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In this paper, we propose a natural wavelet estimator of multivariate copula
densities as a ratio of the linear wavelet estimator of the underlying joint population
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1. Introduction
Given a vector X = (𝑋1, . . . , 𝑋𝑑) of continuous random variables with marginal distribution functions
𝐹1, . . . , 𝐹𝑑 , the copula function of X is defined as the joint cumulative distribution function of the
random vector (𝐹1 (𝑋1), . . . , 𝐹𝑑 (𝑋𝑑)). It gives a full characterisation of the dependence between
random variables, be it linear or nonlinear. According to Durante and Sempi (2010), the study of
copulas dates back to Fréchet (1951) and the term “copula” was first used in this sense by Sklar
(1959). Nelsen (2003) dates the study of copulas even further back in time to Hoeffding (1940,
1941). Copulas have applications in various fields such as finance, insurance, environmental science,
healthcare, hydrology, economics, marketing, demography, climate science, psychology (see, for
instance, Manner and Reznikova, 2012; Patton, 2012; Bhatti and Do, 2019; Jaworski et al., 2010;
Größer and Okhrin, 2022).

Nonparametric estimation of copula densities is a vibrant research area, historically dominated by
the use of kernel methods. For instance, Gijbels and Mielniczuk (1990) and Fermanian and Scaillet
(2003) used convolution kernel methods to construct consistent estimators for the copula density.
However, kernel methods are prone to boundary effect issues due to the compact support of the
copula function. To address this issue, Gijbels and Mielniczuk (1990) introduced a mirror-reflection
technique, and Chen and Huang (2007) used a local linear kernel procedure. Omelka et al. (2009)
also introduced improved copula kernel estimators to mitigate boundary bias and Geenens et al.
(2017) introduced kernel-type estimators for the copula density based on a probit transformation
method, which effectively handle boundary effects.
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Wavelet bases (Meyer, 1992; Daubechies, 1992; Vidakovic, 1999; Mallat, 2009) offer an alternative
approach as they automatically adapt to the properties of the curve being estimated, thus handling
boundary effects inherently. Genest et al. (2009) studied a rank-based linear wavelet estimator of the
bivariate copula density, establishing its optimality under certain conditions in terms of the 𝐿2-norm
loss as well as on Hölder balls for the pointwise-norm loss. Autin et al. (2010) extended these results
to nonlinear thresholded estimators of multivariate copula densities, demonstrating near-optimal
performance for the 𝐿2-norm loss. Similarly, Gannoun and Hosseinioun (2012) established upper
bounds on 𝐿𝑝-losses for linear wavelet-based estimators of bivariate copula densities. Seck and
Mamane (2024) investigated the almost sure convergence, in supremum norm, of the rank-based
linear wavelet estimator of a multivariate copula density. However, the convergence rate achieved by
this estimator was found to be suboptimal.

In this paper, we propose a natural wavelet estimator of the multivariate copula density as a
ratio of the linear wavelet estimator of the joint density function of X and the product of linear
wavelet estimators of the corresponding marginal density functions. Density estimation using wavelet
methods is discussed, for example, in Härdle et al. (1998), Giné and Nickl (2009), and Guo and Kou
(2019). We establish the exact almost sure convergence rate in supremum norm loss of this new
estimator. Contrary to the linear wavelet estimator studied by Seck and Mamane (2024), this Sklar
theorem-based estimator achieves the optimal convergence rate over Besov balls for the supremum
norm loss.

The rest of the paper is organised as follows. In Section 2, we recall some facts on wavelet theory
and define the proposed wavelet estimator of the multivariate copula density. In Section 3, the main
theoretical results are presented.

2. Wavelet theory and estimation procedure
In this section we recall some facts about wavelet theory. For a general introduction we refer to
Meyer (1992), Daubechies (1992), Vidakovic (1999) and Mallat (2009). A multiresolution analysis
of 𝐿2 (R𝑑) is a sequence of closed sub-spaces (𝑉 𝑗 ) 𝑗∈Z of 𝐿2 (R𝑑) satisfying the following properties:

i) Increasing: 𝑉 𝑗 ⊂ 𝑉 𝑗+1;

ii) Separability:
⋂

𝑗∈Z𝑉 𝑗 = {0};
iii) Density:

⋃
𝑗∈Z𝑉 𝑗 = 𝐿2 (R𝑑);

iv) Dilatation: 𝑓 (x) ∈ 𝑉 𝑗 ⇔ 𝑓 (2x) ∈ 𝑉 𝑗+1;

v) Translation invariance: 𝑓 (x) ∈ 𝑉 𝑗 ⇒ 𝑓 (x + k) ∈ 𝑉 𝑗 ,∀ k ∈ Z𝑑;

vi) Existence of scaling function: ∃ 𝜙 ∈ 𝐿2 (R𝑑), with
∫
R𝑑 𝜙(x)𝑑x = 1, such that the family

{𝜙(x − k), k ∈ Z𝑑} is an orthonormal basis for 𝑉0.

The scaling function 𝜙 is called a father wavelet, and the family {𝜙 𝑗 ,k (x) = 2 𝑗𝑑/2𝜙(2 𝑗x−k), k ∈ Z𝑑}
is an orthonormal basis for 𝑉 𝑗 , for all 𝑗 . A multiresolution analysis is called 𝑟-regular if 𝜙 ∈ C𝑟 and
all its partial derivatives up to total order 𝑟 are rapidly decreasing, i.e., for every integer 𝑖 ≥ 0, there
exists a constant 𝐴𝑖 such that

| (𝐷𝛽𝜙) (x) | ≤ 𝐴𝑖

(1 + ∥x∥)𝑖 , for all |𝛽 | ≤ 𝑟,
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where 𝛽 = (𝛽1, . . . , 𝛽𝑑) is a vector of positive integers and |𝛽 | = ∑𝑑
𝑖=1 𝛽𝑖 .

Let 𝑊 𝑗 denote the orthogonal complement of the subspace 𝑉 𝑗 in 𝑉 𝑗+1, i.e., 𝑉 𝑗+1 = 𝑉 𝑗 ⊕𝑊 𝑗 , then,
for all fixed 𝑗0 ∈ Z, we have the decomposition

𝐿2 (R𝑑) = 𝑉 𝑗0 ⊕
(⊕
𝑗≥ 𝑗0

𝑊 𝑗

)
, (1)

and there exist 𝑀 = 2𝑑 −1 wavelet functions {𝜓 (𝑚) , 𝑚 = 1, . . . , 𝑀} called mother wavelets such that

• {𝜓 (𝑚) (x − k), k ∈ Z𝑑 , 𝑚 = 1, . . . , 𝑀} is an orthonormal basis for 𝑊0;

• {𝜓 (𝑚)
𝑗 ,k (x) = 2

𝑗𝑑
2 𝜓 (𝑚) (2 𝑗x − k), k ∈ Z𝑑 , 𝑚 = 1, . . . , 𝑀} is an orthonormal basis for 𝑊 𝑗 ;

• {𝜙 𝑗0 ,k, 𝜓
(𝑚)
𝑗 ,k } 𝑗≥ 𝑗0 , k∈Z𝑑 , 1≤𝑚≤𝑀 is an orthonormal basis for 𝐿2 (R𝑑);

• each 𝜓 (𝑚) has the same regularity properties as 𝜙, which will be assumed to be compactly
supported on [−𝐿, 𝐿]𝑑 , 𝐿 > 0.

It follows that for any function 𝑓 ∈ 𝐿2 (R𝑑),

𝑓 (x) =
∑︁

k∈Z𝑑

𝛼 𝑗0 ,k𝜙 𝑗0 ,k (x) +
∑︁
𝑗≥ 𝑗0

𝑀∑︁
𝑚=1

∑︁
k∈Z𝑑

𝛽 (𝑚)
𝑗 ,k 𝜓 (𝑚)

𝑗 ,k (x), x ∈ R𝑑 , (2)

where 𝑗0 ∈ Z is called a resolution level, 𝛼 𝑗0 ,k are the scaling coefficients and 𝛽 (𝑚)
𝑗 ,k are the wavelet

coefficients. Due to the orthogonality of the basis, the scaling coefficients and the wavelet coefficients
are respectively given by

𝛼 𝑗0 ,k =
∫
R𝑑

𝑓 (x)𝜙 𝑗0 ,k (x)𝑑x, 𝛽 (𝑚)
𝑗 ,k =

∫
R𝑑

𝑓 (x)𝜓 (𝑚)
𝑗 ,k (x)𝑑x.

Besov spaces can be characterised in terms of wavelet coefficients. If 𝑃𝑉𝑗 𝑓 denotes the orthogonal
projection of 𝑓 onto the subspace 𝑉 𝑗 , then for all 𝑗 ≥ 𝑗0, we have

(𝑃𝑉𝑗 𝑓 ) (x) =
∑︁

k∈Z𝑑

𝛼 𝑗 ,k𝜙 𝑗,k (x) =
∑︁

k∈Z𝑑

𝛼 𝑗0 ,k𝜙 𝑗0 ,k (x) +
𝑗∑︁

𝑙= 𝑗0

𝑀∑︁
𝑚=1

∑︁
k∈Z𝑑

𝛽 (𝑚)
𝑙,k 𝜓 (𝑚)

𝑙,k (x).

Assume that the multiresolution analysis is 𝑟-regular. Then a function 𝑓 ∈ 𝐿2 (R𝑑) belongs to the
Besov space 𝐵𝑡

𝑝,𝑞 (R𝑑), with 𝑡 < 𝑟, if and only if

∥𝑃𝑉0 ( 𝑓 )∥𝐿𝑝 + ©­«
∑︁
𝑗≥0

(2 𝑗𝑡 ∥𝑃𝑊𝑗 ( 𝑓 )∥𝐿𝑝 )𝑞ª®¬
1/𝑞

< ∞,

for 1 ≤ 𝑝, 𝑞 ≤ ∞. For more details regarding Besov spaces, we refer to Härdle et al. (1998) and the
Appendix of Masry (2000).

Let X = (𝑋1, 𝑋2, . . . , 𝑋𝑑) be a 𝑑-dimensional random vector with absolutely continuous (w.r.t.
Lebesgue measure) distribution function 𝐹 (x) and corresponding joint probability density function
𝑓 (x), where x = (𝑥1, . . . , 𝑥𝑑).
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Denote the corresponding marginal distribution functions and probability density functions by
𝐹1 (𝑥1), . . . , 𝐹𝑑 (𝑥𝑑) and 𝑓1 (𝑥1), . . . , 𝑓𝑑 (𝑥𝑑) respectively.

Suppose that (X1,X2, . . . ,X𝑛) is a random sample from the population X, where X𝑖 =
(𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝑑), 𝑖 = 1, . . . , 𝑛.

The linear wavelet estimator of 𝑓 (x) at resolution level 𝑗𝑛 (𝑑) > 𝑗0 is given by

𝑓̂ 𝑗𝑛 (𝑑) (x) =
∑︁

k∈Z𝑑

𝛼̂ 𝑗𝑛 (𝑑) ,k𝜙 𝑗𝑛 (𝑑) ,k (x), with 𝛼̂ 𝑗𝑛 (𝑑) ,k =
1
𝑛

𝑛∑︁
𝑖=1

𝜙 𝑗𝑛 (𝑑) ,k (X𝑖).

Henceforth, write 𝑗 (𝑑) instead of 𝑗𝑛 (𝑑) for the resolution level.
The corresponding univariate linear wavelet estimator of 𝑓ℓ (𝑥ℓ) is denoted by 𝑓̂ℓ, 𝑗 (1) (𝑥ℓ) for each

ℓ = 1, . . . , 𝑑.
Assuming that the copula density 𝑐(u), u = (𝑢1, . . . , 𝑢𝑑), associated with the random vector X

exists and is continuous and bounded on (0, 1)𝑑 , then it follows from the well-known Sklar’s theorem
that

𝑐(u) :=
𝑓 (𝑄1 (𝑢1), . . . , 𝑄𝑑 (𝑢𝑑))∏𝑑

ℓ=1 𝑓ℓ (𝑄ℓ (𝑢ℓ))
=:

𝐴(u)
𝐵(u) , for all u ∈ (0, 1)𝑑 , (3)

where 𝑄ℓ (𝑢ℓ) := 𝐹−1
ℓ (𝑢ℓ) is the generalised inverse function of 𝐹ℓ (𝑥ℓ), for ℓ = 1, . . . , 𝑑.

Hence, a natural wavelet estimator for 𝑐(u) can now be defined as

𝑐̂𝑛 (u) :=
𝑓̂ 𝑗 (𝑑) (𝑄1 (𝑢1), . . . , 𝑄𝑑 (𝑢𝑑))∏𝑑

ℓ=1 𝑓̂ℓ, 𝑗 (1) (𝑄ℓ (𝑢ℓ))
=:

𝐴𝑛 (u)
𝐵𝑛 (u)

, (4)

where 𝑄ℓ (𝑢ℓ), ℓ = 1, . . . , 𝑑, are strongly consistent estimators of the quantile functions 𝑄ℓ (𝑢ℓ).
Examples could be to choose 𝑄ℓ (𝑢ℓ) equal to the generalised inverse of the empirical distribution
function or a smooth kernel distribution function estimator based on 𝑋𝑖ℓ , 𝑖 = 1, . . . , 𝑛.

3. Asymptotic behaviour of the estimator
Let us assume that the following conditions hold:

Condition 1. The multiresolution analysis is 𝑟-regular and the father wavelet 𝜙 : R𝑑 → R is bounded
with a compact support.

Condition 2. 𝑓 (x) ∈ 𝐵𝑡
𝑝,𝑞 (R𝑑) is bounded for some 𝑡 > 𝑑/𝑝, and 𝑓ℓ (𝑥ℓ) ∈ 𝐵𝑠

𝑝,𝑞 (R) is bounded for
ℓ = 1, . . . , 𝑑 and some 𝑠 > 1/𝑝, 1 ≤ 𝑝, 𝑞 ≤ ∞.

Condition 3.
sup

𝑢ℓ ∈ (0,1)
|𝑄ℓ (𝑢ℓ) −𝑄ℓ (𝑢ℓ) | = 𝑂𝑎.𝑠. (𝑛−1/2 (log 𝑛) 𝛿),

for ℓ = 1, . . . , 𝑑 and some 𝛿 > 0.

Condition 4. The resolution level 𝑗 (𝑑) satisfies

2 𝑗 (𝑑) ≈
(

𝑛

log 𝑛

)𝛾 (𝑑)
,

where, for 𝑑 ≥ 1,
𝛾(𝑑) = 1

𝑑 + 2(𝑡 − 𝑑/𝑝) .
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Remark 1. All the conditions (except for Condition 3) are quite standard as they are usually imposed
in the study of wavelet density estimation. Conditions 1 and 2 are satisfied for a large variety of
wavelets. One example is the Daubechies’ wavelets (see Daubechies, 1992, Chapter 6, or Härdle
et al., 1998). The following proposition proves that Condition 3 is fulfilled if we choose 𝑄ℓ (𝑢ℓ) :=
𝐹−1
ℓ,𝑛 (𝑢ℓ), ℓ = 1, . . . , 𝑑, where 𝐹ℓ,𝑛 (𝑥ℓ) is the empirical distribution function of Xℓ . Similar results

exist in the statistical literature for other types of quantile estimators. A typical example is the
well-known smooth kernel quantile estimator.

Proposition 1. Assume that inf0<𝑢ℓ<1 𝑓ℓ (𝐹−1
ℓ (𝑢ℓ)) > 0, for all ℓ = 1, . . . , 𝑑. Then we have

sup
0<𝑢ℓ<1

|𝐹−1
ℓ,𝑛 (𝑢ℓ) − 𝐹−1

ℓ (𝑢ℓ) | = 𝑂𝑎.𝑠.

(
𝑛−1/2 (log log 𝑛)1/2

)
.

Proof. For ease of notation, write 𝐹−1
ℓ,𝑛 (𝑢ℓ) =: 𝐹−1

𝑛 (𝑢), 𝐹−1
ℓ (𝑢ℓ) =: 𝐹−1 (𝑢), and 𝑓ℓ (𝑢ℓ) =: 𝑓 (𝑢).

Define (see Theorem 2.5.1 in Serfling, 1980)

𝑅𝑛 =
(
𝐹−1
𝑛 (𝑢) − 𝐹−1 (𝑢)

)
− 𝑢 − 𝐹𝑛 (𝐹−1 (𝑢))

𝑓 (𝐹−1 (𝑢)) .

We then have, by applying respectively Theorem D and Theorem B appearing on pages 101 and 62
in Serfling (1980),

sup
0<𝑢<1

𝑓 (𝐹−1 (𝑢)) |𝐹−1
𝑛 (𝑢) − 𝐹−1 (𝑢) |

≤ sup
0<𝑢<1

𝑓 (𝐹−1 (𝑢)) |𝑅𝑛 (𝑢) | + sup
0<𝑢<1

|𝑢 − 𝐹𝑛 (𝐹−1 (𝑢)) |

= 𝑂𝑎.𝑠.

(
𝑛−3/4 (log 𝑛)1/2 (log log 𝑛)1/4

)
+ sup

−∞<𝑥<∞
|𝐹𝑛 (𝑥) − 𝐹 (𝑥) |

= 𝑂𝑎.𝑠.

(
𝑛−3/4 (log 𝑛)1/2 (log log 𝑛)1/4

)
+𝑂𝑎.𝑠.

(
𝑛−1/2 (log log 𝑛)1/2

)
= 𝑂𝑎.𝑠.

(
𝑛−1/2 (log log 𝑛)1/2

)
. ■

Theorem 1. Let Conditions 1–4 hold and suppose that supp 𝑓ℓ (𝑥ℓ) = 𝐼 = [𝑎, 𝑏], for some −∞ <

𝑎 < 𝑏 < ∞, and inf
𝑥ℓ ∈𝐼

𝑓ℓ (𝑥ℓ) > 0 for ℓ = 1, . . . , 𝑑. Then, as 𝑛 → ∞, we have

sup
u∈ (0,1)𝑑

|𝑐̂𝑛 (u) − 𝑐(u) | = 𝑂𝑎.𝑠.

((
log 𝑛
𝑛

) (𝑡−𝑑/𝑝)𝛾 (𝑑) )
.

Proof. We begin with the following decomposition (see (3) and (4)):

𝑐̂𝑛 (u) − 𝑐(u) = 𝐴𝑛 (u)
𝐵𝑛 (u)

− 𝐴(u)
𝐵(u)

=
(𝐴𝑛 (u) − 𝐴(u))

𝐵(u) − (𝐵𝑛 (u) − 𝐵(u))𝐴(u)
𝐵(u)2

− (𝐴𝑛 (u) − 𝐴(u)) (𝐵𝑛 (u) − 𝐵(u))
𝐵𝑛 (u)𝐵(u)

+ (𝐵𝑛 (u) − 𝐵(u))2𝐴(u)
𝐵𝑛 (u)𝐵(u)2

=: 𝑇1𝑛 (u) + 𝑇2𝑛 (u) + 𝑇3𝑛 (u) + 𝑇4𝑛 (u). (5)
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Applying Taylor’s expansion (mean-value theorem), the fact that 𝑓 (x) has uniformly bounded
first-order partial derivatives, Theorem 2 of Guo and Kou (2019), the boundedness of 𝑓 (x), and
Condition 3, it follows that for some finite constant 𝐶 > 0,

sup
u∈ (0,1)𝑑

���𝐴𝑛 (u) − 𝐴(u)
���

≤ sup
u∈ (0,1)𝑑

| 𝑓̂ 𝑗 (𝑑) (𝑄1 (𝑢1), . . . , 𝑄𝑑 (𝑢𝑑)) − 𝑓 (𝑄1 (𝑢1), . . . , 𝑄𝑑 (𝑢𝑑)) |

+ sup
u∈ (0,1)𝑑

| 𝑓 (𝑄1 (𝑢1), . . . , 𝑄𝑑 (𝑢𝑑)) − 𝑓 (𝑄1 (𝑢1), . . . , 𝑄𝑑 (𝑢𝑑)) |

≤ sup
y∈𝐼𝑑

| 𝑓̂ 𝑗 (𝑑) (y) − 𝑓 (y) | + 𝐶
𝑑∑︁

ℓ=1
sup

𝑢ℓ ∈ (0,1)
|𝑄ℓ (𝑢ℓ) −𝑄ℓ (𝑢ℓ) |

= 𝑂𝑎.𝑠.

((
log 𝑛
𝑛

) (𝑡−𝑑/𝑝)𝛾 (𝑑) )
+𝑂𝑎.𝑠.

( (log 𝑛) 𝛿
𝑛1/2

)

= 𝑂𝑎.𝑠.

((
log 𝑛
𝑛

) (𝑡−𝑑/𝑝)𝛾 (𝑑) )
, (6)

for all 𝛿 > 0, since (𝑡 − 𝑑/𝑝)𝛾(𝑑) < 1/2. (Note that Guo and Kou (2019) considered the case 𝑎 = 0
and 𝑏 = 1. However, their proof can immediately be generalised to have supp 𝑓 (x) = [𝑎, 𝑏]𝑑 by
simply applying the transformation 𝑌 = (𝑋 − 𝑎)/(𝑏 − 𝑎)).

This, together with the fact that inf𝑥ℓ ∈𝐼 𝑓ℓ (𝑥ℓ) > 0 for ℓ = 1, . . . , 𝑑 (implying that
infu∈ (0,1)𝑑 𝐵(u) > 0), allows us to conclude that

sup
u∈ (0,1)𝑑

|𝑇1𝑛 (u) | = 𝑂𝑎.𝑠.

((
log 𝑛
𝑛

) (𝑡−𝑑/𝑝)𝛾 (𝑑) )
. (7)

To take care of the second term𝑇2𝑛 (u), we first recall the fact that for any sequences {𝑎ℓ : 1 ≤ ℓ ≤ 𝑑}
and {𝑏ℓ : 1 ≤ ℓ ≤ 𝑑} of real numbers, we have

𝑑∏
ℓ=1

𝑎ℓ −
𝑑∏

ℓ=1
𝑏ℓ =

𝑑∑︁
ℓ=1

(𝑎ℓ − 𝑏ℓ)
ℓ−1∏
𝑖=1

𝑏𝑖

𝑑∏
ℎ=ℓ+1

𝑎ℎ, (8)

with the product on the empty set being equal to one. See, for instance, Lemma 5.1 in Bouzebda et al.
(2011). Now, since 𝑓̂ℎ, 𝑗 (1) (𝑄ℎ (𝑢ℎ)) converges almost surely to 𝑓ℎ (𝑄ℎ (𝑢ℎ)) for each ℎ = 1, . . . , 𝑑,
we can write for 𝑛 large enough

𝑓̂ℎ, 𝑗 (1) (𝑄ℎ (𝑢ℎ)) = 𝑓ℎ (𝑄ℎ (𝑢ℎ)) + 𝑜𝑎.𝑠. (1).
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It follows from this and (8) that

𝐵𝑛 (u) − 𝐵(u) =
𝑑∏

ℓ=1
𝑓̂ℓ, 𝑗 (1) (𝑄ℓ (𝑢ℓ)) −

𝑑∏
ℓ=1

𝑓ℓ (𝑄ℓ (𝑢ℓ))

=
𝑑∑︁

ℓ=1

{
𝑓̂ℓ, 𝑗 (1) (𝑄ℓ (𝑢ℓ)) − 𝑓ℓ (𝑄ℓ (𝑢ℓ))

} ℓ−1∏
𝑖=1

𝑓𝑖 (𝑄𝑖 (𝑢𝑖))
𝑑∏

ℎ=ℓ+1
𝑓̂ℎ, 𝑗 (1) (𝑄ℎ (𝑢ℎ))

=
𝑑∑︁

ℓ=1

{
𝑓̂ℓ, 𝑗 (1) (𝑄ℓ (𝑢ℓ)) − 𝑓ℓ (𝑄ℓ (𝑢ℓ))

} {
𝑑∏
𝑖≠ℓ

𝑓𝑖 (𝑄𝑖 (𝑢𝑖)) + 𝑜𝑎.𝑠. (1)
}
.

Therefore, since 𝑓ℓ is bounded for ℓ = 1, . . . , 𝑑, we have for some finite constant 𝐶 > 0 that

sup
u∈ (0,1)𝑑

|𝐵𝑛 (u) − 𝐵(u) | ≤ 𝐶
𝑑∑︁

ℓ=1
sup
𝑦∈𝐼

| 𝑓̂ℓ, 𝑗 (1) (𝑦) − 𝑓ℓ (𝑦) | + 𝑜𝑎.𝑠.

(
𝑑∑︁

ℓ=1
sup
𝑦∈𝐼

| 𝑓̂ℓ, 𝑗 (1) (𝑦) − 𝑓ℓ (𝑦) |
)
.

That is,

sup
u∈ (0,1)𝑑

|𝐵𝑛 (u) − 𝐵(u) | = 𝑂𝑎.𝑠.

((
log 𝑛
𝑛

) (𝑡−1/𝑝)𝛾 (1) )
, (9)

by applying Theorem 2 of Guo and Kou (2019) with 𝑑 = 1. Since infu∈ (0,1)𝑑 𝐵2 (u) > 0, this readily
implies that

sup
u∈ (0,1)𝑑

|𝑇2𝑛 (u) | = 𝑂𝑎.𝑠.

((
log 𝑛
𝑛

) (𝑡−1/𝑝)𝛾 (1) )
. (10)

For the third term 𝑇3𝑛 (u), we can write, in view of (9) and for sufficiently large 𝑛, that

|𝑇3𝑛 (u) | =
����� (𝐴𝑛 (u) − 𝐴(u)) (𝐵𝑛 (u) − 𝐵(u))

𝐵𝑛 (u)𝐵(u)

����� =

����� (𝐴𝑛 (u) − 𝐴(u))
𝐵(u)

(
1 − 𝐵(u)

𝐵𝑛 (u)

)�����
≤

����� (𝐴𝑛 (u) − 𝐴(u))
𝐵(u)

����� .
Since infu∈ (0,1)𝑑 𝐵(u) > 0, it follows from (6) that

sup
u∈ (0,1)𝑑

|𝑇3𝑛 (u) | = 𝑂𝑎.𝑠.

((
log 𝑛
𝑛

) (𝑡−𝑑/𝑝)𝛾 (𝑑) )
. (11)

The last term 𝑇4𝑛 (u) is handled by using the same arguments. We have for sufficiently large 𝑛 that

|𝑇4𝑛 (u) | =
����� (𝐵𝑛 (u) − 𝐵(u))2𝐴(u)

𝐵𝑛 (u)𝐵(u)2

����� =

�����
(
1 − 𝐵(u)

𝐵𝑛 (u)

)
(𝐵𝑛 (u) − 𝐵(u))𝐴(u)

𝐵(u)2

�����
≤

����(𝐵𝑛 (u) − 𝐵(u)) 𝐴(u)
𝐵(u)2

���� .
The ratio 𝐴(u)/𝐵(u)2 is bounded due to the fact that the density 𝑓 (x) is bounded and
infu∈ (0,1)𝑑 𝐵(u)2 > 0. Then it follows from (9) that

sup
u∈ (0,1)𝑑

|𝑇4𝑛 (u) | = 𝑂𝑎.𝑠.

((
log 𝑛
𝑛

) (𝑡−1/𝑝)𝛾 (1) )
. (12)
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Finally, we conclude from (7), (10), (11) and (12) that

sup
u∈ (0,1)𝑑

|𝑐̂𝑛 (u) − 𝑐(u) | = 𝑂𝑎.𝑠.

((
log 𝑛
𝑛

) (𝑡−𝑑/𝑝)𝛾 (𝑑) )
+𝑂𝑎.𝑠.

((
log 𝑛
𝑛

) (𝑡−1/𝑝)𝛾 (1) )

= 𝑂𝑎.𝑠.

((
log 𝑛
𝑛

) (𝑡−𝑑/𝑝)𝛾 (𝑑) )
,

since (𝑡 − 1/𝑝)𝛾(1) ≥ (𝑡 − 𝑑/𝑝)𝛾(𝑑) for 𝑑 ≥ 1. ■

Remark 2. Our result is the same as the convergence rate derived by Masry (1997) and Guo and
Kou (2019). It also coincides with the convergence rate in Theorem 3 of Giné and Nickl (2009) when
𝑑 = 1 and 𝑝 = 𝑞 = ∞.

This result also improves the convergence rate achieved by Seck and Mamane (2024) under different
assumptions which are potentially satisfied by different classes of wavelet bases.
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