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The analysis of multivariate serological data derived from blood serum samples
and tested for the presence of antibodies against multiple pathogens gained atten-
tion in recent years. Despite the common use of a so-called threshold approach
to classify individuals as seronegative or -positive, limitations of such an approach
have been reported in the literature, with the subjective choice of the threshold be-
ing the most important. Here, we consider a Bayesian mixture approach to model
continuous IgG antibody concentrations directly while accounting for the presence
of individual heterogeneity and implied association between antibody titer levels
for two infections. We fitted the proposed model to Belgian bivariate serological
data on the varicella-zoster virus (VZV) and parvovirus B19 (PVB19). Given the
existing body of evidence with respect to possible reinfections with PVB19, we
investigated whether models explicitly accounting for waning of humoral immunity
improved model fit. Our results showed that although after a steep rise with age,
the observed seroprevalence for PVB19 decreases between the ages of 20 and 40,
the mean IgG antibody concentration remains constant with age among individuals
in the seropositive component. This could provide evidence of a direct impact of
reinfections with PVB19 on the observed IgG antibody levels, while individuals
with loss of humoral immunity after natural infection imply an increase in suscep-
tibility. For VZV, the mean IgG antibody levels slightly decrease with increasing
age among seropositive individuals, indicating only very limited waning of humoral
immunity as age-dependent seroprevalence estimates are monotonically increasing
with increasing age. In general, based on our analyses, we showed that mixture
models provide additional insights concerning the waning of humoral immunity
as compared to more traditional frailty approaches, which focus on estimating the
seroprevalence solely while the model is sufficiently flexible to capture observed
dynamics in IgG antibody decay.
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1. Introduction
In modelling infectious diseases, serological survey data constitute an important data source for the
estimation of key epidemiological parameters describing transmission dynamics and past infection
for the pathogen(s) under study. In particular, residual serum samples are collected and tested for
the presence of, for example, immunoglobulin G (IgG) antibodies which are formed in response
to an infecting organism (Hens et al., 2012). The analysis of such data can be performed either
by modelling continuous IgG antibody titer concentrations directly or more commonly by using a
dichotomised version of the serological data (i.e., using the so-called threshold approach) thereby
classifying individuals as seropositive or -negative based on a threshold value often supplied by the
test manufacturer (Bollaerts et al., 2012; Hens et al., 2012).

Limitations of the threshold approach have been reported in the literature with the subjective choice
of the threshold being the most important one (Hardelid et al., 2008; Hens et al., 2012; Bollaerts
et al., 2012). Therefore, direct modelling of the continuous IgG antibody titer concentrations based
on a finite mixture model avoids the specification of one (or more) threshold value(s) (Bollaerts
et al., 2012). Several authors have considered mixture models for the analysis of continuous antibody
titer concentrations for various infections (see, e.g., Gay, 1996; Gay et al., 2003; Baughman et al.,
2006; Vyse et al., 2006; Bollaerts et al., 2012; Vink et al., 2016). However, none of these authors
accounted for individual heterogeneity in the acquisition of infections when relying on mixture mod-
els (Coutinho et al., 1999; Hens et al., 2009).

In recent years, it has been demonstrated that ignoring such individual heterogeneity leads to
bias when estimating epidemiological parameters such as the basic reproduction number and critical
vaccination coverage (see, e.g., Martins et al., 2019). An additional complexity when modelling
serological data is the fact that after an initial humoral immune response following infection, IgG
antibody levels may wane with time since infection (Held et al., 2019). In the absence of longitudinal
persistence data, which would enable a direct investigation of the evolution of IgG antibody levels and
inference related to waning rates, presumed infection dynamics need to be contrasted with observed
cross-sectional seroprevalence data under the assumption of time homogeneity (Goeyvaerts et al.,
2011) or with serial serological data (i.e., comprising several cross-sectional serological surveys)
in case of time heterogeneity. Here we will focus on a single cross-sectional serological survey
studying two pathogens under the assumption of endemicity. In serological survey data, one typi-
cally measures IgG antibody levels for multiple pathogens based on a serum sample of an individual.
Given the possible association between antibody titer measurements, a bivariate or paired assessment
(i.e., relying on data for two pathogens) requires the use of a model accommodating association in
occurrence of past infection and the imposed antibody levels upon infection.

In this manuscript, we propose novel methodology to model IgG antibody titer data on two
pathogens by means of a finite mixture model, while explicitly accommodating individual hetero-
geneity in infection risks, thereby building upon the work of Abrams (2015) and Bollaerts et al.
(2012), respectively. Furthermore, the model allows for capturing any decay in mean antibody titer
concentration with age, at least for those individuals who experienced infection in the past. Param-
eter estimation is performed in a Bayesian framework using Markov chain Monte Carlo (MCMC)
sampling.

Our manuscript is organised as follows. We start by introducing a motivating example of bivariate
serological data on varicella-zoster virus (VZV) and parvovirus B19 (PVB19) from Belgium in
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Section 2. In Section 3, we present the basic definition of bivariate finite mixture models, extensions
towards incorporating individual heterogeneity in infection risk and modelling association in the
acquisition of the two pathogens under study, and the inclusion of waning immunity dynamics in the
model. Furthermore, details concerning the likelihood function and the Bayesian MCMC approach
are provided therein. The results of fitting the proposed models to VZV and PVB19 serology are
shown in Section 4. Finally, a discussion with regard to the underlying assumptions and potential
avenues of further research are included in Section 5.

2. Motivating example
The methodology presented in this manuscript is applied to data collected during a single cross-
sectional serological survey on VZV and PVB19 in Belgium anno 2001–2003. Parvovirus B19
is the infectious agent of erythema infectiosum, also known as slapped cheek syndrome or fifth
disease (Broliden et al., 2006). The disease is usually mild in children and teenagers, but infec-
tion during pregnancy has been associated with miscarriage, intrauterine fetal death, fetal anemia,
and non-immune hydrops (Tolfvenstam et al., 2001). Individuals with PVB19 IgG antibodies are
generally considered immune to recurrent infection, although reinfection is possible in a minority
of cases (Lehmann et al., 2003). VZV is one of eight herpes viruses known to affect humans and
vertebrates (Ray and Ryan, 2004). Infection with VZV causes two clinically distinct diseases, namely
varicella and herpes zoster disease upon reactivation of the virus after it becoming dormant in the
human body (Gnann Jr, 2002). From a humoral immunity perspective, VZV is presumed to provide
lifelong detectable and high IgG antibodies (Ray and Ryan, 2004). Blood samples were collected
for 3379 different individuals and tested for the presence of IgG antibodies against PVB19 and
VZV (Hens et al., 2012). For each individual, the antibody level (expressed as log10 mUI/mL) and
age are available. Moroever, in our data application, analyses are confined to the data for which
pairs of IgG concentrations are available for both VZV and PVB19 infections. Hence, in total, 2382
complete profiles were identified for individuals with known immunological status with respect to
both VZV and PVB19.

Figure 1 displays (1) log-transformed IgG antibody levels for VZV and PVB19 plotted against age
(in years), and corresponding histograms collapsed over the age dimension with equivocal ranges
depicted using vertical dashed lines (i.e., determined by two thresholds), and (2) the age-specific
seroprevalence, determined based on a prespecified cut-off value by the manufacturer of the ELISA
test, for VZV and PVB19 with the sise of the dots proportional to the corresponding number of
observations. The observed seroprevalence for PVB19 decreases for individuals around the age of
20 years to approximately 40 years and starts to increase again thereafter (see, e.g., lower right panel
of Figure 1). As mentioned previously, this decrease in seroprevalence could be the result of waning
of humoral immunity leading to potential PVB19 reinfections or re-exposures at higher ages.

3. Methodology
In this section, we briefly review the threshold approach as described by Bollaerts et al. (2012)
and Hens et al. (2012). Next, bivariate finite mixture models are introduced and discussed focusing
on directly modelling antibody titer concentrations while accommodating individual heterogeneity
in the acquisition of infection. Antibody waning is further discussed in Section 3.6.
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Figure 1. Log-transformed IgG antibody concentrations for VZV (upper left panel) and PVB19
(upper right panel) plotted against age (in years), and corresponding histograms collapsed over the
age dimension (middle panels) with equivocal ranges depicted using vertical dashed lines. Age
specific seroprevalence for VZV (lower left panel) and PVB19 (lower right panel) with the size of
the dots proportional to the corresponding number of observations.
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3.1 Threshold approach
Cross-sectional serological survey data are often used to quantify the (sero)prevalence of a certain
disease in a population. More specifically, serological data is derived from blood serum samples
which are tested for the presence of (IgG) antibodies against one or more pathogens. Such a
determination of the presence of antibodies relies on a direct quantification of the antibody titer
concentration and individuals having an antibody level exceeding a specific threshold value (often
supplied by the manufacturer of the test) are then classified as seropositive (Bollaerts et al., 2012;
Hens et al., 2012). Alternatively, persons without humoral immunity against the pathogen under
study are considered seronegative. However, one of the disadvantages of this approach is the
ad hoc specification of threshold values which is prone to misclassification errors. To overcome
the problem of misclassification, prevalence estimates can be corrected based on sensitivity and
specificity estimates for the diagnostic test under consideration as proposed by Rogan and Gladen
(1978). In case of two threshold values, equivocal (inconclusive) cases are either excluded or all
viewed as either seronegative or -positive (Bollaerts et al., 2012; Hens et al., 2012).

3.2 Finite mixture models
We consider a continuous perspective focusing on modelling antibody titer concentrations directly
using a bivariate finite mixture model as an alternative to the aforementioned threshold approach,
including individual-specific frailty terms to describe heterogeneity in the acquisition of infections
and to model association in the acquisition of the two pathogens under study. Mixture models have the
advantage that there is no need to predetermine a cut-off value to determine whether an individual has
been previously infected or not and no inconclusive (equivocal) observations are discarded (Bollaerts
et al., 2012; Hens et al., 2012).

In particular, we focus on bivariate serological data. Let Y = (𝑌1, 𝑌2) represent a bivariate
random vector with 𝑌1 and 𝑌2 being log-transformed IgG antibody concentrations for pathogen 1
and 2, respectively. Let {(y𝑖 ,x𝑖); 𝑖 = 1, 2, ..., 𝑛} denote the observed data, where y𝑖 = (𝑦𝑖1, 𝑦𝑖2)
is a realisation of Y for individual 𝑖, and x𝑖 = (x𝑖1,x𝑖2) represents a vector of individual-specific
covariate values. More specifically, x𝑖 𝑗 is a (1× 𝑝 𝑗 ) row vector, 𝑗 = 1, 2, containing individual- and
pathogen-specific covariate information. We further assume that the conditional probability density
function of Y𝑖 , given x𝑖 , is characterised by a finite mixture model of the form

𝑓 (y𝑖 |x𝑖 ,𝚿, θ) = 𝜋00 (x𝑖 |θ) 𝑓00 (y𝑖 |ψ00) + 𝜋01 (x𝑖 |θ) 𝑓01 (y𝑖 |ψ01)
+ 𝜋10 (x𝑖 |θ) 𝑓10 (y𝑖 |ψ10) + 𝜋11 (x𝑖 |θ) 𝑓11 (y𝑖 |ψ11), (1)

where 𝑓𝑘𝑞 (y𝑖 |ψ𝑘𝑞) = 𝑓𝑘𝑞 (𝑦𝑖1, 𝑦𝑖2 |ψ𝑘𝑞) are referred to as component-specific bivariate continu-
ous density functions, 𝜋𝑘𝑞 (x𝑖 |θ), 𝑘, 𝑞 = 0, 1, are mixture weights (or mixing proportions) with∑1
𝑘=0

∑1
𝑞=0 𝜋𝑘𝑞 (x𝑖 |θ) = 1, and 𝚿 = (ψ𝑘𝑞)𝑘,𝑞 and θ represent the vectors of all distinct parameters

occurring in the component densities as well as mixing proportions, respectively, and that require
estimation (McLachlan and Peel, 2000). In the next section, the mixture model in (1) is refined to
account for individual heterogeneity in infection risk.

3.3 Individual heterogeneity in response to infection
Individual heterogeneity in the acquisition of infections has been studied extensively in the past
(Coutinho et al., 1999; Farrington et al., 2001; Kanaan and Farrington, 2005), albeit that one often
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relies on dichotomised cross-sectional serological survey data. Heterogeneity can be accounted
for statistically by introducing individual-level random effects, also referred to as frailty terms in
a survival context, in the model structure. A direct generalisation of the frailty approach for the
aforementioned binary setting (based on classification of individuals in seropositive and -negative
individuals; see Section 3.1) to a continuous IgG antibodies model (1) yields the following conditional
probability density function for Y𝑖 |x𝑖 , z𝑖 , z∗𝑖 :

𝑓 (y𝑖 |x𝑖 , z𝑖 , z∗𝑖 ,𝚿, θ) = 𝜋00 (x𝑖 |z𝑖 , θ) 𝑓00 (y𝑖 |z∗𝑖 ,ψ00) + 𝜋01 (x𝑖 |z𝑖 , θ) 𝑓01 (y𝑖 |z∗𝑖 ,ψ01)
+ 𝜋10 (x𝑖 |z𝑖 , θ) 𝑓10 (y𝑖 |z∗𝑖 ,ψ10) + 𝜋11 (x𝑖 |z𝑖 , θ) 𝑓11 (y𝑖 |z∗𝑖 ,ψ11), (2)

where z𝑖 = (𝑧𝑖1, 𝑧𝑖2) and z∗𝑖 = (𝑧∗𝑖1, 𝑧∗𝑖2) are vectors of individual- and pathogen-specific frailty
terms introduced at the level of the mixing proportions and mixture densities, respectively. In this
manuscript, the random vectors z and z∗ are assumed to be independent.

3.4 Specification of mixing probabilities
The mixture probabilities 𝜋𝑘𝑞 (x𝑖 |z𝑖 , θ), 𝑘 , 𝑞 = 0, 1, in (2) can be interpreted as (i) the proportion
of individuals susceptible to both infections, 𝜋00 (x𝑖 |z𝑖 , θ), (ii) the proportion of individuals infected
(in the past) with infection 1, but susceptible to infection 2, 𝜋10 (x𝑖 |z𝑖 , θ), (iii) or vice versa in case
of 𝜋01 (x𝑖 |z𝑖 , θ), and (iv) the proportion of individuals with past infection for both pathogens, i.e.,
𝜋11 (x𝑖 |z𝑖 , θ). Without loss of generality, we confine attention here to x𝑖 = (𝑎𝑖1, 𝑎𝑖2) ≡ (𝑎𝑖 , 𝑎𝑖)
given the presence of univariate monitoring times 𝑎𝑖1 = 𝑎𝑖2 = 𝑎𝑖 , i.e., the age of individuals at
the cross-sectional sampling time, in the motivating example. In what follows we briefly describe
two different classes of models, a mechanistic frailty model and a bivariate random effects model to
estimate the mixing probabilities.

3.4.1 Mechanistic approach using frailty models
We first consider a frailty approach to model the mixture probabilities to explicitly link our approach
to survival models that have been used in the past. In this model, individual- and pathogen-specific
frailty terms z𝑖 are assumed to act multiplicatively on an age-specific baseline force of infection
𝜆0 𝑗 (·) as follows:

𝜆 𝑗 (𝑎𝑖 |𝑧𝑖 𝑗 , θ 𝑗 ) = 𝑧𝑖 𝑗𝜆0 𝑗 (𝑎𝑖 |θ 𝑗 ),
thereby implying the conditional univariate survival functions (assuming lifelong immunity after
infection)

𝑆 𝑗 (𝑎𝑖 |𝑧𝑖 𝑗 , θ 𝑗 ) = exp
(
−

∫ 𝑎𝑖

0
𝜆 𝑗 (𝑢 |𝑧𝑖 𝑗 , θ 𝑗 )d𝑢

)
= exp

[−𝑧𝑖 𝑗Λ0 𝑗 (𝑢 |θ 𝑗 )
]
,

where Λ0 𝑗 (𝑢 |θ 𝑗 ) refers to the cumulative or integrated baseline hazard function defined as

Λ0 𝑗 (𝑢 |θ 𝑗 ) =
∫ 𝑎𝑖

0
𝜆0 𝑗 (𝑢 |θ 𝑗 )d𝑢.

Under the assumption of conditional independence, the joint conditional survival function is given
by

𝑆12 (𝑎𝑖 |z𝑖 , θ) = 𝑆1 (𝑎𝑖 |𝑧𝑖1, θ1)𝑆2 (𝑎𝑖 |𝑧𝑖2, θ2),
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Table 1. Specification of the joint unconditional survival function using different bivariate gamma
frailty distributions. The parameters 𝛼1 > 1, 𝛼2 > 1 and 𝑘0, 𝑘1, 𝑘2, 𝑛1, 𝑛2, 𝑛3, 𝛾 are real-valued
positive parameters; under the constraint of unit frailty means, we have frailty variances 𝜎2

1 𝑓 = (𝑘0 +
𝑘1)−1 and 𝜎2

2 𝑓 = (𝑘0 + 𝑘2)−1 with correlation between the frailties 𝜌 = 𝑘0 [(𝑘0 + 𝑘1) (𝑘0 + 𝑘2)]−1/2;
for the Loáiciga-Leipnik distribution, we set 𝑘0 = 0, 𝑘1 = 𝛼1𝛾 and 𝑘2 = 𝛼2𝛾, and for the Van den
Berg distribution 𝑘1 = 𝑛1 and 𝑘2 = 𝑛2.

Gamma frailty Joint unconditional survival function 𝑆12 (𝑎𝑖 |𝚯)
distribution

Shared
[
1 + 𝜎2

𝑓 {Λ01 (𝑎𝑖 |θ1) + Λ02 (𝑎𝑖 |θ2)}
]−1/𝜎2

𝑓

Yashin
[
1 + 𝜎2

1 𝑓Λ10 (𝑎𝑖 |θ1) + 𝜎2
2 𝑓Λ20 (𝑎𝑖 |θ2)

]−𝑘0 [
(1 + 𝜎2

1 𝑓Λ10 (𝑎𝑖 |θ1)
]−𝑘1 [

1 + 𝜎2
2 𝑓Λ20 (𝑎𝑖 |θ2)

]−𝑘2

Kibble-Wicksell
{[
(1 + 𝜎2

𝑓Λ10 (𝑎𝑖 |θ1)
] [

1 + 𝜎2
𝑓Λ20 (𝑎𝑖 |θ2)

]
− 𝜌𝜎4

𝑓Λ10 (𝑎𝑖 |θ1)Λ20 (𝑎𝑖 |θ2)
}−1/𝜎2

𝑓

Loáiciga-Leipnik
{[

1 + 𝜎2
1 𝑓Λ10 (𝑎𝑖 |θ1)

] 𝛼1 [
1 + 𝜎2

2 𝑓Λ20 (𝑎𝑖 |θ2)
] 𝛼2 − 𝜌√𝛼1𝛼2𝜎

2
1 𝑓Λ10 (𝑎𝑖 |θ1)𝜎2

2 𝑓Λ20 (𝑎𝑖 |θ2)
}−𝛾

Van den Berg

[
1 −

𝜌𝑐𝑛
−1
3
√
𝑛1𝑛2𝜎

2
1 𝑓Λ10 (𝑎𝑖 |θ1)𝜎2

2 𝑓Λ20 (𝑎𝑖 |θ2)
(1 + 𝜎2

1 𝑓Λ10 (𝑎𝑖 |θ1)) (1 + 𝜎2
2 𝑓Λ20 (𝑎𝑖 |θ2))

]−𝑛3 [
1 + 𝜎2

1 𝑓Λ10 (𝑎𝑖 |θ1)
]−𝑛1 [

1 + 𝜎2
2 𝑓Λ20 (𝑎𝑖 |θ2)

]−𝑛2

with θ = (θ1, θ2). Inference is based on a marginalisation of the likelihood function given in
Section 3.7, thereby integrating out the unobserved individual-specific frailty terms. Marginalised
mixing probabilities are defined as follows (Farrington et al., 2001):




𝜋00 (𝑎𝑖 |𝚯) = 𝑆12 (𝑎𝑖 |𝚯)
𝜋01 (𝑎𝑖 |𝚯) = 𝑆1 (𝑎𝑖 |𝚯1) − 𝑆12 (𝑎𝑖 |𝚯)
𝜋10 (𝑎𝑖 |𝚯) = 𝑆2 (𝑎𝑖 |𝚯2) − 𝑆12 (𝑎𝑖 |𝚯)
𝜋11 (𝑎𝑖 |𝚯) = 1 − 𝑆1 (𝑎𝑖 |𝚯1) − 𝑆2 (𝑎𝑖 |𝚯2) + 𝑆12 (𝑎𝑖 |𝚯)

where 𝑆 𝑗 (𝑎𝑖 |𝚯 𝑗 ), 𝑗 = 1, 2, and 𝑆12 (𝑎𝑖 |𝚯) are univariate and joint unconditional survival functions,
respectively. Note that, 𝚯 𝑗 = (θ 𝑗 , ξ 𝑗 ) and 𝚯 = (θ, ξ) include the vectors ξ 𝑗 , 𝑗 = 1, 2, with
ξ = (ξ1, ξ2) associated with the frailty distribution of z.

The functional form of the univariate and joint unconditional survival functions is determined
by the selected bivariate frailty distribution. For identifiability reasons, the mean of the frailty
distribution is typically constrained to be 1 and variance parameters 𝜎2

𝑗 𝑓 are estimated from the data
at hand. Depending on the chosen frailty model/distribution, a correlation coefficient 𝜌 expresses
the strength of association among pathogen-specific frailty terms. For example, Martins et al. (2019)
proposed a generalisation of the additive correlated gamma model introduced by Yashin et al. (1995),
implying a specific bivariate gamma frailty distribution. The proposed bivariate model includes
several well-known gamma frailty distributions as special cases. A summary of the different models
(or distributions) and the implied joint unconditional survival function is provided in Table 1.

3.4.2 Phenomenological approach using bivariate generalised linear mixed models
As an alternative to the mechanistic approach, a bivariate generalised linear mixed model (BGLMM)
can be used to model the mixture probabilities and to account for potential association in acquisition
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of both infections. In general, specification of the model is as follows:

𝑔
[
𝜋𝑖 𝑗 (𝑎𝑖 |𝑧𝑖 𝑗 ,𝚯)] = 𝑚(𝑎𝑖 |𝚯) + 𝑧𝑖 𝑗 , and z𝑖 = (𝑧𝑖1, 𝑧𝑖2)′ ∼ 𝑁 (µz ,𝚺z) , 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, 2,

(3)

where 𝑚(·|·) refers to the linear predictor including covariate effects, here 𝑎𝑖 , 𝑔(·) denotes the link
function (such as logit, probit or complementary log-log link functions), and with the mean vector
µz = (0, 0)′ and variance-covariance matrix

𝚺z =

[
𝜎2

1 𝜌𝜎2
1𝜎

2
2

𝜌𝜎2
1𝜎

2
2 𝜎2

2

]
.

To allow for sufficient flexibility in model (3), we consider a generalised additive mixed model
approach to describe a potential non-linear though smooth effect of age at the linear predictor scale
(i.e., with 𝑚(𝑎𝑖 |𝚯) a smooth function of age (Ruppert et al., 2003; Wood, 2017). There are several
basis functions that can be used, such as B-splines, truncated polynomial splines, natural cubic splines
etc. In this paper, we consider penalised splines with truncated power basis functions of degree 𝑝 to
estimate 𝑚(𝑎𝑖 |𝚯) (Wood, 2017; Hens et al., 2012):

𝑚(𝑎𝑖 |𝚯) = 𝛽0 + 𝛽1𝑎𝑖 + · · · + 𝛽𝑝𝑎𝑝𝑖 +
𝐾∑︁
𝑘=1

𝑢𝑘 |𝑎𝑖 − 𝜅𝑘 |𝑝+ , (4)

with |𝑎𝑖 − 𝜅𝑘 |𝑝+ = (𝑎𝑖 − 𝜅𝑘) 𝑝 if 𝑎𝑖 > 𝜅𝑘 and 0 otherwise, 𝚯 =
(
𝛽0, 𝛽1, . . . , 𝛽𝑝 , 𝑢1, . . . , 𝑢𝐾

)
represents

the vector of parameters to be estimated, and 𝜅1, < 𝜅2 < · · · < 𝜅𝑘 are fixed knots. Due to the penalisa-
tion in the penalised splines approach, the number of knots and their placement are not of importance,
with the number of knots sufficiently large to govern a sufficient degree of smoothness (Eilers and
Marx, 2010). In our data application, we considered 𝑝 = 3 and 𝐾 = 20 knots. We refer to Wood
(2017) for a more in-depth discussion on generalised additive models and smoothing.

Model (3) with smoothing function (4) is in fact a logistic random effects model in which the
spline coefficients can be estimated within the framework of a mixed effects model (Wood, 2017;
Hens et al., 2012). Here, the coefficientsu = (𝑢1, . . . , 𝑢𝐾 )′ are random effects withu ∼ 𝑁 (

0, 𝜎2
𝑢I

)
,

and we further assume that u and z are independent. The advantage of such model representation is
the automatic selection of the smoothing parameter (expressed as 1

𝜎𝑢
) through the estimation proce-

dure (Wood, 2017; Hens et al., 2012). Note that, the specification of model in (3) implies a different
frailty approach in which the frailties do not act multiplicatively on a baseline force of infection, and
the underlying frailty distribution is lognormal. Therefore, under the phenomenological approach,
the conditional hazard function for immunising infections is given by

𝜆 𝑗
(
𝑎𝑖 |𝑧𝑖 𝑗 ,𝚯

)
= exp

[
𝛾 𝑗

(
𝑎𝑖 |𝑧𝑖 𝑗 ,𝚯

) ]
𝛾′𝑗

(
𝑎𝑖 |𝑧𝑖 𝑗 ,𝚯

)
, (5)

where 𝛾′𝑗 (·|·) denotes the derivative of the function 𝛾 𝑗 (·|·) with respect to 𝑎𝑖 , and 𝛾 𝑗
(
𝑎𝑖 |𝑧𝑖 𝑗 ,𝚯

)
=

log
[
Λ 𝑗

(
𝑎𝑖 |𝑧𝑖 𝑗 ,𝚯

) ]
in terms of the cumulative hazard function Λ 𝑗 (.|.) . The choice of the link

function 𝑔(.) determines the form of Λ 𝑗
(
𝑎𝑖 |𝑧𝑖 𝑗 ,𝚯

)
, for example, let 𝑔(.) be a complementary

log-log link function, then (see (5))

Λ 𝑗
(
𝑎𝑖 |𝑧𝑖 𝑗 ,𝚯

)
= exp

{
𝑔

[
𝜋𝑖 𝑗 (𝑎𝑖 |𝑧𝑖 𝑗 ,𝚯)]} and 𝜆 𝑗

(
𝑎𝑖 |𝑧𝑖 𝑗 ,𝚯

)
= exp

{
𝑔

[
𝜋𝑖 𝑗 (𝑎𝑖 |𝑧𝑖 𝑗 ,𝚯)]} 𝑚′ (𝑎𝑖 |𝚯).
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3.5 Mixture distributions
In the previous subsections, we proposed either a generalisation of the frailty approach applied in
the context of bivariate binary serological survey data to be applicable in the context of continuous
IgG antibody titer concentrations for two pathogens measured for the same individuals, or a bivariate
generalised additive mixed model formulation to model mixture proportions. Next to individual
heterogeneity in the infection risk, individuals are likely to experience a different (initial) humoral
immune response following infection with one of the pathogens under study. Although this intrinsic
variability in immune response is captured by the shape of the mixture densities, one could opt to
include a shared random effect z∗𝑖 ≡ 𝑧∗𝑖 at the level of the mean antibody titer concentrations for
individual 𝑖 to disentangle random noise in the measurement process from variability in immune
response. Indeed, assuming that

(
Y𝑖 |𝑧∗𝑖 , 𝐾 = 𝑘, 𝑄 = 𝑞

) ∼ 𝑁2 (µ,𝚺), with

𝑌𝑖1 = 𝜇𝑘𝑞1 + 𝑧∗𝑖 + 𝜖𝑖𝑘𝑞1,

𝑌𝑖2 = 𝜇𝑘𝑞2 + 𝑧∗𝑖 + 𝜖𝑖𝑘𝑞2,

and µ = (𝜇𝑘𝑞1, 𝜇𝑘𝑞2), 𝑧∗𝑖 ∼ 𝑁 (0, (𝜎∗)2), 𝜖𝑖𝑘𝑞1 ∼ 𝑁 (0, 𝑠21), 𝜖𝑖𝑘𝑞2 ∼ 𝑁 (0, 𝑠22) and assuming indepen-
dence between 𝑧∗𝑖 and these error terms, implies the following variance-covariance structure:

𝚺 =

[ (𝜎∗)2 + 𝑠21 𝑠12
𝑠12 (𝜎∗)2 + 𝑠22

]
,

where 𝑠12 is the covariance between the pathogen-specific measurement errors. Needless to say,
allowing the random effect 𝑧∗𝑖 to be infection-specific would not be identifiable. In the remainder
of the manuscript, we will model 𝜖∗𝑖𝑘𝑞 𝑗 = 𝑧∗𝑖 + 𝜖𝑖𝑘𝑞 𝑗 altogether by estimating component-specific
variance-covariance parameters.

In our data application, we will focus on bivariate normal or skew-normal mixture distributions in
the mixture model for the log-transformed antibody titer concentrations. Furthermore, for identifia-
bility reasons, we assume that the component mean vectors µ𝑘𝑞 =

(
𝜇𝑘𝑞1, 𝜇𝑘𝑞2

)
satisfy the following

conditions:
𝜇001 ≤ 𝜇101 = 𝜇111 and 𝜇002 ≤ 𝜇012 = 𝜇112. (6)

This order restriction avoids label-switching during parameter estimation and is inspired by the fact
that mean antibody titer concentrations are larger for seropositive individuals (Evans and Erlandson,
2004; McLachlan and Peel, 2000). To complete the specification of the component densities, two
different assumptions about the structure of the component-specific variance-covariance matrices

Σ𝑘𝑞 =

[
𝜎2
𝑘𝑞1 𝜌𝑘𝑞𝜎

2
𝑘𝑞1𝜎

2
𝑘𝑞2

𝜌𝑘𝑞𝜎
2
𝑘𝑞1𝜎

2
𝑘𝑞2 𝜎2

𝑘𝑞2

]
,

are considered: (i) constant variance-covariance matrices, i.e., Σ00 = Σ01 = Σ10 = Σ11 = Σ, or (ii)
Σ𝑘𝑞 with 𝜎2

111 = 𝜎2
101 ≡ 𝜎2

1.1, 𝜎2
112 = 𝜎2

012 ≡ 𝜎2
.12 and correlation coefficients 𝜌00, 𝜌01, 𝜌10, and

𝜌11 estimated from the data. The subscripts of the means 𝜇𝑘𝑞 𝑗 , variances 𝜎2
𝑘𝑞 𝑗 , and correlation

coefficients 𝜌𝑘𝑞 indicate to which mixture component the model parameter belongs.
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3.6 Waning of humoral immunity
After an individual is infected, the body generally depends on its immune system to strive against
infection and to give resistance to the disease (Ray and Ryan, 2004). Although next to humoral immu-
nity, a cellular immune response is also part of the overall immune response to pathogenic invasion
of the human body, in this paper we primarily focus on humoral immunity. Consequently, here and
elsewhere we refer to humoral immunity when talking about an immune response. Knowledge about
humoral immunity dynamics and consequently susceptibility is indispensable because the infection
can only spread in the population if an infected individual makes effective contact with susceptible
individuals (Held et al., 2019). Some infectious diseases confer lifelong immunity (examples include
several childhood infections such as VZV and measles) while others only give rise to temporary
humoral immunity. In the latter case, individuals lose their humoral immunity over time (though not
necessarily their immunity). One of the potential factors which may give rise to repeated outbreaks
is waning of acquired humoral immunity (Barbarossa and Röst, 2015).

In the previous sections, we introduced a mixture model for IgG antibody concentrations thereby
focusing on the underlying mixture distribution and its parameters with age as a proxy for the time
since infection and adding more complexity into the model to describe the antibody waning process.
Based on a single cross-sectional serological survey, waning dynamics of IgG antibody titers cannot
be inferred directly given the lack of a temporal perspective on antibody kinetics. More specifically, a
moderately high IgG antibody can be the result of a higher level that decayed with time since infection
or the result of a recent infection inducing an average amount of generated antibodies. Consequently,
the assessment of antibody kinetics is a population-averaged one in which the evolution of the overall
antibody levels among positive individuals can be studied.

In this serological data application, while VZV infection is assumed to confer lifelong immu-
nity (Abrams et al., 2018), hypotheses of waning of IgG antibodies and reinfections with PVB19
have been advocated in the literature (Schoub et al., 1993; Gay, 1996; Vyse et al., 2006). This has
been even further exemplified by the observed decrease in seroprevalence for PVB19 between the age
of 20 years to 40 years after which the seroprevalence increases again (see Figure 2). It is noteworthy
that such a decrease is also observed in PVB19 seroprevalence in other countries (Goeyvaerts et al.,
2011). Here, antibody waning is accounted for by allowing the mean IgG antibody concentration in
the seropositive component 𝜇11 and 𝜇12 to be age-dependent through stratification, whereas model
parameters associated with other mixture components are considered constant with age.

Here, we provide a graphical exploration of antibody titer dynamics at the individual level, includ-
ing individual variation in humoral immune response, and the corresponding effects at the population
level. We focus on a non-vaccinated population where humoral immunity is solely a consequence of
natural infection. We further ignore maternal passive immunity, i.e., the humoral immune response
that results from antibodies passed on from the mother to the child during pregnancy. We investi-
gated three different scenarios to obtain a detailed description of the effects of waning of humoral
immunity on both the mixture component associated with seropositive individuals and the corre-
sponding seroprevalence defined using a predefined threshold value 𝜏. In the first scenario (Scenario
1), we consider an infection that confers lifelong humoral immunity at a constant level after humoral
immunity build-up, i.e., infection without waning of the humoral immune response. In Scenario 2,
we examine a situation in which an infection induces humoral immunity that wanes over time, but
without reinfection after loss of humoral immunity. In this scenario, after an individual is infected
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and humoral immunity is built up, the IgG levels decrease over time and remain at a level certainly
above a predefined threshold value 𝜏. In the third scenario (Scenario 3), we illustrate an infection
process with waning of antibody levels after which reinfections are possible to occur.

Figure 2 depicts the impact of all scenarios described above, and the relation with the model ap-
proach considered here. For each scenario, the figure shows seropositivity plotted across age (lower
panels) and the distribution of log-transformed IgG antibodies (upper panels) measured across the
population. Next to that, the middle panels of the figure display the longitudinal evolution of IgG
antibody concentrations of four randomly selected individuals with dots indicating the log-antibody
titer concentrations observed at data collection (i.e., the monitoring time, here represented by ver-
tical dashed lines, which are typically equal for different pathogens in a cross-sectional serological
survey). Serological data consisting of individual IgG antibody concentrations are then translated
into a binary immunological status with seropositive (i.e., with IgG levels on the right-hand side of
the predefined threshold value – vertical dashed grey line, here denoted protective) or seronegative
individuals (i.e., IgG values on the left-hand side of the protective line).

In Scenario 2 (waning without reinfection) no impact on the seroprevalence is observed in the
sense that the proportion of seropositive individuals increases monotonically with age. However, in
Scenario 3 (waning and potential reinfection) the seroprevalence shows a decrease between the ages
of 30 and 50, after a steep monotone rise with age, and starts to increase thereafter again. In general,
Scenarios 2 and 3 show similar seroprevalence curves compared to the observed seroprevalence
with respect to VZV and PVB19, respectively. In terms of analysis strategies based on the mixture
modelling approach considered here, the waning process can be accounted for depending on the sce-
narios described above. For instance, if humoral immunity induced by an infection is characterised
by Scenario 1, the model parameters associated with the mixture components are age-invariant. In
contrast, in Scenarios 2 and 3 the waning of IgG antibodies can be accounted for by allowing the
mean of the seropositive mixture component to vary with age.

3.7 Bayesian inference
In order to estimate the model parameters of the proposed finite mixture model, we rely on Bayesian
inference using MCMC sampling. The marginalised likelihood function for the observed vector of
log-transformed IgG antibody levels y can be rendered as

𝐿 (𝚿, θ |y1, y2, 𝑎𝑖) =
𝑛∏
𝑖=1




1∏
𝑘=0

1∏
𝑞=0

[
𝜋𝑘𝑞 (𝑎𝑖 |𝜃) 𝑓𝑘𝑞 (𝑦𝑖 |𝜓𝑘𝑞)

]
.

In a practical Bayesian inference, parameters 𝚿 and θ are assumed to be random, and specification of
the prior distribution P(𝚿0, θ0) is required (Ntzoufras, 2011). Moreover, all information contained
in the data y about 𝚿 and θ is summarised in terms of the posterior density P(𝚿, θ |y, 𝑎𝑖), which is
derived using Bayes’s theorem (Frühwirth-Schnatter, 2006):

P(𝚿, θ |y𝑖 , 𝑎𝑖) ∝ 𝐿 (𝚿|y1, y2, 𝑎𝑖)P(𝚿0)P(θ0). (7)

The prior distributions for the model parameters in (7) are chosen to make the distribution proper
but diffuse with large variances. We also assume that the priors for all parameters are independent
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Figure 2. Impact of waning of humoral immunity and relation with our modelling approach. Dis-
tribution of log-transformed IgG antibody concentrations collapsed over the age dimension (upper
panels). Longitudinal evolution of IgG antibody levels of four randomly selected individuals with
vertical dashed lines indicating individual age together with IgG antibody titer concentrations mea-
sured at data collection (middle panels). Age-specific seroprevalence (lower panels). Left to right:
Scenario 1, Scenario 2 and Scenario 3.
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such that the joint prior density in (7) equal the product of the marginal prior distributions, P(𝚿0)
and P(θ0).

A vague normal prior with mean zero and variance equal to 1000 is considered for all model
parameters with support ] − ∞,+∞[. A gamma prior distribution with mean one and variance 100
was assumed for all unknown parameters with support ]0,+∞[ and a uniform prior on the unit
interval was chosen for non-negative correlation coefficients (by construction of the frailty model) or
on the interval [−1, 1] otherwise. Prior distributions for the mean vectors of the bivariate component
densities are specified in order to satisfy the restriction imposed in (6), i.e., 𝜇001 ∼ 𝑁 (0, 1.0 × 103),
𝜇002 ∼ 𝑁 (0, 1.0 × 105), 𝜇012 ∼ 𝑁 (0, 1.0 × 103)T(𝜇002, ), and 𝜇101 ∼ 𝑁 (0, 1.0 × 103)T(𝜇001, ).
Finally, instead of selecting the commonly used Wishart prior distribution for Σ𝑘𝑞 , we follow the
idea of Turner et al. (2019) thereby specifying a prior distribution for each of the individual elements
of the variance-covariance matrix Σ𝑘𝑞 .

3.8 Model selection
For model comparison, selection, or averaging, one can measure the predictive accuracy of the
fitted Bayesian model (Geisser and Eddy, 1979) using leave-one-out cross-validation (LOO) or the
Watanabe-Akaike Information Criterion (WAIC, Watanabe and Opper, 2010), which are methods to
estimate out-of-sample predictive accuracy (Vehtari et al., 2017). Disadvantages of the use of LOO,
however, have been reported in the literature (Peruggia, 1997; Epifani et al., 2008). More recently, Ve-
htari et al. (2017) proposed a more efficient approximation to LOO using Pareto-smoothed importance
sampling (PSIS). Both the PSIS-LOO and WAIC are easily computed using the loglikelihood evalu-
ated at the posterior MCMC draws of the model parameters from a converged chain (Vehtari et al.,
2017) and are implemented in the R package loo. For model comparison, we use this package and
we consider both PSIS-LOO and WAIC to select the best model. The model deviance is reported as
well.

3.9 Software
MCMC samples of the joint posterior distribution of the model parameters are obtained using Gibbs
sampling via the JAGS (Just Another Gibbs Sampler) function and the R2jags package (Plummer,
2003). The JAGS function in R2jags package was used specifically to obtain the results of the final
models. As NIMBLE’s (Numerical Inference for statistical Models for Bayesian and Likelihood
Estimation) package (de Valpine et al., 2023) proved to be fast software in mixture model and it
provides option to return a WAIC value (Beraha et al., 2021), we used for model selection. Both
packages the R2jags and NIMBLE are implemented in the statistical software R, version 4.3.0 (R
Development Core Team 2023). The R program to fit the proposed model can be found in the
Supplementary Material (see Appendix D).

4. Data application
We apply the finite mixture model to the bivariate log-transformed antibody titer concentrations
for VZV (𝑖 = 1) and PVB19 (𝑖 = 2) introduced in Section 2. In particular, we fitted both the
bivariate normal and the skew-normal mixture models while exploring various modelling strategies
with respect to the seropositive mixture component densities and mixing probabilities. In our data
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Table 2. Posterior means, posterior standard deviation (SD) and 95% credible interval for the model
parameters obtained by fitting the bivariate mixture models with mixing proportions based on the
BGLMM model with logit link functions. ∗Since the posterior distribution of the variance component
is skewed, the posterior median are used as summary measure.

Normal mixture model Skew-normal mixture model
Notation Parameter Estimate (SD) 95% CI Estimate (SD) 95% CI

Component densities 𝚿 𝜇001 2.355 (0.049) [2.260, 2.453] 2.361 (0.049) [2.267, 2.458]
𝜇002 1.661 (0.013) [1.635, 1.686] 1.641 (0.012) [1.617, 1.665]
𝜇111

0.6 − 20 6.650 (0.044) [6.562, 6.738] 6.648 (0.045) [6.561, 6.735]
10 − 20 6.378 (0.031) [6.321,6.439] 6.379 (0.031) [6.317, 6.440]
20 − 35 6.333 (0.040) [6.255, 6.410] 6.339 (0.040) [6.261, 6.417]
35 − 40 6.263 (0.069) [6.132, 6.398] 6.264 (0.068) [6.131, 6.398]

𝜇112
0.6 − 10 5.273 (0.039) [5.197, 5.349] 5.884 (0.017) [5.835, 5.936]
10 − 20 5.163 (0.022) [5.120, 5.206] 5.838 (0.024) [5.805, 5.871]
20 − 35 5.157 (0.028) [5.101, 5.212] 5.883 (0.024) [5.837, 5.930]
35 − 40 5.043 (0.047) [4.951, 5.130] 5.880 (0.035) [5.812, 5.948]

𝜎2
001 0.410 (0.045) [0.337, 0.507] 0.412 (0.045) [0.333, 0.509]
𝜎2

002 0.143 (0.008) [0.129, 0.159] 0.123 (0.007) [0.100, 0.126]
𝜎2

111 0.889 (0.030) [0.834, 0.949] 0.882 (0.029) [0.828, 0.940]
𝜎2

112 0.335 (0.014) [0.310, 0.363] 0.024 (0.004) [0.017, 0.032]
𝜌00 0.039 (0.080) [-0.131, 0.190] 0.019 (0.110) [-0.196, 0.238]
𝜌01 -0.118 (0.131) [-0.364, 0.145] -0.236 (0.239) [-0.678, 0.247]
𝜌10 0.159 (0.038) [0.083, 0.232] 0.202 (0.035) [0.133, 0.269]
𝜌11 0.247 (0.026) [0.197,0.297] 0.589 (0.054) [0.485, 0.690]

Skewness parameters 𝛼 - -6.073 (0.587) [-7.329, -5.010]
𝜔 - 0.895 (0.043) [0.817, 0.987]

Mixing proportions ξ 𝜎2 8.716 (5.616, 9.999)* 8.468 (4.861, 9.999)*
𝜌 1.000 (–) 1.000 (–)

Model selection LOO 9760.64 6046.22
WAIC 9768.81 6097.31
Deviance 9571.41 4195.21

analysis, we considered two different assumptions for the waning of humoral immunity. To be
more specific, first we fitted several models while assuming that after an individual is infected and
humoral immunity is built up, antibody levels remain constant over time. Hence, model parameters
associated with the mixture components are assumed independent of age. In the second situation, we
fitted various models in which antibody waning is accounted for by allowing the mean IgG antibody
concentrations in the seropositive component to be age-dependent according to the specification of
different age groups. For each model strategy, we assumed (i) a common variance-covariance matrix
for the mixture component-specific variance-covariance matrix and (ii) different variance-covariance
matrices. For model comparison, we based model selection on the PSIS-LOO (Vehtari et al., 2017),
WAIC (Watanabe and Opper, 2010) and deviance. The skew-normal distribution was only assumed
for component densities related to the PVB19 positive mixture component, as the distribution of
log-transformed PVB19 antibody levels showed left-skewed behavior.

The mean vectors of the component densities corresponding to seropositive individuals for
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Figure 3. Observed seroprevalence (dots with size proportional to the number of observations),
estimated seroprevalence for VZV infection (left panel) and PVB19 infection (right panel) in Belgium
based on mixture skew-normal model with bivariate generalised linear mixed model (black line) and
threshold approach (red line).

at least one pathogen are modelled using a piecewise constant function of age with age groups:
0.6 − 10, 10 − 20, 20 − 35 and 35 − 40. The age groups considered here are similar to those used
by Goeyvaerts et al. (2011), who considered a Maternally derived immunity-Susceptible-Infectious-
Recovered-Waned-boosting (MSIRWb) compartmental model with age-dependent antibody waning
immunity with the optimal cut-off value 𝐻 = 35 years. More specifically, these authors found that
after an individual recovers from PVB19 infection, the decay in antibody levels may depend on age,
more likely after age 35 years. We also explored the use of other age categories, however, conclusions
did not change (results not shown here - see Table B.6 in the Supplementary Material).

The age-dependent mixture probabilities are modelled using two different model strategies. First
we consider a mechanistic approach that mimics the underlying infection process through the specifi-
cation of a hazard model (cfr. frailty model), though interpretation relies on the restrictive assumption
of lifelong immunity after infection. More specifically, we consider correlated gamma frailty models
(see Table 1) with different parametric baseline hazard functions. Secondly, we adopted a purely
statistical or phenomenological approach in which the mixture probabilities are modelled using a
BGLMM. These mixture probabilities as a function of age were modelled using penalised splines
with truncated polynomial basis functions and 𝐾 = 20 knots, with the 𝑘 − 𝑡ℎ knot placed at the
𝑘/(𝐾 +1) sample quantile of the age distribution (Ruppert, 2002). As advocated previously, two dif-
ferent assumptions about the structure of the component-specific variance-covariance matrices were

INDIVIDUAL HETEROGENEITY IN ACQUISITION OF INFECTIONS 51



considered. As MCMC sampling showed to be very time-consuming, a single chain with 100 000
iterations was run with a burn-in of 35 000 iterations. The remaining 65 000 samples were used for
posterior inference related to the model parameters. Convergence of the chain was assessed using
graphical diagnostic tools such as trace plots, histograms of posterior samples (i.e., representing the
posterior density), and auto-correlation plots (see Figures C1–C6 in Appendix C of the Supplemen-
tary Material).

In general, the models with component-specific variance-covariance matrices fit the observed data
better. In addition, the models ignoring potential antibody waning perform worse as compared to
those with age-dependent means thereby providing evidence in favor of waning of humoral immu-
nity (see model comparison in Table B.1-Table B.5 in Appendix B of the Supplementary Material).
Among all fitted models considered here, results are presented for the bivariate mixture models with
mixing proportions based on the BGLMM with logit-link function (which outperformed all fitted
models based on the PSIS-LOO, WAIC and Deviance). Posterior means, standard deviation in paren-
thesis and the 95% credible intervals of the mixture probabilities and component density parameters
with regard to normal component densities or skew-normal densities are shown in Table 2.

We observe that some of the estimated model parameters and their standard deviations are very
similar in both models. However, the estimated means for seropositive individuals with regard to
PVB19 are slightly higher in the skew-normal mixture model across all age groups, as the model
accounts for negative skewness (𝛼 = −6.073 with posterior standard deviation 0.587). The negative
skewness is consistent with the pronounced left-skewed shape observed in the PVB19 seropositive
population. These findings are in line with the results of earlier work of Del Fava (2012), albeit in
a univariate setting ignoring individual heterogeneity and association in acquisition of PVB19 (and
VZV). The model assuming a skew-normal distribution for the antibody levels of PVB19 seropositive
individuals outperforms the bivariate normal mixture model. Figure 4 shows the distributions of the
log-transformed IgG antibodies for VZV and PVB19 together with the estimated mixture density.
The estimated density functions for VZV agree closely between normal and skew-normal models,
but differ for PVB19. In addition, Figure 3 provides the estimated seroprevalence curves based on
the mixture model (black line) and threshold (red line) approaches. Visual comparison of the figures
shows that the estimated seroprevalence curves for VZV and PVB19 based on the mixture model
agree closely with threshold approach.

5. Discussion
In this manuscript, we proposed the use of a finite mixture model to describe bivariate continuous
antibody titer data in the presence of individual heterogeneity and implied association regarding the
acquisition of two infections. More specifically, bivariate cross-sectional serological survey data
is analysed using a bivariate generalised linear mixed models and a well-known frailty approach
previously introduced in the context of dichotomised data and now refined to encompass relevant
dynamics in humoral immunity responses following infection. In particular, the frailty terms are
incorporated at the level of the mixing probabilities and/or at the level of the mixture densities,
thereby leading to a generalisation of existing frailty models considered in the field of infectious
disease modelling. At the level of mixing probabilities, the latent frailties are assumed to act mul-
tiplicatively on the age-specific baseline force of infection and the time of infection (i.e., the age of
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Figure 4. Histogram together with estimated density functions for VZV (left panel) and PVB19 (right
panel) log-transformed IgG antibodies by age group. Bivariate normal (black line) and skew-normal
(red line) mixture models with different variance-covariance matrices.
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individuals at the cross-sectional sampling time, in our data application) are assumed conditionally
independent given the frailty terms. Moreover, a shared random effect is introduced at the level of the
mean IgG antibody concentration and is assumed to be independent of the frailty terms introduced
at the level of the mixing proportions. The random effects introduced in the component densities,
however, allow us to capture the differences in humoral immune response following infection, and
also to disentangle random noise in the measurement process from variability in immune response.
However, when doing so, this leads to identifiability problems and consequently the random effects
are modelled together by estimating component-specific variance-covariance parameters.

Different submodels of the general model are applied to bivariate serological data on PVB19 and
VZV from Belgium, in which we assumed no disease-related mortality. Given previous evidence
of waning of humoral immunity for PVB19, a decay in mean antibody titer concentrations in its
seropositive component is allowed for. Typically, without a longitudinal cohort study that would
enable us to investigate antibody waning directly, the decay in IgG antibody levels was accounted for
by allowing the mean IgG antibody concentration in the seropositive population to be age-dependent
through stratification. Our analysis showed that the estimated seroprevalence for PVB19 is char-
acterised by a steep increase with increasing age, as a result of infections among young children,
followed by a decrease between the age of 20 to 40 years, after which the seroprevalence increases
again. Moreover, the evolution of the mean antibody titer concentration is rather constant across age
groups, indicating that despite a decay in humoral immunity at the individual-level, population-level
mean antibody titer levels remain unchanged because of reinfections with PVB19 among 20-40 year
olds. Given the risk of spontaneous abortion after PVB19 infection during pregnancy, waning of
humoral immunity in 20-40 year olds could be responsible for an excess of miscarriage and fetal
death. For VZV, the seroprevalence is monotonically increasing, indicating that varicella infection is
responsible for high levels of humoral immunity persisting for life. The mean antibody levels show
a slight decrease with increasing age among seropositive individuals, however, not to an extent that
seroprotection is not ensured for life.

Although normal mixture components are often considered as a default option in many applications
in which a mixture model formulation is considered, applying a model with skewed-normal mixture
densities outperformed the normal densities for the data at hand. Needless to say, the left-skewness
in the positive components for PVB19, irrespective of age, could be induced by a limit of detection
regarding the quantification of the respective antibody titer concentrations. From a statistical per-
spective, one could easily adjust the likelihood function to encompass the right-censored nature of
certain observations. However, information on whether observations are censored or not is lacking
in the dataset. An additional limitation is the fact that a high IgG antibody titer concentration could
represent a relatively recent infection taking into account the gradual build-up of humoral immunity
levels. Similarly, lower antibody titer concentrations could indicate historical past infection, a low
antibody response to a recent infection, or a recent but mild infection. However, with a single cross-
sectional serological survey, these scenarios cannot be distinguished (Nhat et al., 2017). Typically
such data relies on assumptions of time homogeneity to estimate key epidemiological parameters, at
least in pre-vaccination settings(Held et al., 2019).

We adopted mechanistic and phenomological modelling approaches to estimate the age-dependent
mixture probabilities. These mixture probabilities relate to the true prevalence of individuals with
past infection experience and avoids issues related to the estimation of the prevalence based on
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seroprevalence derived from dichotomisation of the continuous antibody concentrations. The mech-
anistic approach, although attractive from an interpretation point of view, is not preferred here due
to its implicit assumption of lifelong humoral immunity after infection, which has been questioned
before for PVB19 (Abrams et al., 2018). An in-depth investigation of infection dynamics could serve
as a further extension of the approach outlined in this paper, thereby combining continuous antibody
dynamics with individual heterogeneity in humoral immune response following infection. Whereas
the phenomenological approach provides a smooth estimate of the age-dependent (sero)prevalence,
these estimates do not translate directly to an estimate of the underlying force of infection. Needless
to say, due to the non-monotonicity of the implied seroprevalence estimate, a naive estimate of the
force of infection obtained by taking the derivative of the seroprevalence would be negative (in certain
age intervals) (Hens et al., 2012). Note, however, that such an estimation of the force of infection
relies on lifelong persistence of humoral immunity as well. This is perceived as a disadvantage of a
phenomological approach as the statistical model does not explicitly account for potential reinfections
and their repercussions on antibody dynamics.

The refined mixture model was implemented in the Bayesian paradigm and inference regarding
the model parameters is based on MCMC sampling. We caution readers regarding the interpreta-
tion of the model selection criterion considered here (PSIS-LOO and WAIC), as assessment of the
goodness-of-fit of the models and model selection in the application of mixture models is a chal-
lenging aspect (Grimm et al., 2021). The PSIS-LOO is estimated using Pareto smoothed importance
sampling (PSIS). Essentially, the approximation is more accurate by fitting a Pareto distribution to
the upper tail of the distribution of the importance weights (Vehtari et al., 2017). To conclude, we
wish to mention that in general, based on our analyses, we showed that the mixture model provides
additional insights concerning waning of IgG antibody concentrations as compared to more tradi-
tional frailty approaches while the model is sufficiently flexible to capture observed dynamics in
IgG antibodies. Furthermore, the model accounts for association in the acquisition of the pathogens
under study through the specification of random effects. This is an advantage of using our proposed
Bayesian bivariate finite mixture models rather than a binary classification of IgG serological status,
distinguishing seropositive individuals from seronegative individuals based on subjective thresholds.
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