
Seasonal catchment areas using an attribute based fuzzy lattice
data structure

Michelle de Klerk and Inger Fabris-Rotelli

Department of Statistics, University of Pretoria, Pretoria, South Africa

Seasonality impacts various industries and sectors, influencing agricultural cy-
cles, economic planning, and healthcare resource allocation. We propose a novel
approach using an attribute based fuzzy lattice data structure to create overlapping
catchment areas using the fundamentals of label propagation and graph clustering.
This approach considers both the link structure and attribute similarities between
nodes in a network, where the nodes are points of interest in a road network. Nodes
may be close or far apart based on connectivity and shared attributes, such as com-
mon interests or in a geographical application considering topography features. In
this study, we incorporate static and seasonal attributes for geographical nodes, al-
lowing us to explore seasonal catchment areas and provide a more realistic view of
accessibility throughout the year. This integrated approach offers a comprehensive
framework for assessing spatial accessibility and understanding seasonal variations
in regions to enhance planning for essential services.
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1. Introduction
Accessibility to essential facilities and services is a fundamental component of societal well-being
and equitable development as highlighted in Wang (2014). Ensuring equal access to resources
like healthcare, education, and infrastructure is critical for promoting social equity, particularly for
disadvantaged and under-served populations. Unfortunately, accessibility is often hindered by a range
of geographic and non-geographic barriers, resulting in significant disparities in service provision as
discussed in Green et al. (2016). This is particularly evident for disadvantaged groups, where factors
such as income, minority status, and geographical remoteness can exacerbate accessibility issues
(Rader et al., 2022). Globally, there is a stark contrast between high-income and low- and middle-
income countries when it comes to accessing basic services, with the latter often facing considerable
barriers and limited infrastructure (Peters et al., 2008). In low-resource settings, capturing accurate
catchment areas is essential for estimating population needs and optimising resource distribution.
Effective resource planning and demand estimation hinge on understanding both supply and demand
dynamics.

Spatially accessible areas are regions where services or facilities can be reached by a population
within a defined geographic boundary, based on factors like distance, travel time or ease of access.
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These areas are characterised by their proximity to a point of interest (POI), making them available
for potential or actual use by the community (Wang, 2014). Potential spatially accessible areas are
regions where services or facilities theoretically offer access to the population, implying service
availability but not guaranteeing actual utilisation. Realised spatially accessible areas represent
regions where potential access translates into actual usage, capturing the utilisation of services by
the population. This depends on various individual, social, and economic factors (Khan, 1992).

Spatial catchment areas are geographical regions within which services or facilities can be accessed
by a population. A catchment area represents the geographical zone from which a POI attracts
communities to utilise its services or products (Tao et al., 2018; Luo and Wang, 2003; Shao and Luo,
2022). It is typically defined by the maximum distance or travel time users are willing to cover to
reach the POI and can be determined naturally (e.g., by geographic boundaries) or as a predefined
establishment (Green et al., 2016; Luan et al., 2020).

There is a minimal set of conditions from both the supply and demand side which a catchment area
should meet as discussed in Macharia et al. (2021). On the supply side, this involves considering
the various services provided by POIs, determining whether they are specialised, accounting for
competing service providers, assessing the capacity of POIs and identifying any natural or man-
made barriers. On the demand side, it is important to identify areas that experience significant
fluctuations throughout the year and account for time-sensitive factors such as weather changes and
population flows.

Seasonality impacts a variety of industries and sectors. In agriculture, it can influence harvesting
times, soil quality, and disease outbreaks (Anyamba et al., 2014). In economics, seasonal trends
affect resource planning for tourism and retail sales, requiring careful resource allocation (Corluka,
2019). In healthcare, optimising resources is crucial for addressing seasonal infectious diseases, such
as colds and flus and gastrointestinal diseases (Musengimana et al., 2016).

Catchment areas can be classified as either non-overlapping or overlapping (Challen et al., 2022).
Non-overlapping catchment areas provide a simplified model of spatial access where each geograph-
ical region is uniquely associated with a single service facility. While this approach simplifies
modelling, it may misallocate demand, particularly when multiple facilities could serve the same
region, potentially neglecting user choice and specific needs (Challen et al., 2022). Overlapping
catchment areas offer a more realistic approach, allowing multiple facilities to serve the same region,
acknowledging user choice, and providing a better representation of service accessibility. Over-
lapping catchments demonstrate how demand can be shared across facilities, potentially reducing
disparities in service provision (Wang, 2014). However, ensuring equitable distribution and avoiding
demand concentration at a few nodes can remain challenging.

Various methods exist for identifying catchment areas in spatial accessibility studies. These range
from simpler approaches like circular buffers (Andersen and Landex, 2008) and Euclidean buffer-
based methods (Lin et al., 2020) to more advanced techniques such as the floating catchment method,
the two-step floating catchment area (2SFCA) method (Radke and Mu, 2000; Luo and Wang, 2003),
gravity-based models (Wang, 2014), distance decay functions, and variable catchment areas, as
summarised in Tao et al. (2018).

A probabilistic approach to defining overlapping catchment areas has been explored through the
use of a fuzzy lattice data structure, as discussed by de Klerk and Fabris-Rotelli (2024). This method
represents spatially accessible regions while promoting a more balanced distribution of demand and
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supply. Fuzzy lattice catchment areas are generated using label propagation principles and follow
a probabilistic framework that enables proportional demand allocation. In this context, "fuzzy"
refers to assigning membership degrees as probabilities between 0 and 1, ensuring a more realistic
representation of spatial accessibility. Drive-time thresholds (Green et al., 2016) are applied to ensure
the probability structure accounts for both the geographical boundaries of POIs and the surrounding
population. By contrasting this method with traditional approaches, it underscores the impact of
using a weighted distribution of resources and demand compared to uniform weighting.

The approach outlined in de Klerk and Fabris-Rotelli (2024) however primarily focuses on the
structural connections within the network and does not incorporate attributes such as environmental
or topographic factors that, while not explicitly represented in structural links, still connect nodes
through shared properties. To address this limitation, we expand on the method by developing
an attribute based fuzzy lattice data structure that integrates both the network’s link structure and
node attributes (Zhou et al., 2009) to iteratively propagate labels. Using a semi-supervised learning
approach to propagate labels to neighbouring nodes, the entire geographical region can be represented
as an attribute based fuzzy lattice structure, with each node having a set of probabilities associated with
various labels. This allows unlabelled nodes to retain multiple labels received from their neighbours,
reflecting overlapping catchment areas. The degree of this overlap is captured probabilistically,
allowing to create overlapping catchment areas. Using a real-world application in healthcare resource
allocation across seasons, we compare seasonal catchment areas to static catchment areas created
with a fuzzy lattice data structure. This comparison highlights how accessibility and supply-demand
ratios fluctuate seasonally, offering insights into the dynamic nature of catchment areas in regions
with changing environmental conditions.

The remainder of this paper is structured in the following order. Section 2 covers the methodology,
where we define an attribute augmented graph and the transition probability matrix which is then used
to create an attribute based fuzzy lattice data structure and seasonal catchment areas. In Section 3,
we apply this methodology in a practical scenario, demonstrating how the integration of attributes
can influence demand patterns and the supply-demand ratio. This is followed by a discussion and
conclusion, offering final remarks and insights on the analysis.

2. Methodology
This section covers the fundamentals of a network graph, including nodes, edges, and weights,
and introduces a set of attributes associated with the nodes in a graph 𝐺. In Section 2.1, we
define an attribute-augmented graph 𝐺𝑎 that incorporates these attributes. Section 2.2 proposes an
attribute-based fuzzy lattice data structure that leverages both the link structure and node attributes to
iteratively propagate labels. Finally, Section 2.3 applies this attribute based fuzzy lattice to a simple
toy example, illustrating how the supply-demand ratio and accessibility are impacted.

2.1 Attribute Augmented Graph
Traditional graph-based models primarily rely on structural connectivity, where in a geographical
application nodes represent spatial locations (grid cells, administrative units, etc.), and edges define
adjacency relationships. However, this representation fails to capture meaningful similarities between
regions that share common attributes but are not directly connected. This limitation makes it difficult
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to model complex spatial patterns where both proximity and attribute similarity play a role. To
address this, we expand on the attribute augmented graph as discussed in Zhou et al. (2009) by
integrating it in a geographical application to consider both geographical locations as well as shared
characteristics between regions.

Using node classification formulation as illustrated in Bhagat et al. (2011), consider a graph
𝐺 = 𝐺 (𝑉, 𝐸,𝑊), with𝑉 the set of nodes, 𝐸 the set of edges and𝑊 the edge weights. Nodes typically
represent entities such as individuals in a social network and edges represent the relationships between
these entities, such as friendships, or interactions. In this paper we focus on a spatial graph, that is,
the nodes represent geographical areas.

A structural node refers to the position of a node within the graph, independent of any specific
attributes, and represents geographic regions such as delineated grid cells, whose centres then
represent the nodes. These nodes are connected by edges that denote spatial adjacency, meaning
that a connection (edge) exists between two nodes if they share a border or are within a predefined
distance threshold. The structure of the graph itself provides information about the network, such as
how densely connected certain nodes are, adjacent nodes and how central a node is in comparison to
the other nodes. The link structure refers to how the nodes are connected through the edges and can
be quantified in a statistical manner by the transition probability from one node to the other. Herein,
the link structure uses label propagation such as in Raghavan et al. (2007) to propagate labels across
the network to unlabelled nodes, so that structurally close nodes are more likely to share similar
labels.

In addition to the link structure in 𝐺, consider a set of attributes Λ which is associated with the
nodes 𝑉 in 𝐺. Attribute nodes are added to represent specific characteristics or properties of the
nodes in a network. For instance, in a co-authorship network, an attribute node might represent a
research topic. If multiple researchers (nodes) publish in the same domain, they will be connected to
this common attribute node, creating additional links beyond the standard co-authorship connections
as illustrated in Zhou et al. (2009). In a geographical application, structural nodes such as regions
can be connected not only by shared boundaries but also by common attributes. These attributes
may include population size, primary road access, average house price, and other socio-economic
factors. Such connections extend beyond geographic adjacency, capturing relationships between
regions based on shared characteristics. These nodes are different from structural nodes, which
reflect the network’s topology. In an augmented graph 𝐺𝑎, attribute nodes are added to express
similarity based on shared properties. Connections, or attribute edges, are drawn between structural
nodes and attribute nodes when the structural nodes share a similar attribute.

Incorporating the attribute nodes into the connectivity between nodes, let 𝐺𝑎 = (𝑉 ∪ 𝑉𝑎, 𝐸 ∪
𝐸𝑎,W∗

𝑎) be an attribute augmented graph as defined in Zhou et al. (2009) with 𝑉 the structural
nodes, 𝑉𝑎 the attribute nodes, 𝐸 the structural edges, 𝐸𝑎 the attribute edges and W∗

𝑎 the attribute
and structural weights. The attribute augmented graph 𝐺𝑎 = (𝑉 ∪ 𝑉𝑎, 𝐸 ∪ 𝐸𝑎,W∗

𝑎) is constructed
using the union operator (∪) to integrate attribute nodes and attribute edges, where 𝑉 ∪ 𝑉𝑎 is the
combined node set of both attribute and structural nodes, and 𝐸 ∪ 𝐸𝑎 is the combined set of edges
which expands the set of structural edges by introducing attribute edges that connect attribute nodes
to structural nodes. W∗

𝑎 is the weights matrix which includes both structural weights and attribute
weights.

Let the structural nodes𝑉 = {𝑣1, ..., 𝑣𝑁 } represent the full geographical region which is subdivided
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into𝑁 smaller grid cells, whose centres then represent the node locations. A structured edge (𝑣𝑖 , 𝑣 𝑗 ) ∈
𝐸 iff structure node 𝑣𝑖 shares a line segment, as defined by Rook’s contiguity (Wang, 2014), with
structure node 𝑣 𝑗 in the geographical area. Rook’s contiguity is similar to the movement of the rook in
chess, which can move horizontally or vertically across the board but not diagonally. In a grid layout,
this means each cell is adjacent to its immediate neighbours and can be connected to a maximum
of four neighbours: up, down, left, and right, forming what is known as a Rook’s neighbourhood
(Ver Hoef et al., 2018). Let the nodes in 𝑉 be associated with the attributes Λ = {𝜆1, . . . , 𝜆𝐴}. If
each attribute 𝜆𝑖 ∈ Λ has 𝑘𝑖 levels, 𝑖 ∈ {1, ..., 𝐴}, then let 𝐴 = {𝑎1, ..., 𝑎𝑇 } be the 𝑇-dimensional set
of indicator attributes that is associated with each level for attribute 𝜆𝑖 ∈ Λ, where 𝑇 =

∑𝐴
𝑖=1 𝑘𝑖 . Let

𝑉𝑎 = {𝑣𝑎1 , ..., 𝑣𝑎𝑇 } be the set of indicator attribute nodes. The size of node set 𝑉 ∪𝑉𝑎 is now 𝑁 +𝑇 .
The indicator attribute information for structural node 𝑣𝑖 is regarded as a 𝑇-dimensional binary

vector, x𝑖 , and can be represented in an attribute matrix X as

X =

©­­­­­«

x1
x2
...

x𝑁

ª®®®®®¬
=

©­­­­­«

𝑎1 (𝑣1) 𝑎2 (𝑣1) . . . 𝑎𝑇 (𝑣1)
𝑎1 (𝑣2) 𝑎2 (𝑣2) . . . 𝑎𝑇 (𝑣2)
...

...
. . .

...

𝑎1 (𝑣𝑛) 𝑎2 (𝑣𝑛) . . . 𝑎𝑇 (𝑣𝑛)

ª®®®®®¬
,

where 𝑎 𝑗 (𝑣𝑖) = 1 indicates an attribute edge in 𝐸𝑎 if node 𝑣𝑖 is associated with indicator attribute
𝑎 𝑗 , else 𝑎 𝑗 (𝑣𝑖) = 0 (Lin et al., 2021). The structural and attribute weights of 𝐺𝑎 is given by

W∗
𝑎 =

(
W 0
0 W𝑎

)
,

with W an 𝑁 × 𝑁 matrix indicating the structure edge weights 𝑤𝑖 𝑗 between structure nodes 𝑣𝑖
and 𝑣 𝑗 and W𝑎 is a 𝑇 × 𝑇 diagonal matrix consisting of the attribute weights 𝑤𝑎𝑖 , 𝑖 = 1, ..., 𝑇 .
Weights represent the relative importance of connections between nodes in the graph, where heavily
weighted edges encourage strong connections. The structure edge weights reflect the importance of
shared boundaries between structural nodes, whereas the attribute weights quantify the importance or
influence of a shared attribute between structural nodes. If attribute connections are more important
(similar economic profiles, income levels, etc.), attribute edges will receive larger weights than
structural edges, whereas if shared boundaries are more significant (natural boundaries, access to a
service is explicitly limited to a designated neighbourhood, etc.), structural connections will have
larger weights than attribute connections. If both structural and attribute connections carry equal
importance, they will be assigned equal weights to ensure a balanced influence. An edge weight can
either be relative to a quantity, for example in a social network the number of interactions (messages,
common friends, etc.) among users, or it can simply be set to 1 to indicate that a link is present, as
discussed in Bhagat et al. (2011).

When considering an attribute augmented graph structure, not only can a node transition via a
structural edge, but also via an attribute edge. Consider the (𝑁 +𝑇) × (𝑁 +𝑇) transition probability
matrix P𝑎 of 𝐺𝑎 constructed as

P𝑎 =

(
P𝑠 P𝑠𝑎
P𝑎𝑠 0

)
, (1)

where P𝑠 is an 𝑁 × 𝑁 submatrix containing the transition probabilities for structural node 𝑣𝑖 to reach
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Figure 1. Graph 𝐺𝑎 with structural nodes 𝑣1, ..., 𝑣9 and attribute nodes 𝑣𝑎1 and 𝑣𝑎2

structural node 𝑣 𝑗 ,

𝑝𝑣𝑖 ,𝑣 𝑗 =




𝑤𝑖 𝑗

𝑤𝑖 .+
∑𝑇

𝑖=1 𝑤𝑎𝑖

, if (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸,
0, otherwise.

P𝑠𝑎 is an 𝑁 × 𝑇 submatrix containing the transition probabilities from a structural node 𝑣𝑖 to an
attribute node 𝑣𝑞 ,

𝑝𝑣𝑖 ,𝑣𝑞 =




𝑤𝑞

𝑤𝑖 .+
∑𝑇

𝑖=1 𝑤𝑎𝑖

, if (𝑣𝑖 , 𝑣𝑞) ∈ 𝐸𝑎,
0, otherwise.

P𝑎𝑠 is a 𝑇 × 𝑁 transition probability submatrix for an attribute node 𝑣𝑝 to reach a structural node 𝑣 𝑗 ,

𝑝𝑣𝑝 ,𝑣 𝑗 =

{
1

𝑁 (𝑣𝑝 ) , if (𝑣𝑝 , 𝑣 𝑗 ) ∈ 𝐸𝑎,
0, otherwise,

and finally a 𝑇 ×𝑇 submatrix 0 for the transition probability from an attribute node 𝑣𝑝 to an attribute
node 𝑣𝑞 ,

𝑝𝑣𝑝 ,𝑣𝑞 = 0, ∀𝑣𝑝 , 𝑣𝑞 ∈ 𝑉𝑎,
with 𝑤𝑖 . the sum of edge weights for structural node 𝑣𝑖 , 𝑁 (𝑣𝑝) the number of neighbours to node
𝑣𝑝 and 𝑝, 𝑞 ∈ {𝑎1, ..., 𝑎𝑇 } as defined in Lin et al. (2021). Transition probabilities determine the
likelihood of a label propagating from one node to another in a graph-based label propagation
algorithm. They define how information (such as POI assignments) spreads through the network
based on structural and attribute connections and their weights.

Consider a simple example illustrated in Figure 1 with structural nodes 𝑉 = {𝑣1, ..., 𝑣9} such that
𝑁 = 9. Each of the nodes represents a geographical grid with location based attributes captured in
Λ. For this example, let the nodes be associated with only one attribute 𝜆1 which consists of two
levels 𝑎1 and 𝑎2, i.e. 𝐴 = 1, 𝑘1 = 2 and 𝑇 = 2. Assume all structure and attribute weights in W∗

𝑎 are
1. In this case then W will simply be an adjacency matrix that defines structural neighbouring nodes
using shared lines between grids. The set of indicator nodes for whether a node is associated with
𝑎1 or 𝑎2 is contained in the set 𝑉𝑎. The transition probability matrix P𝑎 for 𝐺𝑎 is an 11 × 11 matrix
and can be illustrated in (2).

6 DE KLERK & FABRIS-ROTELLI



P𝑎 =

©­­­­­­­­­­­«

0 1/3 0 1/3 · · · 0 | 0 1/3
1/4 0 1/4 0 · · · 0 | 1/4 0
...

...
...

...
. . .

... | ...
...

0 0 0 0 · · · 0 | 1/3 0
−− −− −− −− −− −− −− −− −−
0 1/7 1/7 1/7 · · · 1/7 | 0 0

1/2 0 0 0 · · · 0 | 0 0

ª®®®®®®®®®®®¬

. (2)

The transition from a structural node to a structural node is contained in the submatrix P𝑠 and
from (2) one can note that since node 𝑣1 is only structural neighbours with nodes 𝑣2 and 𝑣4, there
is an assigned probability of 1/3 for moving from 𝑣1 to 𝑣2 or 𝑣4. There is an additional transition
probability of 1/3 associated with node 𝑣1 contained in the submatrix P𝑠𝑎 which is the probability
for structural node 𝑣1 to move to attribute node 𝑣𝑎2 , hence the sum over all rows still adds up to
one and P𝑎 retains its stochastic matrix properties. The transition from the newly created attribute
nodes, namely 𝑣𝑎1 and 𝑣𝑎2 , can be observed in the submatrix P𝑎𝑠 where the attribute node 𝑣𝑎1 shares
a transition probability of 1/7 with the structural nodes 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣8 and 𝑣9. The attribute
node 𝑣𝑎2 shares a transition probability of 1/2 with structural nodes 𝑣1 and 𝑣7. The probability to
transition from an attribute node to an attribute node is 0 and is captured in the 2 × 2 submatrix 0.

2.2 Attribute Based Fuzzy Lattice Data
In any network, if a set of labels is known for some nodes, label propagation allows us to predict
labels for unmarked nodes by using their connections to the labelled ones. This helps assign values, to
nodes where data are missing, ensuring that all nodes are considered based on their network links. It
is a powerful way to fill missing information and make informed decisions across the entire network.

Using a semi-supervised learning approach to propagate labels to neighbouring nodes, the full
geographical region can be represented as an attribute based fuzzy lattice structure, with each node
having a set of probabilities associated with each label. As discussed in de Klerk and Fabris-
Rotelli (2024), a fuzzy lattice data structure uses a random walk approach and label propagation to
propagate labels to all nodes. A fuzzy lattice data structure only considers the graph’s link structure
to propagate labels, focusing on how nodes are connected and share common neighbours. However,
nodes often have various attributes such as shared interests when examining social networks, or
shared geographical features like weather patterns, topography, etc., when analysing geographical
data (Zhou et al., 2009). An attribute based fuzzy lattice data structure is proposed herein using both
the link structure and attributes associated with nodes to propagate labels. An unlabelled node can
hold multiple labels received from neighbouring nodes, allowing for an overlap of catchment areas.
The degree of overlap is captured by a probability and hence creates a fuzzy lattice data structure
(de Klerk and Fabris-Rotelli, 2024).

Let Y be the full set of 𝑀 possible labels that is initially applied to the labelled nodes in the
network. The foundation of label propagation is to propagate the labels in Y to the remaining
unlabelled nodes based on how nodes are connected to each other. A label can indicate a list of
interests (books, movies, etc.) and the shared connections propagate these labels to the unlabelled
nodes in the graph, predicting who shares similar interests. In a geographical application a node
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represents a region with an edge indicating neighbouring areas and a label is a point of interest (POI)
which an area is most likely to be associated with.

Consider geographical spatial POIs 𝑃 = {𝑃1, 𝑃2, ..., 𝑃𝑀 } as a known set of 𝑀 locations. The
centre of each grid cell 𝑣𝑛, 𝑛 = 1, ..., 𝑁 will represent the structural nodes in graph𝐺𝑎. The grid size
should be determined based on the specific geographical region of the study. Let 𝑉𝑚 = {𝑣1, ..., 𝑣𝑀 }
be the subset of the 𝑀 labelled structural nodes which contains a POI and let 𝑉𝑢 = {𝑣𝑀+1, ..., 𝑣𝑁 }
be the subset of remaining 𝑁 − 𝑀 initially unlabelled structural nodes which doesn’t contain a POI.

Let all attribute nodes contained in set 𝑉𝑎 initially be unlabelled nodes. Then the set of all un-
labelled (both structural and attribute) nodes are contained in the ordered set 𝑉∗

𝑢 = 𝑉𝑢 ∪ 𝑉𝑎 =
{𝑣𝑀+1, ..., 𝑣𝑁 , 𝑣𝑎1 , ..., 𝑣𝑎𝑇 }. Let 𝑉 be ordered such that the first 𝑀 rows are the cells from
𝑉𝑚 and the remaining 𝑁 − 𝑀 + 𝑇 rows are the nodes from 𝑉∗

𝑢 such that 𝑉 = 𝑉𝑚 ∪ 𝑉∗
𝑢 =

{𝑣1, ..., 𝑣𝑀 , 𝑣𝑀+1, ..., 𝑣𝑁 , 𝑣𝑎1 , ..., 𝑣𝑎𝑇 }.
Let Y be the full set of 𝑀 possible labels and Y𝑚 be an 𝑀 ×𝑀 indicator matrix carrying the initial

𝑀 multi-class labels indicating the POI associated with the corresponding node in set 𝑉𝑚. Similarly
let Y∗

𝑢 be an (𝑁 −𝑀 +𝑇) ×𝑀 matrix indicating the POI associated with corresponding nodes in 𝑉∗
𝑢 .

The initial label matrix Y is an (𝑁 + 𝑇) × 𝑀 matrix with the first 𝑀 rows as Y𝑚 and the remaining
𝑁 − 𝑀 + 𝑇 rows as Y∗

𝑢 or 0 (as the nodes in 𝑉∗
𝑢 are initially unlabelled).

Assume that all unlabelled nodes can reach a labelled node in a finite number of steps and will
therefore have an associated label at the end of the iteration process, i.e. graph 𝐺 is label connected
(Azran, 2007). A graph is considered non-label connected when some nodes remain unlabelled after
the iteration process. This can occur when certain nodes are isolated, having no direct edges linking
to the rest of graph 𝐺. In a social network, this can happen if there are individuals who do not share
any common interests with the rest of the network. When considering geographical applications, a
graph may be non-label connected when some grid cells are disconnected from the rest, separated by
natural or man-made barriers such as rivers, mountains, or boundaries like regional or state borders.

Consider transition matrix P𝑎 as defined in (1). Using a random walk approach with P𝑡𝑎 the
corresponding matrix at time 𝑡, then P𝑡→∞

𝑎 indicates the steady-state distribution matrix at which all
nodes are associated with label 𝑐 ∈ Y as 𝑡 → ∞ as shown in Bhagat et al. (2011). In matrix form

Ŷ = P𝑡→∞
𝑎 Y, (3)

where

Ŷ =

[
Ŷ𝑚
Ŷ∗
𝑢

]
and Y =

[
Y𝑚
0

]
, (4)

and Ŷ contains the output labels from the converged iteration process for all nodes in set 𝑉 .
Labelled nodes in set 𝑉𝑚 are classified as absorbent states such that they exhibit probability 1 of

staying in the same node and probability 0 of leaving the node. Therefore the labels of all nodes
𝑣𝑛 ∈ 𝑉𝑚 do not change. Since the nodes are ordered in such a way that the first 𝑀 rows in 𝑉 are 𝑉𝑚
and the last 𝑁 − 𝑀 + 𝑇 rows are 𝑉∗

𝑢 , the transition matrix can be split into 4 submatrices, indicating
the probability to move between states, namely

P𝑎 =

(
P𝑚𝑚 P𝑚𝑢
P𝑢𝑚 P𝑢𝑢

)
=

(
I 0

P𝑢𝑚 P𝑢𝑢

)
.
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The probabilities of transitioning from the unlabelled states to the labelled states are captured in
the (𝑁 −𝑀 +𝑇) ×𝑀 matrix P𝑢𝑚, and from the unlabelled states to the unlabelled states are captured
in the (𝑁 − 𝑀 + 𝑇) × (𝑁 − 𝑀 + 𝑇) matrix P𝑢𝑢. Since all labelled nodes are defined as absorbent
states, the probability of staying in a labelled node is 1 and the probability of exiting a labelled node
is 0. This simplifies P𝑚𝑚 to an 𝑀 ×𝑀 identity matrix I, and P𝑚𝑢 to an 𝑀 × (𝑁 −𝑀 +𝑇) zero matrix
0.

Since the graph is label connected and there are 𝑀 absorbent states, the limiting distribution of
lim
𝑡→∞ P𝑡𝑎 is

P𝑡→∞
𝑎 =

(
I 0

(1 − P𝑢𝑢)−1P𝑢𝑚 0

)
(5)

as shown in Bhagat et al. (2011) and Azran (2007). Substituting (5) and (4) into (3), the labels can
be computed as [

Ŷ𝑚
Ŷ∗
𝑢

]
=

(
I 0

(1 − P𝑢𝑢)−1P𝑢𝑚 0

) [
Y𝑚
0.

]
. (6)

From (6), the labels for the absorbent state nodes contained in 𝑉𝑚 remain unchanged with Ŷ𝑚 = Y𝑚.
The labels of the unlabelled nodes are obtained by computing

Ŷ∗
𝑢 = (1 − P𝑢𝑢)−1P𝑢𝑚Y𝑚. (7)

The (𝑁 − 𝑀 + 𝑇) × 𝑀 matrix Ŷ∗
𝑢 will contain the probability of each label assigned to the nodes in

𝑉∗
𝑢 as outlined in Algorithm 1, with the sum over each row adding to 1.
Consider the simple example illustrated in Figure 1 with added labelled nodes. In this example

seven structural nodes 𝑉𝑢 = {𝑣1, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣8, 𝑣9} and two attribute nodes 𝑉𝑎 = {𝑣𝑎1 , 𝑣𝑎2 } are
unlabelled and contained in the set 𝑉∗

𝑢 = 𝑉𝑢 ∪ 𝑉𝑎. Two structural nodes 𝑉𝑚 = {𝑣2, 𝑣7} are labelled
with associated POIs 𝑃1 and 𝑃2, respectively. Let 𝑉 be the ordered set, contained in 𝐺𝑎, consisting
of 𝑁 + 𝑇 = 11 nodes with the first 𝑀 = 2 rows the labelled nodes and the remaining 𝑁 − 𝑀 + 𝑇 = 9
rows the unlabelled nodes, i.e. 𝑉 = {𝑣2, 𝑣7, 𝑣1, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣8, 𝑣9, 𝑣𝑎1 , 𝑣𝑎2 }. Let Y𝑚 be an indicator
matrix with the first column representing label 𝑃1 and the second column representing label 𝑃2.
Applying the methodology as described above, the probability of labels 𝑃1 and 𝑃2 to be assigned to
nodes in set 𝑉 is calculated in (8).

Ŷ =

[
Ŷ𝑚
Ŷ∗
𝑢

]
=

[
1 0 0.59 0.79 0.48 0.67 0.69 0.49 0.62 0.68 0.30
0 1 0.41 0.21 0.52 0.33 0.31 0.51 0.38 0.32 0.70

]𝑇
. (8)

From (8) it can be noted that all nodes in 𝑉𝑚 remained in the initial node and label associated with
it with probability 1. The nodes contained in set 𝑉∗

𝑢 , however, received a probability associated with
labels 𝑃1 and 𝑃2. If ignoring the attribute nodes as done in de Klerk and Fabris-Rotelli (2024), the
probability for node 𝑣1 to be associated with label 𝑃1 is 0.72 and with 𝑃2 is 0.28. In this example,
however, nodes 𝑣1 and node 𝑣7, which is the node associated with label 𝑃2, share a similar attribute
𝑎2, hence even if they are not as structurally close as 𝑣1 and 𝑣2, the node associated with label 𝑃2, they
now share a connected link through node 𝑣𝑎2 . This can also be observed in the increased probability
for node 𝑣1 to be associated with 𝑃2 from 0.28 to 0.41.

The attribute nodes also carry a probability to be associated with labels 𝑃1 and 𝑃2. In a label
propagation model, the labels are typically spread across the graph using the connections between
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Algorithm 1 Attribute Based Fuzzy Lattice Data
Require: 𝑉 ∪𝑉𝑎: Combined node set (size 𝑁 + 𝑇) of structural nodes 𝑉 and attribute nodes 𝑉𝑎.
Require: 𝑉𝑚: Set of 𝑀 labelled nodes (absorbent states).
Require: 𝐸 ∪𝐸𝑎: Combined edge set (size 𝑁 +𝑇) of structure- (𝐸) and attribute-edge weights (𝐸𝑎).
Require: W∗

a: Weights matrix of size (𝑁 + 𝑇) × (𝑁 + 𝑇).
Require: X: Attribute matrix of size 𝑁 × 𝑇 .
Require: Y𝑚: Indicator matrix for all labelled states of size 𝑀 × 𝑀 .
Ensure: Ŷ: Matrix with output labels from the converged iteration process for all nodes in combined

set 𝑉 ∪𝑉𝑎 of size (𝑁 + 𝑇) × 𝑀 .
1: Initialise graph: Define 𝐺𝑎 = (𝑉 ∪𝑉𝑎, 𝐸 ∪ 𝐸𝑎,W∗

𝑎).
2: Compute transition probability matrix P𝑎: by computing submatrices P𝑠 ,P𝑠𝑎,P𝑎𝑠 with

structural weights 𝑤𝑖 𝑗 ∈ W and attribute weights 𝑤𝑎𝑖 ∈ W𝑎 as outlined in (1):

P𝑎 =

[
P𝑠 P𝑠𝑎
P𝑎𝑠 0

]
.

3: Subdivide matrix P𝑎 into labelled and unlabelled sub matrices:

P𝑎 =

[
P𝑚𝑚 P𝑚𝑢
P𝑢𝑚 P𝑢𝑢

]
,

P𝑚𝑚 = {P𝑎 [𝑖, 𝑗] | 1 ≤ 𝑖 ≤ 𝑀; 1 ≤ 𝑗 ≤ 𝑀} = I as an 𝑀 × 𝑀 identity matrix,
P𝑢𝑚 = {P𝑎 [𝑖, 𝑗] | 𝑀 + 1 ≤ 𝑖 ≤ 𝑁 + 𝑇 ; 1 ≤ 𝑗 ≤ 𝑀} as an (𝑁 − 𝑀 + 𝑇) × 𝑀 matrix,
P𝑚𝑢 = {P𝑎 [𝑖, 𝑗] | 1 ≤ 𝑖 ≤ 𝑀;𝑀 + 1 ≤ 𝑗 ≤ 𝑁 + 𝑇} = 0 as an 𝑀 × (𝑁 − 𝑀 + 𝑇) zero matrix,
P𝑢𝑢 = {P𝑎 [𝑖, 𝑗] | 𝑀 + 1 ≤ 𝑖 ≤ 𝑁 + 𝑇 ;𝑀 + 1 ≤ 𝑗 ≤ 𝑁 + 𝑇}

as an (𝑁 − 𝑀 + 𝑇) × (𝑁 − 𝑀 + 𝑇) matrix.

4: Compute labels for absorbent and unlabelled states:

Ŷ𝑚 = Y𝑚,
Ŷ𝑢 = (𝐼 − P𝑢𝑢)−1P𝑢𝑚Y𝑚.

5: Return computed labels: Return Ŷ =

[
Ŷ𝑚
Ŷ𝑢

]
.
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structural nodes. When attribute nodes are added they act as additional connections related to the
structural nodes. By associating a probability with each attribute node to a label, the model is
indicating how likely that attribute is to be connected to a particular label through the structural
nodes. This probability reflects the attribute’s influence or relationship with the label, as mediated
by its connections to the structural nodes. Attribute node 𝑣𝑎2 carries a higher probability to be
associated with label 𝑃2 than with 𝑃1 since the nodes which are associated with attribute 𝑎2 are
closer in connectivity to node 𝑣7, which is associated with label 𝑃2, and similar for attribute node
𝑣𝑎1 to label 𝑃1.

2.3 Seasonal Catchment Areas
Assuming that𝐺 is a labelled connected graph, each node receives a set of probabilities corresponding
to each label in the set Y. As discussed in de Klerk and Fabris-Rotelli (2024), the proposed fuzzy
lattice data structure enables the identification of realistic catchment areas by applying drive-time
thresholds to the structural nodes. This approach involves overlaying polygons representing POIs and
ensuring that only nodes which fall within the drive-time polygons are considered when assigning
probabilities of association with a POI.

Consider the set of POIs 𝑃 = {𝑃1, 𝑃2, ..., 𝑃𝑀 } with an associated drive-time threshold distance
𝑑𝑃𝑚 assigned to each 𝑃𝑚, 𝑚 = 1, ..., 𝑀 . The threshold drive-time distance 𝑑𝑃𝑚 depends on the
order of the POIs and will be denoted by 𝑑𝑃𝑚

𝑙𝑜𝑤 , 𝑑
𝑃𝑚

𝑚𝑖𝑑 or 𝑑𝑃𝑚

ℎ𝑖𝑔ℎ for low-, middle- or high-order POIs,
respectively, as discussed in Green et al. (2016). The highest drive-time threshold considered is at 15
minutes based on the fifteen-minute city concept (Pozoukidou and Angelidou, 2022). For each POI,
we identify all structural nodes 𝑣𝑛 ∈ 𝑉 which are within a threshold drive-time distance 𝑑𝑃𝑚 of 𝑃𝑚.

Let 𝐺𝑃𝑚 define the region such that 𝐺𝑃𝑚 =
⋃
𝑛
𝑣𝑛 ∋ 𝑑𝑣𝑛 ,𝑃𝑚 ≤ 𝑑𝑃𝑚 , 𝐺𝑃𝑚 ⊆ 𝐺 with 𝑑𝑣𝑛 ,𝑃𝑚 the

drive-time distance between the nearest network point of structural nodes 𝑣𝑛 ∈ 𝑉 and 𝑃𝑚. Let
𝑂𝑣𝑛 = {𝑚 : 𝑣𝑛 ∈ 𝐺𝑃𝑚 } define the indices of POI 𝑃𝑚,that is snapped to the same network as 𝑣𝑛 ∈ 𝑉 .
Nodes that are contained in more than one 𝐺𝑃𝑚 have an overlap of accessibility to different POIs.
There can, however, exist nodes which are not contained in any set of 𝐺𝑃𝑚 , resulting in spatially
disjoint areas.

Since catchment areas can only be applied to structural nodes, 𝑣𝑛 ∈ 𝑉 , only the first 𝑁 − 𝑀 rows
in Ŷ∗

𝑢, i.e. Ŷ𝑢 = {Ŷ∗
𝑢 [𝑖, :] | 1 ≤ 𝑖 ≤ 𝑁 − 𝑀}, are used in the drive-time threshold calculations. Let

all structural nodes which fall beyond the threshold drive-time distance 𝑑𝑃𝑚 for each 𝑃𝑚 be nullified
in Ŷ𝑢 i.e. the probability for a node to be assigned to a label which falls beyond the drive-time
threshold is 0. If a region falls beyond the drive-time threshold for all POIs, the region is spatially
inaccessible (disjoint) and will be assigned a probability of 0 for all labels 𝑐 ∈ Y. The matrix Ŷ𝑢 is
row standardised to ensure that all rows adds up to 1.

Consider the example provided in Figure 2 with drive-time thresholds for POIs 𝑃1 and 𝑃2. Suppose
the values for 𝑑𝑃1 and 𝑑𝑃2 are such that 𝐺𝑃1 = {𝑣2, 𝑣3, 𝑣5, 𝑣6}, 𝐺𝑃2 = {𝑣4, 𝑣5, 𝑣7, 𝑣8}, 𝑉𝑚 = {𝑣2, 𝑣7}
and regions 𝑣1 and 𝑣9 are spatially disjoint. Let all structural nodes which fall beyond drive-time
threshold 𝑑𝑃1 for catchment area of 𝑃1 carry a 0 probability to be assigned to label 𝑃1, and similarly
𝑃2. After the matrix Ŷ𝑢 has been row standardised, the results from (8) with drive-time thresholds
applied are

Ŷ𝑢 =
[
0 1 0 0.67 1 0 0
0 0 1 0.33 0 1 0

]𝑇
. (9)
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Figure 2. Graph 𝐺𝑎 with structural nodes 𝑣1, ...𝑣9 and attribute nodes 𝑣𝑎1 and 𝑣𝑎2 , POIs 𝑃1 and 𝑃2,
and corresponding drive-time thresholds 𝑑𝑃1 and 𝑑𝑃2 .

It can be noted that, after standardisation, each node is only associated with the POI falling within
the same network. Node 𝑣5 has an overlap of drive-time thresholds 𝑑𝑃1 and 𝑑𝑃2 and hence retains
the probability of being assigned both label 𝑃1 and 𝑃2. Nodes 𝑣1 and 𝑣9 fall beyond the drive-time
thresholds for all POIs and are therefore spatially disjoint with probability 0 to be assigned to label
𝑐 ∈ Y.

2.4 Measures of Spatial Accessibility
In this section, we apply supply-demand ratios and accessibility measures to demonstrate the distri-
bution of resources when using attribute based fuzzy lattice data. Supply may refer to a provider’s
capacity, such as the number of available hospital beds (Challen et al., 2022), the quantity of providers
like primary care physicians in a given region (Luo and Wang, 2003; Wang, 2014), or the resources
offered by a provider, such as a doctor’s available services or stock availability at a store, as in
Shao and Luo (2022). Demand typically represents the population and communities in need of the
specified services or products.

Let all POIs 𝑃𝑚 ∈ 𝑃 have supply size (capacity) of 𝑆 (𝑃𝑚) and all nodes 𝑣𝑛 ∈ 𝑉 have an associated
demand (population size) of 𝐷 (𝑣𝑛) as formulated in Challen et al. (2022). Then the supply-demand
ratio for supplier 𝑚 in region 𝐺𝑃𝑚 can be expressed by

𝑅𝑃𝑚 =
𝑆(𝑃𝑚)
𝐷 (𝐺𝑃𝑚 )

, (10)

and the accessibility for all structural nodes 𝑣𝑛 ∈ 𝑉 is

𝐴𝑣𝑛 =
∑︁

𝑚∈𝑂𝑣𝑛

𝑅𝑃𝑚 =
∑︁

𝑚∈𝑂𝑣𝑛

𝑆(𝑃𝑚)
𝐷 (𝐺𝑃𝑚 )

, (11)

as illustrated by Luo and Wang (2003) and Wang (2014).
Consider the example provided in Figure 2 with 𝑁 = 9 grids and POIs 𝑃1 and 𝑃2. Suppose

the demand for all regions are 1, i.e. 𝐷 (𝑣𝑛) = 1, 𝑛 = 1, ..., 9, and supply for all suppliers are 4,
𝑆(𝑃𝑚) = 4, 𝑚 = 1, 2. Suppose the values for 𝑑𝑃1 and 𝑑𝑃2 are such that 𝐺𝑃1 = {𝑣2, 𝑣3, 𝑣5, 𝑣6},
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𝐺𝑃2 = {𝑣4, 𝑣5, 𝑣7, 𝑣8}, 𝑉𝑚 = {𝑣2, 𝑣7} and regions 𝑣1 and 𝑣9 are spatially disjoint. Using attribute
based fuzzy lattice catchment areas to determine accessibility and supply-demand ratio using a
probabilistic approach, the demand on catchment area level will change according to the weight
assigned by Ŷ𝑢. Let the demand be proportionally assigned to each supplier’s catchment area using
the probabilities in (9). Then 𝐷 (𝐺𝑃1 ) = 3.67 and 𝐷 (𝐺𝑃2 ) = 3.33 which results in the supply-
demand ratio for 𝑃1 to change to 𝑅𝑃1 =

𝑆 (𝑃1 )
𝐷 (𝐺𝑃1 )

= 1.09 and 𝑃2 to 𝑅𝑃2 =
𝑆 (𝑃2 )
𝐷 (𝐺𝑃2 )

= 1.2. Since region
𝑣5 still has access to both 𝑃1 and 𝑃2, the accessibility of 𝑣5 is 𝐴𝑣5 = 𝑅𝑃1 + 𝑅𝑃2 = 2.288.

Comparing this to the same example in de Klerk and Fabris-Rotelli (2024), the demand in region
𝐺𝑃1 has increased which in turn has decreased the supply-demand ratio for 𝑃1. The only overlapping
node 𝑣5 has a higher probability to be associated with label 𝑃1 because of the shared attribute
node 𝑣𝑎1 with structural nodes 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣8 and 𝑣9. The accessibility for node 𝑣5 remains
unchanged whether fuzzy lattice catchment areas or attribute based fuzzy lattice catchment areas
are used because even though the demand is proportionally different, the sum over supply-demand
ratios remains the same. The decreased supply-demand ratio for 𝑃1 indicates that supplier 𝑃1 is
under greater pressure to provide the same level of supply while facing increased demand. The
attribute based fuzzy lattice data offers the added advantage of incorporating factors that influence
both demand and supply, rather than relying solely on the proximity of a community to a POI.
This allows for a more comprehensive analysis, accounting for attributes beyond just geographical
distance. This will be illustrated with an example in the next section by not only considering the link
structure but also underlying attributes such as ease of accessibility and seasonal characteristics.

3. Application
To test the proposed methodology on real-world applications, the population size and sales of one
of South Africa’s leading pharmaceutical chains (with close to 880 stores located in South Africa)
were considered. The supply allocated to each of the stores is determined by sales and demand by
population size at an EA1 level.

Let region𝐺 be the district municipality City of Cape Town2 located in the Western Cape province
in South Africa. Region 𝐺 is subdivided into 592 square grids of size 2km × 2km, which is the
optimal grid size to ensure adequate variation in landscape features and changes across the nodes.

In addition to the link structure, a set of geographical attributes assigned to all nodes in 𝐺 will
be considered. Seasonal attributes such as extreme temperature and rainfall patterns are considered
since gastrointestinal illnesses increase at higher temperatures or rainfall shortages as highlighted by
the Department of Health South Africa3. Research from Musengimana et al. (2016) also indicates
that high temperatures can promote the growth of bacteria, viruses, and parasites in food and water
which increases the risk of waterborne diseases like diarrhoea.

Daily minimum and maximum temperatures as well as rainfall for 86 weather stations in the

1An enumerations area (EA) is the smallest geographical unit (piece of land) into which the country is divided for enumeration
purposes. Enumeration areas contain between 100 to 250 households. Source: Stats SA.
2 District municipalities consist of multiple local municipalities. They are administrative divisions which are accountable for
providing basic services within the area. Source: Education and Training Unit (ETU), www.etu.org.za (accessed February
15, 2024)
3 Department of Health South Africa, NATIONAL HEAT HEALTH ACTION GUIDELINES: Guide to extreme heat planning
in South Africa for the human health sector, https://www.health.gov.za/ (accessed August 20, 2024)
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Figure 3. Temperature attribute indicating "hot days" and ease of access and accessibility to principal
roads. Map data © OpenStreetMap contributors, under the Open Database License (ODbL).

Western Cape were provided by SAWS4. The average rainfall, minimum and maximum temperatures
from 2016 to 2019 for the four different seasons were calculated. In the grids which have no overlap
with a SAWS weather station, ordinary Kriging was used to estimate the average rainfall, minimum
and maximum temperatures for the different seasons.

The seasonal relationship between total seasonal sales and weather variables was tested using a
simple linear regression, with average seasonal sales (from 2016 to 2019) as the dependent variable
and average maximum temperature, average minimum temperature, and average rainfall (all averaged
from 2016 to 2019) as the independent variables. These variables were captured in 2km× 2km grids
for which sales and weather data were available, which were 46 distinct areas in the City of Cape
Town. The results indicate that the average minimum temperature has the most significant positive
effect on average sales (𝑝 = 0.0295) and average maximum temperature somewhat of an effect
(𝑝 = 0.0791) which aligns with findings from Musengimana et al. (2016). However, rainfall does not
appear to significantly influence sales (𝑝 = 0.9453). It should be noted that Cape Town experienced
a water crisis from 2017 to 2019 and 574 of the 592 nodes indicated rainfall at the 10th percentile
or lower. Hence, very low rainfall measures were captured over the majority of Cape Town. The
multiple R-squared value of 0.1628 suggests that only about 16.3% of the variability in sales can be
explained by the model, indicating other factors may play a role. For the continuation of this research
we will only be using temperature and ease of access as attributes.

Let the attribute temperature have two levels, namely “hot days" and “normal days”. All structural
nodes in 𝐺 will be associated with either one of these two levels. The first, “hot days”, will include
all structural nodes, overlapping with at least one POI and experiences maximum temperatures above
35°C in summer. The structural nodes associated with “hot days” correspond with the same areas
identified by Heat Watch Cape Town5. All other remaining structural nodes are assigned to “normal
days”, reflecting the tendency to select areas that are less impacted by extreme weather, as illustrated
in Figure 3. This also accounts for potential shortages of essential medicines for gastrointestinal
illnesses in heat-affected regions. In addition to temperature, ease of access to a POI will be
considered as an attribute. Each structural node will have an indication on whether it has easy access
to a principal road or not. A principal road can be either a major road, such as a highway, or a main
road, typically serving as a key route for local traffic within a town or city6. This designation signifies

4 South African Weather Services, https://www.weathersa.co.za/
5 StoryMap by CAPA Strategies, Heat Watch Cape Town: Community Heat Mapping in Cape Town, South Africa,
https://storymaps.arcgis.com/stories/35fd2bf7e70c448ab0a58245d2f2cd0b (accessed August 20, 2024)
6 Department of Health South Africa, TRH 26: South African Road Classification and Access Management Manual,
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Figure 4. The relative change in demand from FLD to AFLD for 5, 10, and 15-minute drive-time
thresholds. Map data © OpenStreetMap contributors, under the Open Database License (ODbL).

whether the node is connected to key transportation routes that facilitate faster and more direct travel
between nodes. The principal road attribute will have four levels that each structural node can be
associated with. The first level, “EOA1”, indicates that the structural node has demand but no easy
access to a principal road. The second level, “EOA2”, indicates that a structural node has easy access
to a principal road. The third level, “EOA3”, is associated with structural nodes that are overlapping
with a POI, but not within easy access of a principal road, and level four, “EOA4”, includes all
other structural nodes not within easy access to principal roads. Given the assumption that people
will prefer POIs that are easily accessible, the nodes associated with “EOA1” and “EOA2” should
share a connection through the same attribute. For this reason, the principal road attribute will be
simplified into two levels: "PR1,” which includes all nodes from levels “EOA1” and “EOA2”, and
“PR2”, which includes all nodes from levels “EOA3” and “EOA4”, as illustrated in Figure 3.

The demand allocated to each grid, 𝐷 (𝑣𝑛), is the population size which is obtained from the
overlaying census and deeds office data as captured by Lightstone Pty Ltd7 from 2016 to 2019. The
supply capacity at each node is the total sales over summer (December, January and February) of an
affordable over-the-counter diarrhoea medication, averaged over 2016 to 2019.

The accessibility and supply-demand ratio will be computed using both an attribute based fuzzy
lattice data structure and a fuzzy lattice data structure to compare how the probabilities assigned to
each POI differ when ease of access and temperature are taken into account. The supply considered
here includes only one pharmaceutical chain in South Africa, which is not an exhaustive list of all
suppliers providing diarrhoea medication. As a result, the supply-demand ratio values are very small
due to the under-representation of supply. Therefore, when comparing the 5, 10, and 15-minute drive-
time thresholds visually, the differences in demand are mapped to illustrate how demand changes
when using the fuzzy lattice data structure (FLD) compared to the attribute based fuzzy lattice data
structure (AFLD). Figure 4 shows the proportionate difference between demand using AFLD and
demand using FLD, relative to the demand using FLD, indicating how much demand has increased

https://wayleave.tshwane.gov.za/ (accessed August 15, 2024)
7 Lightstone (Pty) Ltd procures its data directly from the Deeds Office and is comprised of a snapshot of all South African
property ownership as at 1993, with a full history of all transactions to augment with census data. Ethics clearance number:
NAS003/2023.
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Table 1. Supply, demand and supply-demand ratios for Zevenwacht (𝑃1), Soneike (𝑃2) and Brack-
enfell (𝑃3) at 5, 10 and 15 minute drive-time thresholds using a fuzzy lattice data (FLD) and attribute
based fuzzy lattice data (AFLD) structure .

FLD AFLD

𝑆(𝑃) Drive-time Demand SD-Ratio Demand SD-Ratio

𝑆(𝑃1) = 1 252 5min 93 638 0.013 93 638 0.013
10min 252 558 0.005 211 542 0.006
15min 225 203 0.006 118 533 0.011

𝑆(𝑃2) = 1 654 5min 57 993 0.029 57 238 0.029
10min 69 743 0.024 81 338 0.020
15min 86 922 0.019 108 908 0.015

𝑆(𝑃3) = 674 5min 30 950 0.022 31 253 0.022
10min 45 415 0.015 64 683 0.010
15min 45 468 0.015 79 372 0.009

or decreased as a percentage when using AFLD instead of FLD.
Areas with easy access to principal roads and normal temperature fluctuations tend to see an

increase in demand, while areas further from main routes and experiencing temperatures above 35°C
typically experience a decrease in demand. Note that in this example, both attributes were given
equal weights of 1 to indicate that a link between the levels exists, though these weights can be
adjusted to reflect differing levels of importance.

When comparing Brackenfell, Soneike, and Zevenwacht (indicated with labels in Figure 4), as done
in Table 1, it’s important to note their proximity and how their 5-minute drive-time catchment areas
overlap slightly, becoming fully overlapping at the 15-minute drive-time threshold catchment areas.
Brackenfell benefits from easy access to a principal road, an attribute that Soneike and Zevenwacht
lack. Additionally, Zevenwacht is associated with the "hot days" category in the temperature at-
tributes. As a result, Brackenfell holds a stronger connection with the surrounding population due to
its shared attributes, while Zevenwacht has attributes that aren’t shared by the surrounding population
and demand will be allocated only on the link structure.

When examining Zevenwacht’s demand across different drive-time thresholds, we see that as we
move from fuzzy lattice data to attribute based fuzzy lattice data, demand decreases significantly with
increased drive-time, which causes the supply-demand ratio to rise. Soneike, although not linked
to a principal road, still experiences a demand increase because it shares the temperature attribute,
absorbing some of the demand that would have shifted to Zevenwacht.

The greatest increase in demand, however, occurs in Brackenfell. Demand nearly doubles when
using the AFLD, driven by the two shared attributes: normal temperature and ease of access. As
Brackenfell’s population grows, the supply-demand ratio decreases, indicating that the store will need
to adjust its supply to meet the increased demand.

The comparison between the attribute based fuzzy lattice data structure (AFLD) and the fuzzy
lattice data structure (FLD) highlights the impact of incorporating attribute nodes on demand alloca-
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tion. This helps to capture more realistic demand allocation to areas based on additional factors other
than the link structure. Adjusting the weights of these attributes can further refine the calculation of
accessibility and supply-demand ratios, allowing for more accurate predictions to varying conditions
and priorities.

4. Discussion
The benefits of an attribute based fuzzy lattice data structure are evident in its ability to propagate
labels more effectively within a network. By combining both structural connections and attribute
similarities, nodes can share a connection through a similar attribute node. Traditional methods
typically rely on link structures, but many real-world networks contain shared attributes between
nodes that are not captured by structural connectivity alone. This approach leverages both aspects,
enabling labels to propagate based on structural connections and shared characteristics such as
common interests, similar topography, etc.

In this application, edge weights were equally assigned across different attributes and structural
edges; it can however be adjusted. If there are natural or man-made barriers, structural weights can
be reduced or even set to zero. Similarly, if certain attributes hold varying levels of importance,
weights can be adjusted accordingly to ensure that these attributes are prioritised.

Only temperature and ease of access were considered as factors influencing the sales of diarrhoea
medication. The low R-squared value when testing sales against temperature suggests that other
factors, which were not investigated, likely play a significant role in these sales. Factors such
as socioeconomic conditions, economic considerations, marketing strategies, etc., could also be
pivotal. Additionally, the model only accounted for the supply of one easily accessible over-the-
counter diarrhoea medication from one pharmaceutical chain store in South Africa. As multiple
other pharmacies and medications are available, the supply figures indicated per region are likely an
underestimate.

5. Conclusion
Traditional community detection methods focus primarily on a network’s topology, but integrating
attribute information can enhance these methods by improving the understanding of node similarities
and capturing relationships that go beyond structural connectivity. Incorporating attributes into
the fuzzy lattice data structure allows for a more accurate estimate of demand distribution. In
networks where nodes share common attributes, such as similar accessibility or environmental
conditions, the attribute based fuzzy lattice data structure can propagate labels across the network
more accurately. This approach overcomes limitations of purely structural connectivity by accounting
for both the link structure and attributes, resulting in a more detailed and accurate depiction of the
network’s interactions. The attribute based fuzzy lattice data structure offers significant advantages
for modelling and analysing networks. By considering both attribute and structural links, the attribute-
based fuzzy lattice data structure provides a balance between proximity and shared attributes.
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