s estimator that take the truncation
around the smallest and the largest data points into account:

𝐻𝐸𝑛,𝑟 =
1
𝑛

𝑛∑︁
𝑖=1

log
{
𝑛

𝑐𝑖𝑟

(
𝑋(𝑖+𝑟 ) − 𝑋(𝑖−𝑟 )

)}
,

where

𝑐𝑖 =




1 + 𝑖−1
𝑟 , 1 ≤ 𝑖 ≤ 𝑟,

2, 𝑟 + 1 ≤ 𝑖 ≤ 𝑛 − 𝑟,
1 + 𝑛−𝑖

𝑟 , 𝑛 − 𝑟 + 1 ≤ 𝑖 ≤ 𝑛.
Furthermore, Correa (1995) proposed a modification of the Vasicek estimator by using a local linear
model approach in the interval (𝑋(𝑖+𝑟 ) , 𝑋(𝑖−𝑟 ) ), and Zamanzade and Arghami (2012) noted that
the Ebrahimi estimator underestimates the entropy for small sample sizes and proposed a further
modification. In addition, entropy estimates based on kernel density estimation were introduced
by Dmitriev and Tarasenko (1974) and later studied by Ahmad and Lin (1976), Hall and Morton
(1993), and Bouzebda and Elhattab (2014). However, it is well known that kernel density estimation
has difficulty estimating the boundaries of a density. This is especially evident when dealing with
non-negative variable support in which case the kernel density estimate introduces large bias at
the boundaries. The bias is caused by the kernel density estimate giving weight to the area of the
bandwidth that falls outside of the data range (see Wand and Jones, 1994). This, in turn, could affect
the entropy estimation based on the kernel density estimate.

Many statistical procedures have been developed that make use of entropy and consequently, entropy
estimators. For example, Robinson (1991) constructed an entropy based test for independence in
time series, Dudewicz et al. (1995) used an entropy based random number evaluation technique in an
effort to assess commonly used random number generators, Mudholkar and Tian (2002) presented an
entropy characterisation of the inverse Gaussian distribution and a subsequent goodness-of-fit test,
and Park and Park (2003) derived a piece-wise uniform distribution function of the sample entropy
and developed goodness-of-fit tests based on this nonparametric distribution functions.

The rest of the paper is outlined as follows. Section 2 will investigate the different Bernstein
polynomial entropy estimators and will present a theoretical motivation based on reduction of boundary
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bias for the use of these estimators. In Section 3, the finite sample performance of different entropy
estimators are investigated and compared to the Bernstein based estimators. Finally, Section 4 presents
the conclusion of the study and provides some avenues for future research.

2. Entropy estimators based on Bernstein polynomials
In this section the entropy estimator of Vasicek (1976) is discussed, followed by the kernel density
based entropy estimator of Ahmad and Lin (1976). Finally, existing Bernstein polynomial density
estimates are given and eventually two new entropy estimates are constructed.

As starting point, Vasicek (1976) remarks that the estimator proposed in (3) can be rewritten as the
three-part summation

𝐻𝑉𝑛,𝑟 := − 𝑛−1
𝑛∑︁
𝑖=1

log 𝑓 (𝑋𝑖) + 𝑛−1
𝑛∑︁
𝑖=1

log

[
𝐹

(
𝑋(𝑖+𝑟 )

) − 𝐹 (
𝑋(𝑖−𝑟 )

)
𝑓
(
𝑋(𝑖)

) {
𝑋(𝑖+𝑟 ) − 𝑋(𝑖−𝑟 )

}
]

+ 𝑛−1
𝑛∑︁
𝑖=1

log
[ 𝑛
2𝑟

{
𝐹

(
𝑋(𝑖+𝑟 )

) − 𝐹 (
𝑋(𝑖−𝑟 )

)}]
,

(4)

where the first term represents the sample mean estimate of H 𝑓 as defined in (1), the second term
represents the error brought on by estimation of 𝑓 by finite differences and the third term represents
the error brought on by estimating increments of the distribution 𝐹 by increments of the empirical
cumulative distribution function, 𝐹𝑛.

If it were possible to eliminate the error introduced by term two and three in (4), the only term
left to estimate would be 𝑛−1 ∑𝑛

𝑖=1 log 𝑓 (𝑋𝑖), which turns out to be the direct sample estimate of the
expectation in (1) with 𝑓 (𝑥) replaced by an appropriate empirical counterpart, �̂�𝑛 (𝑥). Indeed, Ahmad
and Lin (1976) considered the kernel density estimate of Parzen (1962) and Rosenblatt (1956) for
�̂�𝑛 (𝑥) which lead to the entropy estimator

𝐻𝐾𝑛,ℎ = −1
𝑛

𝑛∑︁
𝑖=1

log �̂�ℎ (𝑋𝑖), (5)

where �̂�ℎ (𝑥) = 𝑛−1 ∑𝑛
𝑖=1 𝑘ℎ (𝑥 − 𝑋𝑖), 𝑘ℎ (𝑢) = ℎ−1𝑘 (𝑢/ℎ) and ℎ is the bandwidth. This estimator

exhibits desirable properties but potentially suffers from the same boundary bias complications
inherent in kernel density estimation. A natural progression therefore, would be to use an estimator
�̂�𝑛 (𝑥) which reduces the boundary bias. In point of fact, a large variety of boundary bias reduction
techniques for kernel density estimation have been developed. See instances such as Schuster (1985),
Jones (1993) and Dai and Sperlich (2010). However, an interesting approach is density estimators that
are free of boundary bias such as Bernstein polynomial based density estimators.

The Bernstein polynomial density estimator was introduced by Vitale (1975) and further investigated,
for example, by Babu et al. (2002) and Kakizawa (2004). The estimator is given by

�̂�𝑛,𝑚 (𝑥) = 𝑚
𝑚−1∑︁
𝑗=0

[
𝐹𝑛

(
𝑗 + 1
𝑚

)
− 𝐹𝑛

(
𝑗

𝑚

)]
𝐵 𝑗 ,𝑚−1 (𝑥), (6)

where 𝐹𝑛 is the empirical cumulative distribution function, 𝐵 𝑗 ,𝑚 (𝑥) =
(𝑚
𝑗

)
𝑥 𝑗 (1 − 𝑥)𝑚− 𝑗 , 𝑚 ∈ N, are

binomial probabilities, and it is assumed that the underlying density 𝑓 has compact support (throughout
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taken to be [0,1]). It was shown by Leblanc (2010) that the bias of the Bernstein polynomial density
estimator is given by

B
[
�̂�𝑛,𝑚 (𝑥)

]
=

1
2 [(1 − 2𝑥) 𝑓 ′ (𝑥) + 𝑥(1 − 𝑥) 𝑓 ′′ (𝑥)]

𝑚
+ 𝑜

(
𝑚−1

)
, 𝑥 ∈ [0, 1],

and the variance by

V
[
𝑓𝑛,𝑚 (𝑥)

]
=



𝑚1/2
𝑛 𝑓 (𝑥) [4𝜋𝑥(1 − 𝑥)]−1/2 + 𝑜

(
𝑚1/2
𝑛

)
, for 𝑥 ∈ (0, 1)

𝑚
𝑛 𝑓 (𝑥) + 𝑜

(
𝑚
𝑛

)
, for 𝑥 = 0, 1,

if 𝑚, 𝑛 → ∞ such that 𝑚/𝑛 → 0. Taking the relation to the bandwidth as 𝑚 = 1/ℎ (see, Leblanc,
2010), it can be ascertained from the bias result that the density estimator has uniform bias throughout
its support and therefore does not have the typical boundary bias problem found in kernel density
estimators. However, this may come at the cost of higher bias than its kernel density counterpart in
general. In fact, Leblanc (2010) states that the bias is an increase from 𝑂 (ℎ2) to 𝑂 (ℎ). On the other
hand, the variance is of order 𝑂 (1/𝑛ℎ1/2) compared to the kernel estimation’s 𝑂 (1/𝑛ℎ). Ultimately,
the Bernstein estimator is shown by Leblanc (2010) to have a smaller mean integrated square error
(MISE) than the kernel density estimator. The aforementioned reduction in MISE and the absence
of the boundary bias problem should result in an improved entropy estimate when the Bernstein
estimator is used. To introduce the new Bernstein based entropy estimator, we write

𝐻𝐵𝑛,𝑚 = −1
𝑛

𝑛∑︁
𝑖=1

log �̂�𝑛,𝑚 (𝑋𝑖),

where �̂�𝑛,𝑚 (𝑥) is defined in (6). In an extension, bias reduced Bernstein estimators exist. An additive
Bernstein estimator was introduced by Leblanc (2010) and a multiplicitive estimator by Igarashi and
Kakizawa (2014). The discussion here will be restricted to the additive bias reduction case. The
additive bias reduced estimator takes the simple form

�̂�𝑛,𝑚,𝑀 (𝑥) = 𝑚

𝑚 − 𝑀 �̂�𝑛,𝑚 (𝑥) − 𝑀

𝑚 − 𝑀 �̂�𝑛,𝑀 (𝑥), 𝑚 > 𝑀.

This density estimator once again has uniform bias throughout its support and therefore is free of
boundary bias. Moreover, it improves the bias to 𝑂 (ℎ2) which is on par with that of the kernel density
estimator while still maintaining a variance of 𝑂 (1/𝑛ℎ1/2). The corresponding entropy estimator can
then be written as,

𝐻𝐶𝑛,𝑚,𝑀 = −1
𝑛

𝑛∑︁
𝑖=1

log �̂�𝑛,𝑚,𝑀 (𝑋𝑖).

Another approach using Bernstein estimators was given in Chaubey and Vu (2021) and is based
on a quantile density estimator using Bernstein polynomials. That is, using a sample version of the
formulation in (2), the quantile density (d/d𝑝 𝐹−1 (𝑝) = d/d𝑝 𝑄(𝑝)) is estimated by

𝑞𝑛,𝑚 (𝑝) = d
d𝑝
𝑄𝑛,𝑚 (𝑝) =

𝑚∑︁
𝑗=1

𝑋( 𝑗 )
𝑗 − 𝑚𝑝
𝑝(1 − 𝑝) 𝐵 𝑗 ,𝑚 (𝑝), 𝑝 ∈ (0, 1),
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and 𝐵 𝑗 ,𝑚 (𝑝) are again binomial probabilities. Interestingly, the estimator 𝑞𝑚,𝑛 (𝑝) is a special case of
the generalised estimator developed by Cheng and Parzen (1997). The entropy estimator based on the
quantile density estimator can be defined as

𝐻𝑄𝑛,𝑚 =
∫ 1

0
log 𝑞𝑛,𝑚 (𝑝) d𝑝.

Moreover, following the framework for the generalised estimator, a framework for an entropy estimator
based on the quantile density function can be formulated as

𝐻𝐺𝑛 =
∫ 1

0
log 𝑞𝐺𝑛 (𝑝)d𝑝,

where

𝑞𝐺𝑛 (𝑢) = d/d𝑢 𝑄𝐺𝑛 (𝑢) = d/d𝑢
∫ 1

0
�̃�𝑛 (𝑡)d𝑡𝐾𝑛 (𝑢, 𝑡),

�̃�𝑛 (𝑡) is a natural estimator of the quantile function, and 𝐾𝑛 (𝑢, 𝑡) is a cumulative distribution function
on [0,1]. However, Cheng and Parzen (1997) elucidate certain aspects on the choice of kernel and
the preservation of monotonicity for the practical implementation of the generalised estimator. It is
accepted by Theorem 3.1 in Cheng and Parzen (1997) that similar considerations do not carry over to
the Bernstein estimator, 𝑞𝑛,𝑚 (𝑝), when 𝑚 ≥ 3.

2.1 Practical considerations
In this section a few practical considerations for the implementation of the entropy estimators are
discussed. Special attention is given to the choice of tuning parameter for the different entropy
estimators as it influences the performance of the estimator:

• Estimators using spacings (𝐻𝑉𝑛,𝑟 , 𝐻𝑉𝐸𝑛,𝑟 and 𝐻𝐸𝑛,𝑟 ): The choice of the window-width, 𝑟 , in these
estimators is still an open problem, but some simple choices do exist. The most widely used
methods are either the heuristic formula of Crzcgorzewski and Wirczorkowski (1999) given by
𝑟 = [√𝑛 + 0.5] (rounded to the nearest integer) or a grid search approach.

• Estimator using kernel density estimators (𝐻𝐾𝑛,ℎ): The choice of bandwidth, ℎ, is critical for
these estimators and have been extensively studied in literature. In particular, commonly used
choices of the bandwidth include the choice based on cross-validation, which has been shown
to produce accurate estimators (see Heidenreich et al., 2013), as well as the bandwidth choice
of Silverman (2018).

• Estimators using Bernstein polynomial density estimates (𝐻𝐵𝑛,𝑚, 𝐻𝑄𝑛,𝑚, 𝐻𝐶𝑛,𝑚,𝑀 ): The poly-
nomial order 𝑚 of the Bernstein density based entropy estimators can be chosen through the
cross-validation method discussed in Leblanc (2010) (see Kakizawa, 2004). The bias reduced
estimator has an extra parameter 𝑀 which is taken as 𝑀 = 𝑚/2 and leads to improved mean
integrated square error results, see Leblanc (2010). A guideline for the range of values that 𝑚
can assume is 2 ≤ 𝑚 ≤ 𝑛/log 𝑛, as motivated in Babu et al. (2002).

The bias reduced estimator, �̂�𝑛,𝑚,𝑀 (𝑥), always integrates to one, but can take on negative values
which prove problematic in the entropy estimator. To correct for this, a slight modification of the
approach of Glad et al. (2003) can be implemented. Instead of using 𝑓𝑛 (𝑥) = max(0, �̂�𝑛 (𝑥)), the
modification 𝑓𝑛 (𝑥) = max(𝜖, �̂�𝑛 (𝑥)) is suggested where 𝜖 > 0 is a value arbitrarily close to zero.
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3. Simulations and results
This section will investigate the finite sample performance of the Bernstein based entropy estimators
against existing sample entropy estimators. In this limited study, seven different distributions are
used and the simulation setup follows similarly to that of Chaubey and Vu (2021). The selected
distributions have support (0,∞) and include the standard exponential distribution, 𝐸 (1) (H 𝑓 = 1), the
lognormal distribution, 𝐿𝑁 (0, .5) (H 𝑓 = 0.7258), the gamma distribution, 𝐺 (2, 2) (H 𝑓 = 0.8841),
the Weibull distribution,𝑊 (2, 2) (H 𝑓 = 1.2886), and support [0, 1] for the beta distribution, 𝐵(2, 2)
(H 𝑓 = −0.1251), 𝐵(.5, .5) (H 𝑓 = −0.2416), as well as the standard uniform distribution, 𝑈 (0, 1)
(H 𝑓 = 0). For each distribution, 1000 samples were generated. Since the Bernstein based estimators
require the distribution to have support on [0, 1], the transformation 𝑌𝑖 = (𝑋𝑖 − 𝑋(1) )/(𝑋(𝑛) − 𝑋(1) )
was applied to each sample. For each transformed sample each of the Bernstein polynomial based
entropy estimators, 𝐻𝐵𝑛,𝑚, 𝐻𝑄𝑛,𝑚 and 𝐻𝐶𝑛,𝑚,𝑀 were calculated, as well as the spacing based estimators
of Vasicek (1976), 𝐻𝑉𝑛,𝑟 , the Van Es (1992) estimator, 𝐻𝑉𝐸𝑛,𝑟 , and the Ebrahimi et al. (1994) estimator,
𝐻𝐸𝑛,𝑟 . The estimator of Ahmad and Lin (1976), 𝐻𝐾𝑛,ℎ, stated in (5), was also included as the kernel
density based estimator. Since the samples were transformed, an adjustment of log(𝑋(𝑛) − 𝑋(1) )
was made to correct the resultant entropy estimate values. In order to compare the estimators, the
variance, bias and root mean square error (RMSE) were calculated. This is repeated for sample sizes
𝑛 = 10, 𝑛 = 50, 𝑛 = 100 and can be found in Tables 1, 2 and 3, respectively. For convenience, the
smallest bias, variance and RMSE values are highlighted. The window-width value for the spacing
estimators was obtained from the heuristic formula stated in Section 2.1. For the estimator 𝐻𝐾𝑛,ℎ, the
bandwidth was chosen with least-squares cross-validation and denoted ℎ∗. In an effort to use the same
order 𝑚 across the Bernstein density based estimators, 𝐻𝐵𝑛,𝑚 and 𝐻𝐶𝑛,𝑚,𝑀 , the value 𝑚 that exhibited
acceptable results was chosen from a preliminary study based on each sample size. The Bernstein
quantile density estimator, 𝐻𝑄𝑛,𝑚, had the imposed restriction 𝑚 ≥ 3 and so 𝑚 was selected with the
suggested value of 𝑚 = ⌊𝑛/log(𝑛)⌋ where ⌊𝑧⌋ denotes the greatest integer smaller or equal to 𝑧 (see,
Chaubey and Vu (2021)). It should be noted that preliminary studies showed that the estimation
improved in terms of the RMSE when a grid search method was used for the order 𝑚 in all cases. All
calculations and simulation were performed using the statistical computing environment R (R Core
Team, 2021) with the bde package (Santafe et al., 2015).

From the output presented in Tables 1 to 3, it is evident that there is no estimator that outright
performed the best in terms of bias, variance or RMSE. Considering the spacing estimators in isolation,
it is clear that the Ebrahimi et al. (1994) estimator, 𝐻𝐸𝑛,𝑟 , displayed the lowest RMSE values for
this class of estimators using the given choice of window-width. Turning attention to the Bernstein
based estimators, it is found that new estimators, 𝐻𝐵𝑛,𝑚 and 𝐻𝐶𝑛,𝑚, generally performed better than
the quantile density estimator 𝐻𝑄𝑛,𝑚. The 𝐻𝐶𝑛,𝑚 estimator often exhibited the smallest bias, whereas
𝐻𝑄𝑛,𝑚 in many cases had the smallest variance. The 𝐻𝐵𝑛,𝑚 estimator followed closely both in bias and
variance performance. The Bernstein based estimators generally outperformed the kernel density
based estimator, 𝐻𝐾𝑛,ℎ, in terms of the RMSE for large sample sizes (𝑛 = 50 and 𝑛 = 100). The kernel
density based estimator performed better for 𝑛 = 10, but still fell short of 𝐻𝐵𝑛,𝑚 in many cases. Overall,
the Bernstein based estimators tended to outperform the spacing based estimators and the kernel
density based estimator for bias, variance and RMSE. Furthermore, it is noted that the Ebrahimi
et al. (1994) estimator was a close competitor and even performed the best in some cases. The 𝐻𝐸𝑛,𝑟
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estimator especially showed good performance in terms of the variance. For small sample sizes
(𝑛 = 10), the best performing test was 𝐻𝐵𝑛,𝑚. This estimator even outperformed its bias-corrected
counterpart 𝐻𝐶𝑛,𝑚 which possibly can be ascribed to the better performance in variance of 𝐻𝐵𝑛,𝑚 that
lead to a better RMSE. For large sample sizes (𝑛 = 100), the best performing estimators was a mix of
𝐻𝐵𝑛,𝑚, 𝐻𝐶𝑛,𝑚 and 𝐻𝐸𝑛,𝑟 .

In an attempt at a more in-depth look at the kernel density based estimator compared to the Bernstein
based estimators, the RMSE was calculated for samples 𝑛 ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
and plotted in Figure 1 for the 𝐸 (1) and 𝐺 (2, 2) distributions. In the two cases, it can be concluded
that the 𝐻𝐵𝑛,𝑚 and 𝐻𝐶𝑛,𝑚 estimators (red solid line and green dotted line) consistently exhibited smaller
RMSE values than the kernel density based estimator, 𝐻𝐾𝑛,ℎ (purple dash-dotted line), as the sample
size increases.

Table 1. Bias, variance and RMSE results of the entropy estimators (𝑛 = 10).

𝐻𝑉
𝑛,4 𝐻𝑉𝐸

𝑛,4 𝐻𝐸
𝑛,4 𝐻𝐾

𝑛,ℎ∗ 𝐻𝐵
𝑛,2 𝐻

𝑄
𝑛,4 𝐻𝐶

𝑛,2,1

E(1)

bias 0.4513 0.1221 0.1345 0.1647 0.0470 0.3325 0.1583
variance 0.1443 0.1510 0.1443 0.2188 0.1647 0.1532 0.2538
RMSE 0.5900 0.5960 0.4030 0.4960 0.4090 0.5140 0.5280

LN(0,.5)

bias 0.5859 0.2532 0.2690 0.2075 0.2086 0.4137 0.0173
variance 0.1065 0.1079 0.1065 0.1413 0.1171 0.1166 0.2063
RMSE 0.6710 0.6720 0.4230 0.4290 0.4010 0.5360 0.4550

G(2,2)

bias 0.5465 0.1995 0.2297 0.1810 0.1714 0.3864 0.0165
variance 0.0958 0.1029 0.0958 0.1440 0.1034 0.1051 0.1837
RMSE 0.6280 0.6340 0.3850 0.4200 0.3640 0.5040 0.4290

W(2,2)

bias 0.5867 0.2128 0.2699 0.1704 0.2263 0.4139 0.0966
variance 0.0668 0.0778 0.0668 0.1120 0.0706 0.0800 0.1203
RMSE 0.6410 0.6500 0.3740 0.3760 0.3490 0.5010 0.3600

B(2,2)

bias 0.5570 0.1401 0.2401 0.1149 0.0989 0.4020 0.0977
variance 0.0412 0.0599 0.0412 0.0855 0.0019 0.0513 0.0082
RMSE 0.5930 0.6080 0.3140 0.3140 0.1080 0.4610 0.1330

B(.5,.5)

bias 0.0802 0.4247 0.2366 0.1719 0.2023 0.0940 0.2398
variance 0.0217 0.0532 0.0217 0.1848 0.0039 0.0307 0.0219
RMSE 0.1680 0.2440 0.2790 0.4630 0.2120 0.1990 0.2820

U(0,1)

bias 0.4585 0.0011 0.1416 0.0341 0.0345 0.3508 0.0134
variance 0.0278 0.0509 0.0278 0.0773 0.0030 0.0316 0.0189
RMSE 0.4880 0.5110 0.2190 0.2800 0.0647 0.3930 0.1380

4. Conclusion and outlook
In this paper, the aim was to investigate the performance of entropy estimators based on a Bernstein
polynomial density estimator approach. The Bernstein based estimators are similar to the Ahmad
and Lin (1976) kernel density based estimator, where the density in the formulation is estimated by
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Table 2. Bias, variance and RMSE results of the entropy estimators (𝑛 = 50).

𝐻𝑉
𝑛,8 𝐻𝑉𝐸

𝑛,8 𝐻𝐸
𝑛,8 𝐻𝐾

𝑛,ℎ∗ 𝐻𝐵
𝑛,3 𝐻

𝑄
𝑛,12 𝐻𝐶

𝑛,3,2

E(1)

bias 0.1216 0.0960 0.0093 0.0766 0.0869 0.0695 0.0320
variance 0.0223 0.0231 0.0223 0.0337 0.0272 0.0225 0.0267
RMSE 0.1920 0.1950 0.1500 0.1990 0.1860 0.1650 0.1660

LN(0,.5)

bias 0.1517 0.1887 0.0394 0.0683 0.0408 0.0750 0.0301
variance 0.0183 0.0178 0.0183 0.0224 0.0218 0.0181 0.0199
RMSE 0.2030 0.2020 0.1410 0.1640 0.1530 0.1540 0.1440

G(2,2)

bias 0.1632 0.1626 0.0509 0.0596 0.0079 0.0887 0.0030
variance 0.0157 0.0157 0.0157 0.0208 0.0178 0.0157 0.0181
RMSE 0.2060 0.2060 0.1350 0.1560 0.1350 0.1530 0.1340

W(2,2)

bias 0.1750 0.1593 0.0627 0.0382 0.0047 0.0927 0.0374
variance 0.0097 0.0110 0.0097 0.0136 0.0111 0.0100 0.0154
RMSE 0.2010 0.2040 0.1170 0.1230 0.1060 0.1370 0.1300

B(2,2)

bias 0.1865 0.1131 0.0742 0.0229 0.0755 0.1025 0.0324
variance 0.0040 0.0072 0.0040 0.0106 0.0008 0.0046 0.0049
RMSE 0.1970 0.2050 0.0977 0.1060 0.0805 0.1230 0.0774

B(.5,.5)

bias 0.0348 0.2993 0.1471 0.0644 0.1894 0.0366 0.1387
variance 0.0053 0.0041 0.0053 0.0376 0.0010 0.0123 0.0041
RMSE 0.0809 0.0731 0.1640 0.2040 0.1920 0.1170 0.1530

U(0,1)

bias 0.1598 0.0015 0.0475 0.0328 0.0127 0.1078 0.0019
variance 0.0014 0.0037 0.0014 0.0109 0.0002 0.0020 0.0017
RMSE 0.1640 0.1710 0.0605 0.1100 0.0200 0.1170 0.0412
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Table 3. Bias, variance and RMSE results of the entropy estimators (𝑛 = 100).

𝐻𝑉
𝑛,10 𝐻𝑉𝐸

𝑛,10 𝐻𝐸
𝑛,10 𝐻𝐾

𝑛,ℎ∗ 𝐻𝐵
𝑛,5 𝐻

𝑄
𝑛,21 𝐻𝐶

𝑛,5,3

E(1)

bias 0.0757 0.0873 0.0073 0.0757 0.0432 0.0435 0.0087
variance 0.0111 0.0110 0.0111 0.0163 0.0121 0.0109 0.0126
RMSE 0.1300 0.1290 0.1060 0.1480 0.1180 0.1130 0.1120

LN(0,.5)

bias 0.0819 0.1500 0.0136 0.0450 0.0571 0.0400 0.0278
variance 0.0086 0.0081 0.0086 0.0094 0.0106 0.0083 0.0092
RMSE 0.1240 0.1220 0.0937 0.1070 0.1180 0.0994 0.0997

G(2,2)

bias 0.0911 0.1273 0.0227 0.0377 0.0210 0.0468 0.0005
variance 0.0073 0.0077 0.0073 0.0093 0.0074 0.0071 0.0073
RMSE 0.1250 0.1260 0.0884 0.1040 0.0885 0.0966 0.0852

W(2,2)

bias 0.1015 0.1262 0.0331 0.0217 0.0114 0.0516 0.0127
variance 0.0047 0.0054 0.0047 0.0065 0.0049 0.0047 0.0052
RMSE 0.1230 0.1250 0.0764 0.0835 0.0706 0.0860 0.0734

B(2,2)

bias 0.1121 0.0856 0.0437 0.0015 0.0383 0.0580 0.0042
variance 0.0018 0.0031 0.0018 0.0040 0.0009 0.0020 0.0017
RMSE 0.1200 0.1250 0.0613 0.0630 0.0483 0.0733 0.0414

B(.5,.5)

bias 0.0287 0.2312 0.0971 0.0452 0.1459 0.0242 0.1165
variance 0.0039 0.0028 0.0039 0.0096 0.0013 0.0062 0.0022
RMSE 0.0691 0.0603 0.1160 0.1080 0.1500 0.0823 0.1260

U(0,1)

bias 0.1015 0.0003 0.0331 0.0315 0.0101 0.0645 0.0115
variance 0.0004 0.0011 0.0004 0.0036 0.0001 0.0005 0.0001
RMSE 0.1030 0.1070 0.0385 0.0678 0.0135 0.0683 0.0157
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Figure 1. RMSE results for 𝐻𝐾𝑛,ℎ∗ (purple dashed-dotted line), 𝐻𝐵𝑛,𝑚 (red solid line), 𝐻𝑄𝑛,𝑚 (blue
dashed line) and 𝐻𝐶𝑛,𝑚 (green dotted line) with 𝑛 ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} for 𝐸 (1)
(left) and 𝐺 (2, 2) (right).

Bernstein polynomial methods in order to remedy the problem of boundary bias which commonly
plagues kernel density estimation. It was found that the boundary bias free estimation approaches
lead to good entropy estimators. The Bernstein entropy estimators were also compared to existing
spacing based estimators such as the widely used Vasicek (1976) estimator and its modification. The
Bernstein based entropy estimators exhibited the smallest bias and RMSE values in many cases which
suggests that they are competitive and, in some cases, are the superior entropy estimator choice.

The choices for the tuning parameter values were not necessarily optimal; an avenue for future
research is to find methods of choosing the optimal value not only for the Bernstein based estimators,
but also the window-width of the Vasicek (1976) estimator and its modifications. It is well documented
that this is still an open problem. Furthermore, the consistency and other asymptotic results of the
Bernstein based estimators require investigation. In a further extension motivated by the work of Hall
and Morton (1993), it may be prudent to consider a leave-one-out version of the Bernstein density
entropy estimator. The motivation being parallel to the kernel density case where the estimator is
dependent on each observation 𝑋𝑖 and may result in a notable difference between E[𝐻𝐵𝑛,𝑚 (𝑥)] and∫
𝑓 (𝑥) (logE[ �̂�𝑛,𝑚 (𝑥)]).
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In this paper we propose a novel distribution on the torus by applying a Möbius
transformation to an existing distribution. This distribution can then be used to model
dihedral angles in protein structure and also as a proposal distribution for Markov-
Chain Monte-Carlo sampling to predict the 3-D structure of protein molecules. We
discuss the related properties of the proposed model and substantiate our contribution
using two real datasets and a simulation study in the performance assessment of the
estimating approach.

Keywords: Dihedral angles, Metropolis-Hastings algorithm, Möbius Transformation, Proposal
distribution, Ramachandran plot, Toroidal data, Torus.

1. Introduction
One of the fundamental problems in molecular biology is to predict the 3-D structure of proteins.
Advances in this field would lead to extensive results in drug discovery, biotechnology and evolution-
ary biology (Ley and Verdebout, 2017). Protein molecules are required for the structure, function
and regulation of the body’s tissues and organs. Amino acids are the building blocks of proteins.
There are 20 different amino acids in naturally occurring proteins. Natural amino acids have an
amino group or nitrogen atom 𝑁 (–𝑁𝐻2), a carboxylic acid group 𝐶 (–𝐶𝑂𝑂𝐻), a hydrogen atom
attached to a central carbon atom 𝐶𝛼 and a side-chain which is attached to 𝐶𝛼. The backbone is
identical across all 20 amino acids, while the side chains are different which gives the amino acids
different biochemical properties. Amino acids are joined by covalent peptide bonds to form a single
macromolecule. In fact, proteins are biopolymers consisting of linear sequences of amino acids:

· · ·−𝑁 (𝑖−1) − 𝐶 (𝑖−1)
𝛼 − 𝐶 (𝑖−1)−𝑁 (𝑖) − 𝐶 (𝑖)

𝛼 − 𝐶 (𝑖)−𝑁 (𝑖+1) − 𝐶 (𝑖+1)
𝛼 − 𝐶 (𝑖+1)− · · · ·

For each amino acid 𝑖, there are three dihedral angles: 𝜙 (𝑖) , 𝜓 (𝑖) and 𝜔 (𝑖) . 𝜔 is usually close
to 180◦ or occasionally 0◦ and can be modelled with a discrete two-state variable, while 𝜙 and 𝜓
play a vital role in the protein structure as they define the backbone of a protein (See Figure 1).
Ramachandran and Sasisekharan (1968) explained how the pair of dihedral angles 𝜙 and 𝜓 can be
represented on a scatterplot. In their fundamental work, they plotted (𝜙, 𝜓) and found their empirical
distribution.
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Figure 1. The 3-D structure of proteins.

From the directional statistics point of view, dihedral angles lie on the circumference of a torus.
A torus is the product of two circles, (−𝜋, 𝜋] × (−𝜋, 𝜋]. A circular random variable Θ is measured
in degrees from 0 to 360◦ or radians in (−𝜋, 𝜋]. In general, (𝜃1, 𝜃2) refers to any observation on
the torus where 𝜃1 ∈ (−𝜋, 𝜋] and 𝜃2 ∈ (−𝜋, 𝜋]. Circular and toroidal variables cannot be modelled
using standard univariate and bivariate statistical distributions and periodical models are needed.

Dihedral angles (𝜙, 𝜓), 𝜙 ∈ (−𝜋, 𝜋] and 𝜓 ∈ (−𝜋, 𝜋] are classified as toroidal data. Toroidal
distributions are used to model dihedral angles for visualisation and prediction of the 3-D structure
of proteins. To predict the 3-D structure of proteins a Markov chain is constructed using the
Metropolis-Hastings algorithm with the Boltzmann distribution as the stationary distribution and a
symmetric proposal distribution (Ley and Verdebout, 2017). Toroidal distributions can be used as
proposal distributions in Markov Chain Monte Carlo (MCMC) sampling of proteins. Choosing a
good proposal distribution is one of the challenges in MCMC sampling of proteins. Concentrated
Gaussian perturbations are the most straightforward proposal distributions to use. When the proposal
distribution is closer to the stationary distribution, the results are more accurate. Therefore, protein
structural information such as dihedral angles should be incorporate into proposal distributions.

Thus, this paper contributes to this field by proposing a new flexible toroidal model that is an
alternate candidate for modelling of dihedral angles.

To pave the way for the foundation of the new model, the existing toroidal models will be briefly
reviewed. Let (Θ1,Θ2) be jointly continuous random variables on the torus (−𝜋, 𝜋] × (−𝜋, 𝜋] with
the joint probability density function (pdf) 𝑓 (𝜃1, 𝜃2). The bivariate von Mises (BvM) distribution,
presented in Mardia (1975), was the first footprint to model toroidal data with pdf

𝑓 (𝜃1, 𝜃2) = exp{𝜅1 cos(𝜃1 − 𝜇1) + 𝜅2 cos(𝜃2 − 𝜇2) + (cos(𝜃1 − 𝜇1) sin(𝜃1 − 𝜇1))
× A(cos(𝜃2 − 𝜇2, sin(𝜃2 − 𝜇2))′},

(1)

where 𝜇1,𝜇2 ∈ [-𝜋,𝜋) are the circular location parameters, 𝜅1, 𝜅2 ≥ 0 are the concentration parameters
and the circular-circular dependence parameter A, is a 2× 2 matrix. This BvM distribution is over-
parametrised (Ley and Verdebout, 2017) due to eight parameters, thus Rivest (1988) proposed a
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subclass with pdf as

𝑓 (𝜃1, 𝜃2) ∝ exp{𝜅1 cos(𝜃1 − 𝜇1) + 𝜅2 cos(𝜃2 − 𝜇2)
+ 𝛼 cos(𝜃1 − 𝜇1) cos(𝜃2 − 𝜇2) + 𝛽 sin(𝜃1 − 𝜇1) sin(𝜃2 − 𝜇2)},

(2)

where 𝛼, 𝛽 ∈ R. To achieve better parametrisation, Singh et al. (2002) used (2) setting 𝛼 = 0, which
paves the way to the Sine model with pdf

𝑓 (𝜃1, 𝜃2) = 𝐶exp{𝜅1 cos(𝜃1 − 𝜇1) + 𝜅2 cos(𝜃2 − 𝜇2) + 𝛽 sin(𝜃1 − 𝜇1) sin(𝜃2 − 𝜇2)}, (3)

where𝐶−1 = 4𝜋2 ∑∞
𝑖=0

(2𝑖
𝑖

) (𝛽2/4𝜅1𝜅2)𝑖 𝐼𝑖 (𝜅1)𝐼𝑖 (𝜅2) (𝐼𝛼 (𝑧) is the modified Bessel function of the first
kind of order 𝛼).

Mardia et al. (2007) proposed a special case of (2) with 𝛼 = 𝛽 = −𝜅3. This was called the
Cosine model with pdf

𝑓 (𝜃1, 𝜃2) = 𝐶exp{𝜅1 cos(𝜃1 − 𝜇1) + 𝜅2 cos(𝜃2 − 𝜇2) − 𝜅3 cos(𝜃1 − 𝜇1 − 𝜃2 + 𝜇2)}, (4)

where 𝜅1,𝜅2 ≥ 0 and 𝐶−1 = 4𝜋2 [
𝐼0 (𝜅1)𝐼0 (𝜅2)𝐼0 (𝜅3) + 2

∑∞
𝑖=1 𝐼𝑖 (𝜅1)𝐼𝑖 (𝜅2)𝐼𝑖 (𝜅3)

]
.

The departure for this paper will be the model introduced by Sengupta and Ong (2014). They
implemented a mixture approach to construct a bivariate circular-circular distribution on the torus
with pdf

𝑓 (𝜃1, 𝜃2) =
(

1
2𝜋

)2 [
1 + 2𝛾1 {𝛿1 cos(𝜃1 − 𝜇1) + 𝛿2 cos(𝜃2 − 𝜇2)}

+ 4𝛾2𝛿1𝛿2 cos(𝜃1 − 𝜇1) cos(𝜃2 − 𝜇2)
]
,

(5)

where 𝛿1, 𝛿2 ∈ (−1/2, 1/2). For 𝜏 > 0, 𝛾1 = 𝛾(2, 𝜏)/𝜏(1 − 𝑒−𝜏) and 𝛾2 = 𝛾(3, 𝜏)/𝜏2 (1 − 𝑒−𝜏) such
that 𝛾1, 𝛾2 ∈ (0, 1). The marginals are cardioid distributions on the circle.

The interested reader is referred to the works of the following authors for further reading, see
amongst others, Johnson and Wehrly, 1977; Jones et al., 2015; Pertsemlidis et al., 2005; Fernández-
Durán and Gregorio-Domínguez, 2014.

The rest of the paper is structured as follows. Section 2 outlines the contribution of this paper
with the novel distribution and the associated statistical properties. In Section 3, a simulation study
is conducted to assess the performance of the DEoptim package in R software to obtain the estimates
of parameters. We discuss the application of this novel distribution to model the dihedral angles in
the protein structure in Section 4 and we conclude this paper with a discussion in Section 5.

2. Möbius-transformed bivariate distribution
In this section, a new distribution is introduced on the torus by applying a Möbius transformation to
(5). The Möbius transformation of 𝜃 to 𝜃 is mapped by (Kato and Pewsey, 2015):

𝜃 = M(𝜃, 𝜇, 𝜐, 𝜉) = 𝜇 + 𝜐 + 2 arctan
{

1 − 𝜉
1 + 𝜉 tan( 𝜃 − 𝜐

2
)
}
, (6)

where −𝜋 < 𝜃, 𝜃 ≤ 𝜋 , −𝜋 < 𝜇, 𝜐 ≤ 𝜋 and 𝜉 ∈ [0, 1). If 𝜉 = 0, the transformation is an identity
mapping and when 𝜉 → 1, then M(𝜃, 𝜇, 𝜐, 𝜉) → 𝜐. The reader is referred to the work of the
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following contributors to show the usefulness of the Möbius transformation, Kato and Pewsey (2015)
and Arashi et al. (2021).

Theorem 1. Let f(𝜃1,𝜃2) be the bivariate distribution given by (5), by applying the Möbius trans-
formation (6) on 𝜃1 and 𝜃2 with 𝜐 = 0 (without loss of generality), the new Möbius-transformed
bivariate model has pdf

𝑓 (𝜃1, 𝜃2) =
(

1
2𝜋

)2 (
1 − 𝜉2

1
) (

1 − 𝜉2
2
)

(1 + 𝜉2
1 − 2𝜉1 cos(𝜃1 − 𝜇1))2 (1 + 𝜉2

2 − 2𝜉2 cos(𝜃2 − 𝜇2))2

× {𝑐0 + 𝑐1 cos(𝜃1 − 𝜇1) + 𝑐2 cos(𝜃2 − 𝜇2) + 𝑐3 cos(𝜃1 − 𝜇1) cos(𝜃2 − 𝜇2)} , (7)

where 0 ≤ 𝜉1, 𝜉2 ≤ 1 and 𝑐0 = (1+ 𝜉2
1) (1+ 𝜉2

2) − 4𝛾1𝛿1𝜉1 (1+ 𝜉2
2) − 4𝛾1𝛿2𝜉2 (1+ 𝜉2

1) + 16𝛾2𝛿1𝛿2𝜉1𝜉2,
𝑐1 = 2𝛾1𝛿1 (1 + 𝜉2

1) (1 + 𝜉2
2 − 2𝜉1 (1 + 𝜉2

2) − 8𝛾2𝛿1𝛿2𝜉2 (1 + 𝜉2
1) − 8𝛾1𝛿2𝜉1𝜉2, 𝑐2 = 2𝛾1𝛿2 (1 + 𝜉2

1) (1 +
𝜉2

2) − 2𝜉2 (1 + 𝜉2
1) − 8𝛾2𝛿1𝛿2𝜉1 (1 + 𝜉2

2) + 8𝛾1𝛿1𝜉1𝜉2, 𝑐3 = 4𝜉1𝜉2 − 4𝛾1𝛿1𝜉2 (1 + 𝜉2
1) − 4𝛾1𝛿2𝜉1 (1 +

𝜉2
2) + 4𝛾2𝛿1𝛿2 (1 + 𝜉2

1) (1 + 𝜉2
2).

Proof. See Appendix. ■

Figure 2 shows the contour plots of (7) for different values of the parameters to show the flexibility.
As can be seen in Figure 2, the bivariate probability model (7) has both unimodal and bimodal shapes.
The marginals of (5) are cardioid distributions therefore the marginals of (7) are Möbius-transformed
cardioid distributions which is studied by Wang and Shimizu (2012). The marginal pdf of 𝜃2 is,

𝑓Θ2 (𝜃2) = 1
2𝜋

1 − 𝜉2
2

(1 + 𝜉2
2 − 2𝜉2 cos(𝜃2 − 𝜇2))

(
1 + 2𝛿2𝛾1

(1 + 𝜉2
2) cos(𝜃2 − 𝜇2) − 2𝜉2

1 + 𝜉2
2 − 2𝜉2 cos(𝜃2 − 𝜇2)

)
. (8)

If 𝜉2 = 0, the cardioid distribution is obtained. Figure 3 shows the marginal density (8) for different
parameter values.

2.1 Asymmetric form
The Möbius-transformed bivariate distribution (7) is symmetric as well as the marginals, because
𝑓 (𝜇1 − 𝜃1, 𝜇2 − 𝜃2) = 𝑓 (𝜇1 + 𝜃1, 𝜇2 + 𝜃2) and 𝑓 (𝜇 − 𝜃) = 𝑓 (𝜇 + 𝜃), respectively. In this section,
using the approach from Ameĳeiras-Alonso and Ley (2022) and also Abe and Pewsey (2011), we
introduce the sine-skewed (SS) version of (7) and (8). The SS version of the Möbius-transformed
bivariate distribution (7) is

𝑓𝑠𝑠 (𝜃1, 𝜃2) = 𝑓 (𝜃1, 𝜃2) (1 + 𝜆1 sin(𝜃1 − 𝜇1) + 𝜆2 sin(𝜃2 − 𝜇2)), (9)

where 𝑓 (·, ·) is from (7) and 𝜆1, 𝜆2 are skewness parameters. Note that 0 ≤ |𝜆1 | + |𝜆2 | ≤ 1,−1 ≤
𝜆1, 𝜆2 ≤ 1.

Figure 4 shows the skew density (9) for different values of 𝜆1 and 𝜆2. The marginal of the SS
version of the Möbius-transformed bivariate distribution (7) is,

𝑓Θ2𝑠𝑠 (𝜃2) = 𝑓Θ2 (𝜃2) (1 + 𝜆 sin(𝜃2 − 𝜇2)), (10)

where −1 ≤ 𝜆 ≤ 1 is the skewness parameter. If 𝜆 = 0 the symmetric form is obtained. 𝜆 > 0
provides the left skewed and 𝜆 < 0 provides the right skewed distribution. Figure 5 illustrates the
density (10) for different values of 𝜆.
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Ξ1=0.2,Ξ2=0.2,µ1=0,µ2=0,γ1=0.12,γ2=0.03,δ1=0.2,δ2=− 0.3 Ξ1=0.08,Ξ2=0.08,µ1=0,µ2=0,γ1=0.42,γ2=0.25,δ1=− 0.49,δ2=− 0.49

1=0.001,Ξ2=0.01,µ1=0,µ2=0,γ1=0.28,γ2=0.13,δ1=0.4,δ2=− 0.49 Ξ1=0.8,Ξ2=0.3,µ1=0,µ2=0,γ1=0.49,γ2=0.33,δ1=0.3,δ2=− 0.1

Ξ1=0.5,Ξ2=0.05,µ1=0,µ2=0,γ1=0.28,γ2=0.13,δ1=0.3,δ2=0.1 Ξ1=0.7,Ξ2=0.4,µ1=0,µ2=0,γ1=0.3,γ2=0.13,δ1=− 0.45,δ2=0.1

Figure 2. Pdf plots and contour plots of the Möbius-transformed bivariate distribution (7).
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Figure 3. Pdf plots of the marginal distribution (8).

2.2 Maximum likelihood estimation
The maximum likelihood method is discussed below, to obtain the estimates parameters for the
Möbius-transformed bivariate distribution (7). Suppose 𝚪 = (𝜇1, 𝜇2, 𝜉1, 𝜉2, 𝛾1, 𝛾2, 𝛿1, 𝛿2)𝑇 are the
parameters of (7) and (𝜃1𝑖 , 𝜃2𝑖), 𝑖 = 1, 2, 3, ..., 𝑛 is a sample of size 𝑛 from (7). The log-likelihood
function of the model is represented as follows:

𝑙 (𝚪) = 2𝑛 log
(

1
2𝜋

)
+ 𝑛 log

(
1 − 𝜉2

1

)
+ 𝑛 log

(
1 − 𝜉2

2

)
− 2

𝑛∑︁
𝑖=1

log(1 + 𝜉2
1 − 2𝜉1 cos(𝜃1𝑖 − 𝜇1))

− 2
𝑛∑︁
𝑖=1

log(1 + 𝜉2
2 − 2𝜉2 cos(𝜃2𝑖 − 𝜇2)) +

𝑛∑︁
𝑖=1

{𝑐0 + 𝑐1 cos(𝜃1𝑖 − 𝜇1) + 𝑐2 cos(𝜃2𝑖 − 𝜇2)

+ 𝑐3 cos(𝜃1𝑖 − 𝜇1) cos(𝜃2𝑖 − 𝜇2)} ,
(11)

where 𝑐𝑖 for 𝑖 = 0, 1, 2, 3 is as defined in (7). The maximum likelihood estimates (MLE) of the
parameters, �̂� = (𝜇1, 𝜇2, 𝜉1, 𝜉2, 𝛾1, 𝛾2, 𝛿1, 𝛿2)𝑇 can be determined by maximising (11) with respect
to𝚪 = (𝜇1, 𝜇2, 𝜉1, 𝜉2, 𝛾1, 𝛾2, 𝛿1, 𝛿2)𝑇 . By setting the partial derivatives of the log-likelihood functions
in (11) with respect to 𝚪 to zero, the MLEs of 𝚪 = (𝜇1, 𝜇2, 𝜉1, 𝜉2, 𝛾1, 𝛾2, 𝛿1, 𝛿2)𝑇 for the Möbius-
transformed bivariate distribution (7) can be obtained. The details of derivations are avilable upon
request from the authors. The DEoptim package in R which is based on the Differential Evolution
(DE) algorithm (Ardia et al., 2011) has been used to obtain the MLEs of parameters. Extensive
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,µ1=0,µ2=0,γ1=0.12,γ2=0.03,δ1=0.4,δ2=− 0.4,λ1=− 0.5,λ2=0.006 0.09,µ1=0,µ2=0,γ1=34,γ2=0.19,δ1=− 0.5,δ2=− 0.5,λ1=− 0.5,λ2=0.5

0.01,µ1=0,µ2=0,γ1=0.12,γ2=0.03,δ1=− 0.3,δ2=0.4,λ1=0.8,λ2=0.1 0.01,µ1=0,µ2=0,γ1=0.12,γ2=0.03,δ1=− 0.3,δ2=0.4,λ1=− 0.8,λ2=− 0.1

Figure 4. Pdf plots and contour plots of the sine-skewed Möbius-transformed bivariate distribution
(9).
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Figure 5. Pdf plots of the skew marginal distribution (10).

studies have been undertaken of the DE algorithm's significant performance as a global optimisation
algorithm on continuous numerical minimisation problems (?).

3. Simulation study
In this section a simulation study is conducted to asses the performance of the DEoptim package in
estimating the parameters of the Möbius-transformed bivariate distribution (7). In the first part of
the simulation study, two samples of size 1000 was generated from (7) with parameters (𝜇1 = −1.5,
𝜇2 = 1, 𝛾1 = 0.5, 𝛾1 = 0.3, 𝛿1 = 0.45, 𝛿2 = 0.45, 𝜉1 = 0.6,𝜉2 = 0.06) and (𝜇1 = 0, 𝜇2 = 0,
𝛾1 = 0.42, 𝛾1 = 0.25, 𝛿1 = 0.1, 𝛿2 = 0.4, 𝜉1 = 0.2,𝜉2 = 0.1) using the Metropolis-Hastings algorithm
(Robert and Casella, 1999). Mardia (2014) explored the suitable methods for generating samples
from toroidal models and they found that the rejection sampling approaches are more efficient (also
see Arashi et al. (2021).

The scatterplots of the simulated data along with the contour plots of the target distributions are
shown in Figure 6. The traceplots, compare-partial and running mean plots are shown in Figure
7. These plots provide evidence that the simulated data comes from the target distribution and also
indicates that the initial and final parts of the chain were sampled from the same distribution.

In the second part of the study, 500 samples of size 1000 were generated from the Möbius-
transformed bivariate distribution (7) and the Monte Carlo method was used to assess the performance
of DEoptim package for estimating the parameters. The MLEs, standard errors, biases, mean-squared
errors (MSEs) and the coverage probabilities (CP) are given in Table 1. The columns under the
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denomination of MLE and estimated standard deviation include an average of the 1000 maximum
likelihood estimates obtained and an average of the 1000 standard errors of obtained estimates. The
values of the standard deviations in Table 1 show the standard deviation of 1000 maximum likelihood
estimates obtained. As can be seen in Table 1, the MSEs and biases are very small indicating that the
parameter estimates are close to the true parameter values and therefore these estimates are unbiased.
The coverage probabilities are close to 95% indicating that the variance estimation is consistent and
valid. Hence, we conclude that the DEoptim package is suitable and accurate for estimating the
parameters of (7) and the Metropolis-Hastings algorithm is suitable for generating samples from (7).

Table 1. The MLEs, standard errors, biases, mean-squared errors (MSEs) and the coverage proba-
bilities (CP).

Parameter Value MLE Est. std. dev. Bias Std. dev. MSE CP
𝜉1 0.60 0.6263 0.0326 0.0293 0.0304 0.0044 0.936
𝜉2 0.50 0.5004 0.0436 0.0004 0.0482 0.0023 0.924
𝜇1 −1.50 −1.5023 0.0452 −0.0023 0.0464 0.0022 0.952
𝜇2 1.00 0.9975 0.0691 −0.0025 0.0652 0.0045 0.957
𝛾1 0.45 0.4514 0.0594 0.0015 0.0570 0.0028 0.938
𝛾2 0.30 0.2986 0.0552 −0.0013 0.0510 0.0027 0.942
𝛿1 0.30 0.3047 0.0599 0.0048 0.0538 0.0029 0.923
𝛿2 0.20 0.2068 0.0438 0.0070 0.0492 0.0024 0.939

𝜉1 0.20 0.1197 0.0527 −0.0002 0.0519 0.0027 0.929
𝜉2 0.10 0.1158 0.0281 0.0156 0.0275 0.0010 0.907
𝜇1 0.00 −0.0224 0.2381 −0.0226 0.2357 0.0561 0.926
𝜇2 0.00 −0.0012 0.2345 −0.0013 0.2319 0.0538 0.935
𝛾1 0.42 0.3892 0.0538 −0.0288 0.0516 0.0035 0.938
𝛾2 0.25 0.2276 0.0574 −0.0264 0.0557 0.0038 0.939
𝛿1 0.10 0.1167 0.0927 0.0167 0.0917 0.0087 0.942
𝛿2 0.40 0.4022 0.0445 0.0022 0.0435 0.0019 0.948

4. Protein structure application
To demonstrate the performance of the Möbius-transformed bivariate distribution (7) in modelling
dihedral angles, we used two datasets available at http://scop.mrc-lmb.cam.ac.uk/scop/. The datasets
are TCBIG.CYS.left and TCBIG.ASN.right which consist of 823 and 3467 dihedral angles, respec-
tively. The Ramachandran plots of these two datasets are shown in Figure 8. According to the
Ramachandran plots in Figure 8, it is evident that the datasets are bimodal and hence, a mixture dis-
tribution with two components is required. The results of the bivariate circular-circular distribution
(5) including the MLEs of the parameters, log-likelihood, the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC) are shown in Table 2 for each dataset. The same results
for the Möbius-transformed bivariate distribution (7) are given in Table 2. The scatter plots of data
and the contour plots of fitted distributions are given in Figure 9.

As can be seen in Table 2, the Möbius-transformed bivariate distribution (7) has smaller AIC and
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Figure 6. The scatter plot of the simulated data and the contour plot of the target distribution.

Figure 7. The traceplots, compare-partial plots and running mean plots of the simulated data.
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Figure 8. Ramachandran plots for the datasets.

BIC values and thus we choose this as the best model for the given datasets. Looking at Figure 9,
we see that the fitted contour plots suit the spread of the data well. Thus, the Möbius-transformed
bivariate distribution (7), proves to be a flexible toroidal model for future research and use.

Table 2. MLEs and corresponding log-likelihood, AIC and BIC.

TCBIG.CYS.left TCBIG.ASN.left

circular-circular model Möbius-transformed model circular-circular model Möbius-transformed model

𝜇1 -1.5899 -1.5348 -1.4449 -1.5977
𝜇2 1.2299 1.2002 1.1016 1.0177

𝛾1 0.4999 0.5011 0.5090 0.5102
𝛾2 0.3333 0.3209 0.3367 0.3266

𝛿1 0.4887 0.4509 0.4777 0.2393
𝛿2 0.4776 0.4408 0.4800 0.4699

𝜉1 - 0.5093 - 0.5908
𝜉2 - 0.0005 - 0.0647

Log-lik. -2693.92 -2360.33 -11348.69 -10118.61

AIC 5397.83 4734.65 22707.37 20251.21

BIC 5421.39 4767.64 22738.13 20251.21

5. Conclusion
This paper contributed to protein dihedral angles modelling with proposing a flexible model for
toroidal data. More specifically, we constructed a novel bivariate distribution on the torus by applying
a Möbius transformation to a pre-existing bivariate circular distribution. The obtained distribution
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Figure 9. The scatter plots of the datasets and the contour plots of the fitted Möbius-transformed
bivariate distribution (7).

proved to be an alternate model to the existing proposal distributions for the MCMC sampling of
proteins. Substantiated by real data, the proposed model outperformed the existing original model.
Finally, the Metropolis-Hastings algorithm proved to be accurate in generating samples from the new
Möbius-transformed bivariate distribution.
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Appendix
Proof of Theorem 1:
Let 𝜃1 = M(𝜃1; 𝜇1, 𝜐1, 𝜉1) and 𝜃2 = M(𝜃2; 𝜇2, 𝜐2, 𝜉2). Then, it follows that 𝜃1 = M−1 (𝜃1, 𝜇1, 𝜐1, 𝜉1)
and 𝜃2 = M−1 (𝜃2, 𝜇2, 𝜐2, 𝜉2), where

𝜃 = M−1 (𝜃, 𝜇, 𝜐, 𝜉) = 𝜐 + 2 arctan
{

1 + 𝜉
1 − 𝜉 tan( 𝜃 − 𝜇 − 𝜐

2
)
}
· (12)

Therefore,

𝑓 (𝜃1, 𝜃2) = |𝐽 | 𝑓
(
M−1 (𝜃1, 𝜇1, 𝜐1, 𝜉1),M−1 (𝜃2, 𝜇2, 𝜐2, 𝜉2)

)
, (13)

with the Jacobian matrix as

𝐽 =

[
𝜕M−1 (𝜃1 ,𝜇1 ,𝜐1 , 𝜉1 )

𝜕𝜃1
0

0 𝜕M−1 (𝜃2 ,𝜇2 ,𝜐2 , 𝜉2 )
𝜕𝜃2

]
.
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Without loss of generality, set 𝜇1 = 𝜇2 = 0 in (5) and 𝜐1 = 𝜐2 = 0 in (12). Then, from (12), we
have

𝜕M−1 (𝜃1; 𝜇1, 𝜉1)
𝜕𝜃1

=
1 − 𝜉2

1

1 + 𝜉2
1 − 2𝜉1 cos(𝜃1 − 𝜇1)

·

Similarly,

𝜕M−1 (𝜃2; 𝜇2, 𝜉2)
𝜕𝜃2

=
1 − 𝜉2

2

1 + 𝜉2
2 − 2𝜉2 cos(𝜃2 − 𝜇2)

·

Then, from (13),

𝑓 (𝜃1, 𝜃2) =
(

1
2𝜋

)2 (
1 − 𝜉2

1
) (

1 − 𝜉2
2
)

(1 + 𝜉2
1 − 2𝜉1 cos(𝜃1 − 𝜇1)) (1 + 𝜉2

2 − 2𝜉2 cos(𝜃2 − 𝜇2))
[1 + 2𝛾1

{
𝛿1 (1 + 𝜉2

1) cos(𝜃1 − 𝜇1) − 2𝛿1𝜉1

1 + 𝜉2
1 − 2𝜉1 cos(𝜃1 − 𝜇1)

+ 𝛿2 (1 + 𝜉2
2) cos(𝜃2 − 𝜇2) − 2𝛿2𝜉2

1 + 𝜉2
2 − 2𝜉2 cos(𝜃2 − 𝜇2)

}
+ 4𝛾2𝛿1𝛿2

((1 + 𝜉2
1) cos(𝜃1 − 𝜇1) − 2𝜉1

) ((1 + 𝜉2
2) cos(𝜃2 − 𝜇2) − 2𝜉2

)
(
1 + 𝜉2

1 − 2𝜉1 cos(𝜃1 − 𝜇1)
) (

1 + 𝜉2
2 − 2𝜉2 cos(𝜃2 − 𝜇2)

)
]
, (14)

where in (14),

1 + 2𝛾1

{
𝛿1 (1 + 𝜉2

1) cos(𝜃1 − 𝜇1) − 2𝛿1𝜉1

1 + 𝜉2
1 − 2𝜉1 cos(𝜃1 − 𝜇1)

+ 𝛿2 (1 + 𝜉2
2) cos(𝜃2 − 𝜇2) − 2𝛿2𝜉2

1 + 𝜉2
2 − 2𝜉2 cos(𝜃2 − 𝜇2)

}

+ 4𝛾2𝛿1𝛿2

((1 + 𝜉2
1) cos(𝜃1 − 𝜇1) − 2𝜉1

) ((1 + 𝜉2
2) cos(𝜃2 − 𝜇2) − 2𝜉2

)
(
1 + 𝜉2

1 − 2𝜉1 cos(𝜃1 − 𝜇1)
) (

1 + 𝜉2
2 − 2𝜉2 cos(𝜃2 − 𝜇2)

)
=(1 + 𝜉2

1 − 2𝜉1 cos(𝜃1 − 𝜇1)) (1 + 𝜉2
2 − 2𝜉2 cos(𝜃2 − 𝜇2)) +

(
2𝛾1𝛿1 (1 + 𝜉2

1) cos(𝜃1 − 𝜇1) − 4𝛾1𝛿1𝜉1

)
× (1 + 𝜉2

2 − 2𝜉2 cos(𝜃2 − 𝜇2)) +
(
2𝛾1𝛿2 (1 + 𝜉2

2) cos(𝜃2 − 𝜇2) − 4𝛾1𝛿2𝜉2

)
(1 + 𝜉2

1 − 2𝜉1 cos(𝜃1 − 𝜇1))
+ 4𝛾2𝛿1𝛿2 ((1 + 𝜉2

1) cos(𝜃1 − 𝜇1) − 2𝜉1) ((1 + 𝜉2
2) cos(𝜃2 − 𝜇2) − 2𝜉2)

=(1 + 𝜉2
1) (1 + 𝜉2

2) − 2𝜉2 (1 + 𝜉2
1) cos(𝜃2 − 𝜇2) − 2𝜉1 (1 + 𝜉2

2) cos(𝜃1 − 𝜇1)
+ 4𝜉1𝜉2 cos(𝜃1 − 𝜇1) cos(𝜃2 − 𝜇2) + 2𝛾1𝛿1 (1 + 𝜉2

1) (1 + 𝜉2
2) cos(𝜃1 − 𝜇1)

− 4𝛾1𝛿1𝜉2 (1 + 𝜉2
1) cos(𝜃1 − 𝜇1) cos(𝜃2 − 𝜇2) − 4𝛾1𝛿1𝜉1 (1 + 𝜉2

2) + 8𝛾1𝛿1𝜉1𝜉2 cos(𝜃2 − 𝜇2)
+ 2𝛾1𝛿2 (1 + 𝜉2

1) (1 + 𝜉2
2) cos(𝜃2 − 𝜇2) − 4𝛾1𝛿2𝜉1 (1 + 𝜉2

2) cos(𝜃1 − 𝜇1) cos(𝜃2 − 𝜇2)
− 4𝛾1𝛿2𝜉2 (1 + 𝜉2

1) + 8𝛾1𝛿2𝜉1𝜉2 cos(𝜃1 − 𝜇1) + 4𝛾2𝛿1𝛿2 (1 + 𝜉2
1) (1 + 𝜉2

2) cos(𝜃1 − 𝜇1) cos(𝜃2 − 𝜇2)
− 8𝛾2𝛿1𝛿2𝜉2 (1 + 𝜉2

1) cos(𝜃1 − 𝜇1) − 8𝛾2𝛿1𝛿2𝜉1 (1 + 𝜉2
2) cos(𝜃2 − 𝜇2) + 16𝛾2𝛿1𝛿2𝜉1𝜉2.

Hence,

𝑓 (𝜃1, 𝜃2) =
(

1
2𝜋

)2 (
1 − 𝜉2

1
) (

1 − 𝜉2
2
)

(1 + 𝜉2
1 − 2𝜉1 cos(𝜃1 − 𝜇1))2 (1 + 𝜉2

2 − 2𝜉2 cos(𝜃2 − 𝜇2))2
{𝑐0 + 𝑐1 cos(𝜃1 − 𝜇1)

+𝑐2 cos(𝜃2 − 𝜇2) + 𝑐3 cos(𝜃1 − 𝜇1) cos(𝜃2 − 𝜇2)} ,
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where 𝑐0 = (1+𝜉2
1) (1+𝜉2

2)−4𝛾1𝛿1𝜉1 (1+𝜉2
2)−4𝛾1𝛿2𝜉2 (1+𝜉2

1), 𝑐1 = 2𝛾1𝛿1 (1+𝜉2
1) (1+𝜉2

2−2𝜉1 (1+𝜉2
2)−

8𝛾2𝛿1𝛿2𝜉2 (1+𝜉2
1)−8𝛾1𝛿2𝜉1𝜉2, 𝑐2 = 2𝛾1𝛿2 (1+𝜉2

1) (1+𝜉2
2)−2𝜉2 (1+𝜉2

1)−8𝛾2𝛿1𝛿2𝜉1 (1+𝜉2
2)+8𝛾1𝛿1𝜉1𝜉2,

𝑐3 = 4𝜉1𝜉2 − 4𝛾1𝛿1𝜉2 (1 + 𝜉2
1) − 4𝛾1𝛿2𝜉1 (1 + 𝜉2

2) + 4𝛾2𝛿1𝛿2 (1 + 𝜉2
1) (1 + 𝜉2

2).
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Multivariate big data sampling for crop area coverage

Tshepiso Selaelo Rangongo, Inger Fabris-Rotelli and Renate Thiede

Department of Statistics, University of Pretoria, Pretoria, South Africa

Big data can result in more than sufficient information if used efficiently and
effectively. Big data poses challenges in storage, management, processing, analysis
and visualisation. Techniques for handling big data, specifically geospatial data,
have advanced over the years. However, most require high computational power
and time. The use of metadata is a solution. Metadata provides a descriptive,
administrative, structural and statistical summary of data. This paper constructs
metadata of a remote sensing image dataset for crop classification, and proposes a
novel multivariate stratified sampling algorithm which selects the most informative
images to minimise the number of images used for training. The proposed sampling
algorithm performs effectively on a big spatial image dataset of crop types. The
results are assessed by measuring the number of images sampled and as well as
matching the proportionality of the population crop percentages.

Keywords: Metadata, Remote sensing, Sampling.

1. Introduction
The amount of data produced increases exponentially over time. In 2018, there were 33 trillion
gigabytes of data produced in the world and this will grow to 175 trillion gigabytes of data in 20251.
Data is defined as individual facts, items of information or statistics. As much as the terms data
and information have been used interchangeably, they are not necessarily the same. Data can be
transformed to information when viewed in context or post-analysis2. Data is gradually increasing as
it can now be collected by an increasing number of ways such as surveys and devices such as mobile
devices, aerial devices, cameras, microphones and wireless sensor networks. The continuously
increasing collection of data has led to what is known as big data. Big data is defined as data sets
that are large and complex to deal with using traditional data processing software3. Big data can
be considered as a bond that acts as an integration between human society, the physical world and
cyberspace (Jin et al., 2015). Big data can be divided into two categories, namely data from the
physical world, which can be obtained through scientific experiments and observations or sensors, and

Corresponding author: Inger Fabris-Rotelli (inger.fabris-rotelli@up.ac.za)
MSC2020 subject classifications: 62H11
1 The Conversation, Science + Technology, The world’s data explained,
https://theconversation.com/the-worlds-data-explained-how-much-were-producing-and-where-its-all-stored-159964
2 Data vs. Information – Difference and Comparison, 2022,
https://www.diffen.com/difference/Data_vs_Information#google_vignette
3 Big data, Wikipedia, The Free Encyclopedia, 2014, https://en.wikipedia.org/wiki/Big_data
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Figure 1. A single image tile from the data shown over 12 different bands.

data from human society which is acquired through human-computer interfaces and brain-computer
interfaces (Cheng et al., 2014).

Big geospatial data falls under the category of data from the physical world. Geospatial data is
information that describes events, objects or features associated with a location on or near the surface
of the earth. Geospatial data can be obtained by remote sensing, ground surveying, laser scanning,
mobile mapping, geo-tagged web contents and many more techniques. Geospatial data grows as the
machinery used to capture it increases yearly. Big data was characterised by the three initial V’s in
2001 by Laney (2001), namely volume, variety and velocity. Other V’s were added as time went on
such as value, veracity, variability and visualisation. Karimi (2014) showed that big geospatial data
exhibits at least one of the 3 initial V’s along with the other V’s introduced later in time.

Two strategies that have been introduced and implemented for geospatial big data handling include
parallel and distributed programming (Lee et al., 2014; Shekhar et al., 2012a,b) whereas others have
suggested the use of functional programming concepts or languages. One suggested way of dealing
with this is using metadata which is mentioned to be useful in cases of classification procedures (Li
et al., 2016).

The data used herein is a big crop dataset intended for crop classification in South Africa (Fig. 1).
As a developing country, most big data handling techniques are not implementable due to lack of
resources such as computational power. This paper proposes the use of data handling techniques that
are easily implementable. These include metadata which will be used to sample from. This paper
proposes a multivariate sampling algorithm that uses crop area coverages, which is a novel concept
in the literature. The sampling algorithm aims to minimise the number of images while maximising
information obtained from those images. The multivariate aspect is a result of the variables taken

56 RANGONGO, FABRIS-ROTELLI & THIEDE



into account, namely the crop types, field areas and percentage cloud coverage per image.
Metadata is data that provides information about other data. Metadata provides content, type,

quality, and creation information about another data set. For geospatial data, the metadata additionally
contains a spatial component such as the extent of the surface of the earth that the data covers. Types
of metadata include descriptive, structural, administrative, statistic, legal and reference metadata.
Metadata makes data easier to document and discover, and reduces data duplication (Coulondre
et al., 1998).

Big data tends to require a lot of storage, which makes it hard for people without enough compu-
tational power to work with. Metadata can be a solution that helps alleviate the storage requirement
of big data, as it enables the navigation and summarisation of big data without needing to load an
entire big dataset into memory.

An alternative used to alleviate having to read in all data is obtaining a good representation
of the data through sampling. A sample is considered a good representation if there are certain
characteristics of interest of the population that can be estimated with known accuracy. Examples
of sampling techniques include random, systematic, stratified and clustering sampling. Since this
research focuses on crop classification, stratified sampling works best because it requires that each
unit must belong to only one stratum. Applications of stratified sampling in remote sensing include
the detection of spatial variability amongst peach orchids to classify trees into homogenous strata
with the aim of decreasing sampling size (Miranda et al., 2018) and estimation of crop area using
stratified sampling in remote sensing (Jiao et al., 2006; Zhu and Zhang, 2013).

This paper proposes an algorithm that makes use of multivariate stratified sampling to obtain
a sample that gives the best representation of the population. The multivariate population under
consideration consists of a large database of remote sensing images of crop fields, for which each
image has a varying number of fields, crop types and field sizes. First, the data summary is obtained
in the form of a metadata dataframe, as explained in Section 2. The metadata itself is used to obtain
an informative sample using the algorithm developed in Section 3. The aim of the algorithm is
to achieve similar proportionality of crop types between the sample and the population. Section 4
evaluates the usefulness of the proposed algorithm and the effect of parameter choices. Section 5
discusses the results and Section 6 provides a conclusion.

2. The data
2.1 Data summary
The dataset to be used in this research is the Sentinel-2 time series data for the Western Cape province
in South Africa. This dataset is freely accessible on the Radiant MLHub website and was generated
by Radiant Earth Foundation and the Western Cape department of Agriculture in 20215. Radiant
MLHub is a cloud-based open library of Earth Observation data including land cover, wildfire, floods,
tropical storms, building footprints and crop datasets. The dataset to be used is a crop dataset that
has 12 bands in the near infrared, short wave infrared and visible part of the spectrum and the 13th
image type (CLM) which gives the cloud coverage on a tile image. The time series is provided every

5 Radiant Earth Foundation, Crop Type Classification Dataset for Western Cape, South Africa, 2021,
https://doi.org/10.34911/rdnt.j0co8q
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five days from the 1st of April until the 27th of November (48 dates) of 2017. Figure 1 shows the 12
bands images of one area of land with tile ID 1114 taken by the Sentinel-2 satellite on the 28th of
October 2017.

From Figure 1, B01 is the coastal aerosol band with a resolution of 60m. B02, B03 and B04 are
the blue, green and red bands all with the same resolution of 10m. B05, B06, B07 and B8A are
the vegetation red edge bands with the same resolution of 20m. B08 is the near infrared band with
resolution of 10m. B09 is the water vapour with resolution of 60m whereas B11 and B12 are the
short wave infrared bands with resolution of 20m.

Each image is an area of land made up of crop fields. Each field contains only one type of crop.
The dataset consists of 9 types of crops, namely fallow, canola, wheat, wine grapes, weeds, small
grain gazing, lucerne/medics, planted pastures (perennial) and rooibos. Figure 2 shows the different
fields and labels of the area covered in tile ID 1114. This area is made up of 25 fields that contain
6 different crop types, namely lucerne, planted pastures, fallows, small grain grazing, wheat and
canola.

Each area of land (2650 locations) was captured every five days (×48) through 12 bands of the
electromagnetic spectrum and the cloud coverage image (×13), such that the whole data set is made
up of 1 653 000 images. The area of interest is 17 367 040 km of land of which 6 581 396 km
(roughly 38%) has been labelled. The labelled images constitute the portions that will be considered
in assessing the accuracy of sampling. The area coverages of the crop types in each image and
field has also been calculated and this will help calculate the proportion of the crop types in the
population. Summing all the area coverages in each image gives the overall area coverage of each
crop type, which helps to determine the proportions of the crop types in the population. Figure 3
shows the proportions of the crop types using their area coverage, so that the one with the highest
proportion is the one with the highest crop coverage. As can be seen from Figure 3, wheat has the
highest proportion with 23.08% followed by small grain grazing with 14.146% with the least being
canola with a percentage of 3.405%.

2.2 Metadata construction
To avoid loading all 1 653 000 images of data (approximately 45.15GB) we construct metadata so that
only relevant images are loaded into memory. The metadata construction was performed in Python
with the code accessible at Figshare6. The structure of the metadata consists of three categories,
namely general information, tile ID information and image information.

General information includes properties that all images share regardless of location or date cap-
tured, namely the satellite used to capture the image, the type of image, data licence, data providers
and image size since all images are the same size. This information is given in the images STAC
(SpatioTemporal Asset Catalogs) files. Figure 4 is an illustration of what the general information is
for each image.

Tile ID information is information that has been used to differentiate between the different areas
of land such as tile ID, the spatial extent of the area captured, and the number of fields along with the
crop types they contain. Figure 5 shows this. An image of another area of land, i.e. with a different
tile ID, will not have the same information as the one in Figure 5. The spatial extent, also referred to

6 Metadata construction, Figshare, Python code, https://doi.org/10.25403/UPresearchdata.20349426
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(a) Fields (b) Labels
Figure 2. An illustration of the fields and crop types of the
area with tile ID 1114.

Figure 3. Proportions of the crop
types using area coverage.

Figure 4. General information that applies on
all images.

Figure 5. Tile ID information that applies to all
images of the same area of land.

as the bounding box, number of fields and crop proportions will also differ.
Information associated with each image is unique for each image, such as the date and time and

cloud coverage on that date. With the three categories brought together, metadata in the form of a
database can be created. The database is a Pandas (Pandas Development Team, 2020) dataframe
where the rows are indexed by the tile ID and the date the images were captured. From the database
itself, one can obtain the structure of the data, the description of the data as well as the administration
involved in publishing the data. The database is useful because performing procedures such as
sampling and classification will not require loading and reading all the images into memory.

3. A multivariate stratified sampling algorithm
This section covers the proposed sampling algorithm that makes use of multivariate stratification.

Let 𝑁 be the number of images in the population and 𝑀 be the number of different crop types.
Let 𝑛 be the sample size of images and 𝑁𝑖 be the number of images that contain crop type 𝑖 in the
population. We notate 𝐴𝑖𝑝𝑜𝑝 and 𝐴𝑖𝑠𝑎𝑚𝑝 as the area coverages of crop type 𝑖 in the population and
sample respectively. Thus making A𝑝𝑜𝑝 and A𝑠𝑎𝑚𝑝 vectors of area coverages of the 𝑀 crop types in
the population and the sample respectively, and V𝑝𝑜𝑝 and V𝑠𝑎𝑚𝑝 vectors containing the proportions
of the 𝑀 crop types in terms of area coverage in the population and sample respectively:
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V𝑝𝑜𝑝=



𝑉1
𝑝𝑜𝑝

𝑉2
𝑝𝑜𝑝
...

𝑉𝑀𝑝𝑜𝑝


, V𝑠𝑎𝑚𝑝=



𝑉1
𝑠𝑎𝑚𝑝

𝑉2
𝑠𝑎𝑚𝑝
...

𝑉𝑀𝑠𝑎𝑚𝑝


, A𝑝𝑜𝑝=



𝐴1
𝑝𝑜𝑝

𝐴2
𝑝𝑜𝑝
...

𝐴𝑀𝑝𝑜𝑝


and A𝑠𝑎𝑚𝑝=



𝐴1
𝑠𝑎𝑚𝑝

𝐴2
𝑠𝑎𝑚𝑝
...

𝐴𝑀𝑠𝑎𝑚𝑝


.

We propose an algorithm to obtain a sample from the population ensuring that the proportion
between the population and the sample are similar while minimising the number of images sampled.
The proportions are calculated in terms of area coverage. The area coverages of the 𝑀 crop types
in the population (A𝑝𝑜𝑝) should be directly proportional to the area coverages of the crop types in
the sample (A𝑠𝑎𝑚𝑝). Ideally, the desired area coverages in the sample, A𝑠𝑎𝑚𝑝 should be 𝑛

𝑁 × A𝑝𝑜𝑝 .
Mathematically, the aim is to show the following equation holds for some small 𝜖 :

| |V𝑝𝑜𝑝 − V𝑠𝑎𝑚𝑝 | | ≤ 𝜖 . (1)

The algorithm is separated into two main steps. The first step samples by looking at the most
represented crop type in the population. The second uses the partial sample from the first stop and
focuses on the least represented crop type. This is done iteratively until all crop types are represented,
while satisfying equation (1).

1. Calculate A𝑝𝑜𝑝 , the area coverages of the 𝑀 crop types in the population. From this, compute
V𝑝𝑜𝑝 the proportions of the crop types in the population.

2. Let 𝑐𝑟𝑜𝑝𝐴 be the crop type in V𝑝𝑜𝑝 with the highest proportion, such that 𝑐𝑟𝑜𝑝𝐴 =
argmax

𝑖
(𝑉 𝑖𝑝𝑜𝑝).

3. Extract a sub-dataframe 𝑛𝑒𝑤𝐴_𝑑𝑓 from the dataframe containing metadata such that 𝑛𝑒𝑤𝐴_𝑑𝑓
only contains images that have 𝑐𝑟𝑜𝑝𝐴 such that 𝑁𝐴 is the length of 𝑛𝑒𝑤𝐴_𝑑𝑓 .

4. Order the images 𝐼 (𝐴,1) , 𝐼 (𝐴,2) , ..., 𝐼 (𝐴,𝑁𝐴) in 𝑛𝑒𝑤𝐴_𝑑𝑓 in descending order according to the
area coverage of 𝑐𝑟𝑜𝑝𝐴 in each image. The new order will now be 𝐼 ′(𝐴,1) , 𝐼

′
(𝐴,2) , ..., 𝐼

′
(𝐴,𝑁𝐴) .

5. Introduce parameter 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥. This ensures that when other crop types are considered, the
desired area coverage 𝐴𝑖𝑠𝑎𝑚𝑝 of the previously considered crop type is not exceeded.

6. Include images 𝐼 ′(𝐴,1) , 𝐼
′
(𝐴,2) , ..., 𝐼

′
(𝐴,𝑛𝐴) such that the area coverage of 𝑐𝑟𝑜𝑝𝐴 in the 𝑛𝐴 ≤ 𝑁𝐴

images is 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 of the desired 𝑐𝑟𝑜𝑝𝐴 sample area coverage. These 𝑛𝐴 images are
included in the sample.

7. From thus far 𝑛𝐴 sampled images, the area coverages of the other crop types are also captured
and stored in A𝑠𝑎𝑚𝑝 as the corresponding A𝑖𝑠𝑎𝑚𝑝 .

8. Considering the current V𝑠𝑎𝑚𝑝 , let 𝑐𝑟𝑜𝑝𝐵 be the least crop type currently represented by
the sample, such that 𝑐𝑟𝑜𝑝𝐵 = argmin

𝑖
(𝑉 𝑖𝑝𝑜𝑝). Extract another sub-dataframe 𝑛𝑒𝑤𝐵_𝑑𝑓 that

contains images with 𝑐𝑟𝑜𝑝𝐵 in them but excluding the 𝑛𝐴 already in the current sample. Let
𝑁𝐵

∗ denote the number of these images which may be less or equal to 𝑁𝐵 depending on
whether or not the 𝑛𝐴 sampled images contain 𝑐𝑟𝑜𝑝𝐵.
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9. Rearrange the images 𝐼 (𝐵,1) , 𝐼 (𝐵,2) , ..., 𝐼 (𝐵,𝑁𝐵∗ ) in 𝑛𝑒𝑤_𝑑𝑓 in descending order according to
the area coverage of 𝑐𝑟𝑜𝑝𝐵 in each image such that the new order is 𝐼 ′(𝐵,1) , 𝐼

′
(𝐵,2) , ..., 𝐼

′
(𝐵,𝑁𝐵∗ ) .

10. Introduce another parameter 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 which works similar to 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 except now it is
imposed on the desired 𝑐𝑟𝑜𝑝𝐵 area coverage in the sample. Denote the number of images that
make up 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 of the remaining desired 𝑐𝑟𝑜𝑝𝐵 area coverage in the sample by 𝑛𝐵.

11. Capture the area coverages of all the crop types in the 𝑛𝐵 images and add to the ones from the
previously sampled images, in A𝑠𝑎𝑚𝑝 . The total 𝑛𝐴 + 𝑛𝐵 now become the updated sample size
with images 𝐼 ′(𝐴,1) , 𝐼

′
(𝐴,2) , ..., 𝐼

′
(𝐴,𝑛𝐴) , 𝐼

′
(𝐵,1) , 𝐼

′
(𝐵,2) , ..., 𝐼

′
(𝐵,𝑛𝐵 ) being the sample.

12. Repeat Step (8)-(9) for the next least represented crop type. Step (10) is modified to (10*)
such that the 𝑐𝑟𝑜𝑝(𝑖)𝑚𝑎𝑥 parameter is not included any longer i.e. we want to make up the
remaining desired area coverage. Iterate step (8), (9) and (10*) 𝑀 − 2 times to account for the
remaining crop types. Each time an iteration occurs, the previously 𝑛𝑖 selected images are not
considered in the next iteration as they already been added to the sample.

13. After the iterations, the final sample will now be the images 𝐼 ′(𝐴,1) , 𝐼
′
(𝐴,2) , ..., 𝐼

′
(𝐴,𝑛𝐴) , 𝐼

′
(𝐵,1) ,

𝐼 ′(𝐵,2) , ..., 𝐼
′
(𝐵,𝑛𝐵 ) , .., 𝐼

′
(𝑀,1) , 𝐼

′
(𝑀,2) , ..., 𝐼

′
(𝑀,𝑛𝑀 ) and from the final A𝑠𝑎𝑚𝑝 , compute V𝑠𝑎𝑚𝑝 ,

the proportions of the crop types in the sample.

4. Results
This section provides results of the effect of the different values of 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 and 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 on
the sample area coverages, the number of images sampled and the Euclidean norm.

The implementation of the sampling algorithm is done in Python and the notebook con-
taining the code for the algorithm is available on Figshare7. We investigate first the role of
the parameters 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 and 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 on the values of 𝑛𝐴 and 𝑛𝐵. 𝑐𝑟𝑜𝑝𝐴 from our
dataset is wheat and the length of 𝑛𝑒𝑤𝑎𝐴_𝑑𝑓 is 𝑁𝐴=106. The values of 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 used are
[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]. To illustrate the effect of 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 on 𝑛𝐴, we compare the
different values. For example, when 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥=0.4, then 𝑛𝐴 is 12, and when 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥=1, then
𝑛𝐴 is 33. Table 1 gives an example of the percentages of the desired A𝑠𝑎𝑚𝑝 area coverages achieved
from the 𝑛𝐴 image.

Using 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 of 0.4, the partial sample is made up of 𝑛𝐴=12 images. This is the selected
number of images containing 𝑐𝑟𝑜𝑝𝐴 in the first iteration. 𝑐𝑟𝑜𝑝𝐵, which is the least represented crop
in the partial sample, is weeds. The number of images that contain 𝑐𝑟𝑜𝑝𝐵 is 𝑁𝐵=𝑁∗

𝐵=1428 images
because the previously sampled images do not include weeds. Comparing two values of 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥,
0.4 and 1, in combination with the 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 of 0.4, we found 𝑛𝐵 to be 16 and 38 respectively.
This is the selected number of images with 𝑐𝑟𝑜𝑝𝐵 added to the partial sample. Table 2 shows how
different values of 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 increases the area coverages of each respective crop.

Using 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥=𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥=0.4, it can be seen from Table 2 that the next crop to be considered
is wine grapes followed by planted pastures with the last iteration (𝑀 𝑡ℎ) focusing on canola. Table 3
illustrates how the area coverages increase over the iterations. From Table 3, the overall sample size
relative to the population is 10.277%.

7 Sampling algorithm, Figshare, Python code, https://doi.org/10.25403/UPresearchdata.20444061
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Table 1. Achieved area coverage percentage using two different
𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 parameters.

Achieved area coverage (%)

Crop Type 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 = 40% 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 = 100%

Wheat 4.06 10.1
Weeds 0.0 0.14
Canola 1.71 4.15
Wine grapes 0.12 0.15
Fallow 0.11 0.26
Rooibos 0.01 0.01
Planted Pastured (perennial) 0.057 0.15
Lucerne/Medics 0.24 1.99
Small grain grazing 0.34 1.54

Table 2. Achieved area coverage percentage using two different 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 parameters.
Achieved area coverage (%)

𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 = 40% 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 = 100%

Crop Type 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 = 40% 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 = 100% 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 = 40% 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 = 100%

Wheat 4.11 4.159 10.1 10.164
Weeds 4.286 10.3789 0.246 0.893
Canola 1.71 1.714 4.15 4.15
Wine grapes 0.12 0.174 0.15 0.152
Fallow 0.53 2.187 0.597 1.05
Rooibos 0.325 0.524 4.391 10.64
Planted Pastured (perennial) 0.135 0.290 0.231 0.277
Lucerne/Medics 0.24 0.248 1.99 1.99
Small grain grazing 0.446 0.599 1.54 1.639

Table 6 consists of the sample size achieved given different values of 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 and desired
sample sizes. Note that the sample sizes are calculated using area coverages and not number of
images, and this is before introducing 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥, which is the same as taking 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥=1.

Table 4 contains the number of images sampled given the different values of 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 and the
different desired sample size (area-wise). This is similar to Table 6 where the parameter imposed on
the second considered crop type is not included.

Table 5 contains results of achieved sample sizes given different desired sample sizes and values of
𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥. Now the parameter imposed on 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 is kept constant (𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥=1) to illustrate
the effect of 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥.

The Euclidean norm is computed to quantify the difference between the area coverages of the
crop types in the sample to those in the population. Table 7 gives the Euclidean norm between the
different samples for different values of 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 not considering the effect of 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 (i.e.
setting 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥=1).

Figures 6 and 7 gives the effect of the different values of 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 and 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 using the
Euclidean norm calculated from the different desired sample sizes and the population. The lighter
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Table 4. Number of images per desired sample size and 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥.

𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥

Sample size 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10% 129 131 132 134 137 138 140 143 145 146
20% 269 273 271 275 278 284 286 290 294 297
30% 430 435 436 440 444 447 450 458 462 463
40% 620 617 613 616 621 627 629 630 634 635
50% 813 798 800 810 814 822 820 822 828 839
60% 1026 1033 1006 1009 1020 1019 1022 1045 1040 1037
70% 1248 1253 1238 1240 1258 1259 1263 1251 1249 1247
80% 1484 1486 1489 1496 1490 1513 1508 1501 1496 1471
90% 1799 1801 1803 1800 1816 1826 1824 1814 1785 1798
100% 2646 2646 2646 2646 2646 2646 2646 2646 2646 2650

Table 5. Achieved sample size per desired sample size and 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥.

𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥

Sample size 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10% 10.3 10.4 10.6 10.7 10.8 10.9 11.0 11.1 11.1 11.3
20% 20.3 20.6 20.8 20.9 21.2 21.4 21.6 21.8 22.0 22.2
30% 30.1 30.5 30.9 31.3 31.7 31.9 32.1 32.5 32.7 32.9
40% 39.9 40.3 40.7 41.2 41.5 41.3 42.2 42.6 42.9 43.4
50% 50.7 51.1 51.6 52.0 52.4 52.8 52.9 53.2 53.4 53.6
60% 61.1 61.5 61.9 62.5 62.7 62.8 63.0 63.4 63.6 63.8
70% 70.6 71.1 71.6 72.0 72.2 72.5 72.6 72.9 73.3 73.6
80% 78.5 78.3 78.9 79.6 80.2 81.0 81.5 82.2 82.7 83.3
90% 90.0 90.4 90.2 90.6 90.9 91.1 91.3 91.5 91.8 91.9
100% 99.2 99.2 99.2 99.3 99.4 99.4 99.5 99.6 99.8 100.0

Table 6. Achieved sample size per desired sample size and 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥.

𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥

Sample size 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10% 10.6 10.7 10.7 10.8 10.9 10.9 11.1 11.2 11.3 11.3
20% 21.0 21.2 21.0 21.2 21.3 21.6 21.7 21.8 22.0 22.2
30% 31.9 32.3 32.2 32.3 32.4 32.3 32.3 32.8 32.9 32.9
40% 43.1 43.3 43.0 43.1 43.3 43.5 43.4 43.3 43.4 43.4
50% 54.0 53.4 53.3 54.4 54.6 54.5 53.9 53.8 53.9 53.6
60% 64.4 64.7 63.6 64.9 64.4 64.0 64.0 63.9 63.6 63.8
70% 74.6 74.9 75.8 75.4 74.0 74.2 73.8 73.5 73.4 73.6
80% 83.9 84.0 84.1 83.8 83.2 83.2 82.9 82.8 82.8 83.3
90% 91.9 92.0 92.0 92.1 92.1 91.5 91.5 91.4 92.0 91.9
100% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table 7. Euclidean norm between population and sample proportions per desired sample size and
𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥.

𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥

Sample size 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10% 5.18 4.62 4.16 3.83 3.38 3.23 3.61 4.04 4.68 4.99
20% 9.33 8.22 6.39 5.67 4.86 5.28 5.6 6.44 7.44 8.72
30% 13.33 12.01 10.24 9.25 8.72 8.06 8.05 9.42 10.32 11.44
40% 15.99 14.35 12.47 11.81 11.24 11.55 11.41 11.8 12.54 13.88
50% 18.3 17.45 16.45 15.88 15.8 15.24 13.86 14.21 15.17 15.49
60% 20.02 19.32 17.28 17.84 16.58 15.67 15.41 14.08 14.77 16.64
70% 20.44 20.42 21.15 19.46 16.02 16.26 13.71 13.57 14.59 16.52
80% 17.93 17.83 17.25 15.42 14.28 12.36 11.75 12.14 12.99 16.68
90% 10.43 10.42 10.11 10.48 10.04 5.73 6.0 6.11 10.1 9.81
100% 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.02

and larger the dots, the higher the Euclidean norm, and the darker and smaller the dots, the smaller
the Euclidean norm.

Figure 8 illustrates how the highest and lowest Euclidean norms change with sample size. The
averages of the Euclidean norms in each sample are also plotted.

5. Discussion
The algorithm works in such a way that the proportions of the crop types in the sample should be
similar to that of the population, while minimising the number of images sampled.

Table 1, illustrates how the parameter 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 works, with wheat being the crop of interest.
If 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 is set to 100%, then the achieved area coverage is already at the desired level of 10%
in the first iteration. The area coverage will increase when considering other crop types. The same
is observed for the parameter 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 in Table 2. The desired sample size of weeds (crop B) is
already achieved at the second iteration if 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 is set to 100%. Using this information, one
can deduce that using high values of 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 and 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 will lead to over-sampling. From
Table 2, we see that if a 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 of 40% is chosen, then the least represented in the sample is
weeds, but if a 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 of 100% is chosen, rooibos is the least represented in the sample and will
be considered in the second iteration.

Table 3 shows how the area coverages increase as other crop types are considered throughout the
remaining iterations. Most of the crop types achieved the desired 10% area coverage. Only wheat
and weeds were under-sampled. The reason for this might be the choice of 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 (imposed
on wheat) and 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 (imposed on weeds); one might argue that 40% is small and a higher
value such as 60% might avoid under-sampling of the first two crops. Table 6 shows the effect of
the parameter 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 on the achieved sample area coverage given certain sample sizes. For
smaller sample sizes, the achieved sample area coverages seem to increase with higher values of
𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥. Note that the effect of 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 is not included in this instance. If one assessed the
level of accuracy by comparing the desired sample sizes to the achieved sample area coverages, then
the algorithm would pass this accuracy test. This is because the highest difference between the two
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(a) 10% sample size (b) 20% sample size

(c) 30% sample size (d) 40% sample size

(e) 50% sample size (f) 60% sample size

(g) 70% sample size (h) 80% sample size

Figure 6. Euclidean norm between (10%–80%) sample and population.
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(a) 90% sample size (b) 100% sample size

Figure 7. Euclidean norm between (90%–100%) sample and population.

Figure 8. The bounds and averages of Euclidean norms per sample size.

is 5.8, and this is for a sample size of 70%. Looking at the smaller samples, which is ideally what
we want to work with, the difference can be considered trivial. The achieved sample area coverages
are always higher than the desired sample sizes in this instance. This is because, as much as we are
considering area coverages, we consider a whole image and not individual fields. If from previously
selected images we have a sample area coverage of 9.1% for a specific crop type, and an additional
image were selected containing 1.6% area coverage for that crop type during an iteration to meet the
desired 10% sample size, then all the area will be considered and not just the required (10%–9.1%).
This will result in 10.5% area coverage being achieved.

Since the aim of the algorithm is to minimise the number of images sampled, Table 4 gives a
summary of how the number of images sampled changes according to desired sample size and the
parameter 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥. For lower sample sizes, the number of images sampled increases as the
𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 parameter increases, which corresponds to the result from Table 6. For a 10% desired
sample size, an average of 138 images is sampled, which makes up 5% of the total number of images
(2650). While simple random sample (SRS) would result in 10% of all the images, the proposed
algorithm would get the same information area-wise using 5%. The algorithm ensures that the most
information is achieved with less images. For lower sample sizes (10%–40%), roughly (48%–60%)
of the images that would be selected using SRS are obtained using the proposed algorithm. Even for
a sample size of 90%, roughly 75% of images selected using a SRS approach are selected using this
algorithm. This is due to the fact that some of the fields in the images were not labelled (62% of area
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is not labelled), so having more images does not necessarily mean having more information.
Table 5 shows how the area coverages achieved changes with 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥, when the effect of

𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 is nullified by setting it to 100%. In this instance, we have that the achieved area
coverages increase with increasing values of 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 for all different sample sizes. This is
different to when we were considering the effect of 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 only, where this is was true for only
smaller sample sizes. We see that the differences in this instance are lower compared to Table 4.
The highest difference decreased from 5.8 to 3.6 with the lowest being 0.0. The highest difference,
similar to when only considering 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 (Table 4), is from a high sample size of 70%.

To compute the difference between the proportions of the crop types between sample and the
population, the Euclidean norm is considered. Only the 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 parameter is considered in this
instance. The Euclidean norm is at its smallest at 100% sample size as we expect it to be. For lower
values of sample size, the Euclidean norm is at its lowest when 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 is at 50% and 60%. This
might be that choosing lower values of 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 leads to under-sampling and higher values of
𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 lead to oversampling. Figures 6 and 7, looking at the 10% sample size, higher values of
𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 and lower values of 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 give high Euclidean norm values, whereas low and high
values of 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 give high Euclidean norm values. As 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 increases, the Euclidean norm
decreases. The lowest Euclidean norms are achieved when 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 is contained in (0.4, 0.7) and
𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 is in (0.6, 0.9). Higher values of 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥 and middle values of 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 tend to
give the smallest Euclidean values in the smaller sample sizes. The Euclidean norm is at its lowest
when 𝑐𝑟𝑜𝑝𝐵𝑚𝑎𝑥=0.9 and 𝑐𝑟𝑜𝑝𝐴𝑚𝑎𝑥 is between 0.5 and 0.7.

Note that the lowest value of the Euclidean norm in a sample size of 10% and 20% are not the
same, but are 2.79 and 4.82 respectively. From Figure 8, the lowest Euclidean norm is achieved when
the sample size is 100%, with the second lowest being at a 10% sample size followed by 20%. As
the sample sizes increases, so does the range of Euclidean norms (this is true until after sample size
of 70%). For smaller sample sizes, the Euclidean norm range is quite small. The smallest range is
(2.79,8.4) when the sample size is 10% and the largest is achieved when the sample size is 70% with
(13.57,44.06). A sample size of 70% does not only give the highest Euclidean norms, but also the
highest difference in terms of sample size and achieved area coverage as already discussed.

6. Conclusion
This paper proposes a novel multivariate stratified sampling algorithm that selects the most informa-
tive images in order to minimise the number of images sampled. Two parameters were introduced
to control the number of images sampled. The algorithm samples using metadata of the real dataset
which minimises the computational power and time. The data used is a crop dataset intended for
classification purposes. The algorithm gave good results on this dataset, and was able to extract the
same information from half the number of images as simple random sampling. Depending on the
choice of the parameters, the achieved sample size area wise is often slightly higher than the choice
of sample size. The Euclidean norm was computed to investigate how the proportionality changes
from the population to the sample. For smaller sample sizes, the Euclidean norm is lower for medium
values of the parameter imposed on the first considered crop and for high values of the parameter
imposed on the second considered crop. The proposed sampling algorithm for multivariate image
sampling provides a solution to the problem of handling big geospatial data. The effect of training
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a machine learning algorithm on a sample of data can be investigated. This will be considered as
future research.
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