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We propose new goodness-of-fit tests for the Poisson distribution. The testing
procedure entails fitting a weighted Poisson distribution, which has the Poisson as
a special case, to observed data. Based on sample data, we calculate an empirical
weight function which is compared to its theoretical counterpart under the Poisson
assumption. Weighted 𝐿𝑝 distances between these empirical and theoretical func-
tions are proposed as test statistics and closed form expressions are derived for 𝐿1,
𝐿2 and 𝐿∞ distances. A Monte Carlo study is included in which the newly proposed
tests are shown to be powerful when compared to existing tests, especially in the
case of overdispersed alternatives. We demonstrate the use of the tests with two
practical examples.

Keywords: Goodness-of-fit, Poisson distribution, Weighted 𝐿𝑝 distances.

1. Introduction and motivation
The Poisson distribution, originally introduced in Poisson (1828), is a useful model for count data
with applications in various fields. For a detailed treatment of this distribution, together with its
applications, see Haight (1967). An important generalisation of the Poisson, which plays a central
role in this paper, is the weighted Poisson distribution introduced in Fisher (1934). Due to the wide
range of applications of the Poisson distribution, it is often of practical interest to test the hypothesis
that observed data are realised from a Poisson distribution. This paper proposes a new test for the
Poisson distribution, utilising properties of the weighted Poisson.

In order to proceed, we introduce some notation. Let 𝑋1, . . . , 𝑋𝑛 be independent and identically
distributed random variables with distribution function 𝐹. The Poisson distribution function, 𝐹𝜆,
with mean 𝜆 > 0, is

𝐹𝜆 (𝑥) = 𝑒−𝜆
⌊𝑥⌋∑︁
𝑘=0

𝜆𝑘

𝑘!
, for 𝑥 ≥ 0.

The corresponding probability mass function (pmf) is

𝑓𝜆 (𝑥) = 𝑒−𝜆𝜆𝑥

𝑥!
, for 𝑥 ∈ {0, 1, . . . }.
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Note that the pmf is non-zero only for non-negative integer arguments. Below we use the notation
𝑃𝑜𝑖𝑠(𝜆) to indicate the Poisson distribution with mean 𝜆. We are interested in testing the composite
goodness-of-fit hypothesis that

𝐻0 : 𝐹 (𝑥) = 𝐹𝜆 (𝑥), for all 𝑥 ∈ {0, 1, . . . } and for some 𝜆 > 0. (1)

This hypothesis is to be tested against general alternatives. A recent review of existing tests for the
Poisson distribution can be found in Mijburgh and Visagie (2020), while a review of goodness-of-
fit testing procedures for discrete distributions in general can be found in Horn (1977) as well as
Kocherlakota and Kocherlakota (1986).

The remainder of the paper is structured as follows. Section 2 introduces new tests for the Poisson
distribution and derives closed form expressions for the test statistics. Section 3 shows a Monte Carlo
power study, using a warp-speed bootstrap (see Giacomini et al., 2013), in which the performances
of the newly proposed tests are compared to that of existing tests. It is demonstrated that the new
tests are competitive in terms of power. This section also includes two examples in which observed
datasets are analysed and the hypothesis of the Poisson distribution is tested for each dataset. Finally,
Section 4 provides some conclusions.

2. Newly proposed tests for the Poisson distribution
Below we introduce new tests for the Poisson distribution. These tests are related to the so-called
weighted Poisson distribution which we consider next.

2.1 The weighted Poisson distribution
In Fisher (1934), Fisher introduces the weighted Poisson distribution via the so-called method of
ascertainment. Mijburgh (2020) points out that Rao (1965) is often cited as the first paper to introduce
the method of ascertainment, while Fisher (1934) introduces this method in a similar context three
decades earlier. The idea underlying this is as follows. Consider a discrete random variable with
a known pmf. In certain practical situations, some of the realised values may be more difficult
to “ascertain” than others. That is, some of the values may not be observed and, therefore, go
unnoticed. As a result, the probability of observing a specified value for the distribution is changed
or re-weighted. This can be achieved by introducing a weight function giving more weight to the
values which are likely to be “ascertained” and less weight to those which are not. This concept is
made precise below.

Let 𝑣 be some function such that 𝑣(𝑥) ≥ 0 for 𝑥 ∈ {0, 1, . . . } and let 𝑋 ∼ 𝑃𝑜𝑖𝑠(𝜆). 𝑋 is said to be
a weighted Poisson random variable, with parameter 𝜆 and weight function 𝑣, if 𝑋 has pmf

𝑓𝜆,𝑣 (𝑥) = 𝑣(𝑥) 𝑓𝜆 (𝑥)
𝐸 [𝑣(𝑋)] , for 𝑥 ∈ {0, 1, . . . },

where

𝐸 [𝑣(𝑋)] =
∞∑︁
𝑥=0

𝑣(𝑥) 𝑓𝜆 (𝑥) < ∞.

When a constant weight function is used, the weighted Poisson distribution simplifies to the
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(unweighted) Poisson distribution. If 𝑣(𝑥) = 𝑐, for some 𝑐 > 0, then the pmf of 𝑋 is

𝑓𝜆,𝑣 (𝑥) = 𝑣(𝑥) 𝑓𝜆 (𝑥)
𝐸 [𝑣(𝑋)] =

𝑐 𝑓𝜆 (𝑥)
𝑐

= 𝑓𝜆 (𝑥).

The above demonstrates that, given the value of 𝜆, 𝑣 does not uniquely define 𝑓𝜆,𝑣 (since constant
multiples of the weight function give rise to the same pmf). This result is, of course, specific to
the Poisson distribution and its weighted counterpart. In order to ensure that, given 𝜆, the chosen
weight function uniquely determines the pmf, we define 𝑤(𝑥) = 𝑣(𝑥)/𝐸 [𝑣(𝑋)] (this convention is
used in order to ensure that the identifiability of the pmf). In this case, the weighted Poisson random
variable, 𝑋 , has pmf

𝑓𝜆,𝑤 (𝑥) = 𝑤(𝑥) 𝑓𝜆 (𝑥). (2)

Since, for every 𝑣 such that 𝐸 [𝑣(𝑋)] < ∞, there exists a suitably rescaled weight function 𝑤, we take
(2) to be the definition of the pmf of a weighted Poisson random variable.

Consider the empirical pmf

𝑓𝑛 (𝑥) = 1
𝑛

𝑛∑︁
𝑗=1

𝐼 (𝑋 𝑗 = 𝑥), 𝑥 ∈ {0, 1, . . . },

with 𝐼 denoting the indicator function, meaning that 𝐼 (𝐴) equals 1 if the statement 𝐴 is true and 0
otherwise. In its most general form, 𝑤 can be chosen such that 𝑓𝜆,𝑤 takes the form of any specified
pmf defined on the non-negative integers. That is, given an observed dataset, 𝑋1, . . . , 𝑋𝑛, we may
estimate 𝜆 by 𝜆 =

∑𝑛
𝑗=1 𝑋 𝑗/𝑛 and then choose 𝑤 so that 𝑓𝜆,𝑤 (𝑥) = 𝑓𝑛 (𝑥) for all 𝑥 ∈ {0, 1, . . . }. Let

𝑤𝑛 denote the weight function equating 𝑓�̂�,𝑤𝑛
to 𝑓𝑛:

𝑤𝑛 (𝑥) = 𝑓𝑛 (𝑥)
𝑓�̂� (𝑥)

. (3)

We refer to 𝑤𝑛 as the empirical weight function.
Consider the case where the observed data are realised from a Poisson distribution. If the sample

is sufficiently large, then we expect 𝑤𝑛 (𝑥) to be approximately equal to 1, at least for values of 𝑥
which have a high probability of being observed (meaning all values of 𝑥 not in the extreme right tail
of the distribution). However, it should be noted that, for every 𝑥 exceeding the sample maximum,
𝑤𝑛 (𝑥) = 0; see (3). As a result, we construct tests for the Poisson distribution based on weighted 𝐿𝑝
distances between 𝑤𝑛 and the unit weight function 𝑤1 (𝑥) = 1 for all 𝑥 ∈ {0, 1, . . . }, using weight
functions which give more weight to smaller values of 𝑥.

2.2 The proposed test statistics
We now turn our attention to the calculation of weighted 𝐿𝑝 distances between the empirical weight
function and the unit weight function 𝑤1 in order to construct test statistics. The sample maximum
is used extensively below, we denote this by 𝑋(𝑛) . In the case where 𝑝 < ∞, the use of weighted
𝐿𝑝 distances is required since the unweighted distance is infinite for every finite sample. First, we
restrict our attention to the case where 𝑝 < ∞. The empirical pmf does not assign any probability
weight to values larger than 𝑋(𝑛) , i.e., 𝑓𝑛 (𝑥) = 0 for all 𝑥 > 𝑋(𝑛) , meaning that 𝑤𝑛 (𝑥) = 0 for all
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𝑥 > 𝑋(𝑛) . The distance of interest is

𝐿𝑝 (𝑤𝑛, 𝑤1) =

( ∞∑︁
𝑥=0

|𝑤𝑛 (𝑥) − 1|𝑝
)1/𝑝

= ©«
𝑋(𝑛)∑︁
𝑥=0

|𝑤𝑛 (𝑥) − 1|𝑝 +
∞∑︁

𝑥=𝑋(𝑛)+1
|𝑤𝑛 (𝑥) − 1|𝑝ª®¬

1/𝑝

= ©«
𝑋(𝑛)∑︁
𝑥=0

|𝑤𝑛 (𝑥) − 1|𝑝 +
∞∑︁

𝑥=𝑋(𝑛)+1
1ª®¬

1/𝑝

.

Since the second summation above is infinite, we have that 𝐿𝑝 (𝑤𝑛, 𝑤1) = ∞ for every finite sample.
As a result, this distance cannot be employed as a test for the Poisson distribution. However, we
may employ a weighted version of the 𝐿𝑝 distance between 𝑤𝑛 and 𝑤1, using some weight function
𝑔, such that 𝑔(𝑥) > 0 for all 𝑥 ∈ {0, 1, · · · } and

∑∞
𝑥=0 𝑔(𝑥) < ∞. (The weight function 𝑔 does not

relate to the weighted Poisson distribution directly. It refers only to the distance measures used and
should not be confused with the weight function 𝑤 which is associated with the weighted Poisson
distribution.) Below we consider three choices of 𝑔, corresponding to the fitted Poisson pmf, 𝑓𝜆, the
empircal pmf, 𝑓𝑛, and a Laplace type weight function of the form 𝐿 (𝑥) = e−𝑎𝑥 , where 𝑎 > 0 is a
user-defined tuning parameter.

Next, we consider the case where 𝑝 = ∞. Although the 𝐿∞ distance is finite, for a finite sample
it would obtain a minimum value of 1 by the same reasoning. As a result, we also opt to include a
weight function when employing this distance as a test statistic.

Consider the weighted 𝐿𝑝,𝑔 distance (where 𝑔 indicates the weight function used) between 𝑤𝑛 and
𝑤1 for 𝑝 < ∞:

𝐿𝑝,𝑔 (𝑤𝑛, 𝑤1) =

( ∞∑︁
𝑥=0

|𝑤𝑛 (𝑥) − 1|𝑝𝑔(𝑥)
)1/𝑝

=

(
𝑚∑︁
𝑥=0

|𝑤𝑛 (𝑥) − 1|𝑝𝑔(𝑥) +
∞∑︁

𝑥=𝑚+1
|𝑤𝑛 (𝑥) − 1|𝑝𝑔(𝑥)

)1/𝑝

=

(
𝑚∑︁
𝑥=0

|𝑤𝑛 (𝑥) − 1|𝑝𝑔(𝑥) +
∞∑︁

𝑥=𝑚+1
𝑔(𝑥)

)1/𝑝
, (4)

which is finite since the first summation consists of a finite number of summands while, for the
second summation, we have that

∑∞
𝑥=𝑚+1 𝑔(𝑥) ≤

∑∞
𝑥=0 𝑔(𝑥) since 𝑔(𝑥) ≥ 0, and

∑∞
𝑥=0 𝑔(𝑥) < ∞ by

the definition of 𝑔.
The first three test statistics proposed are obtained by setting 𝑝 = 1 in (4) together with the various

choices of 𝑔 mentioned. In this case, (4) simplifies to

𝐿1,𝑔 (𝑤𝑛, 𝑤1) =
𝑚∑︁
𝑥=0

|𝑤𝑛 (𝑥) − 1|𝑔(𝑥) +
∞∑︁

𝑥=𝑚+1
𝑔(𝑥). (5)
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Setting 𝑔(𝑥) = 𝑓𝜆, we obtain

𝑇 (1)
𝑛, 𝑓𝜆

:= 𝐿1, 𝑓𝜆 (𝑤𝑛, 𝑤1) =
𝑚∑︁
𝑥=0

|𝑤𝑛 (𝑥) − 1| 𝑓𝜆 (𝑥) +
∞∑︁

𝑥=𝑚+1
𝑓𝜆 (𝑥)

=
𝑚∑︁
𝑥=0

|𝑤𝑛 (𝑥) − 1| 𝑓𝜆 (𝑥) + 1 − 𝐹�̂� (𝑚).

The second proposed test statistic is obtained using the empirical pmf, 𝑓𝑛, as a weight function. In
this case the test statistic can be expressed as

𝑇 (1)
𝑛, 𝑓𝑛

:= 𝐿1, 𝑓𝑛 (𝑤𝑛, 𝑤1) =
𝑋(𝑛)∑︁
𝑥=0

|𝑤𝑛 (𝑥) − 1| 𝑓𝑛 (𝑥) +
∞∑︁

𝑥=𝑚+1
𝑓𝑛 (𝑥)

=
𝑋(𝑛)∑︁
𝑥=0

|𝑤𝑛 (𝑥) − 1| 𝑓𝑛 (𝑥),

where the final equality follows since 𝑓𝑛 (𝑥) = 0 for all 𝑥 > 𝑋(𝑛) .
The final weighted 𝐿1 distance based test statistic considered is obtained using the Laplace type

weight function, 𝐿 (𝑥) = e−𝑎𝑥 , for some 𝑎 > 0. Using a Monte Carlo study, we determined that the
powers associated with these tests are not particularly sensitive to the choice of 𝑎. This insensitivity
is also observed for tests based on the weighted 𝐿2 and 𝐿∞ type distances. The numerical results
demonstrating the insensitivity of the powers to the choice of tuning parameter are cumbersome and,
therefore, not included in the paper. However, these results can be obtained from the authors upon
request. For the numerical results presented below, we set 𝑎 = 1 throughout the remainder of the
paper, effectively reducing this weight function to 𝐿 (𝑥) = e−𝑥 . The test statistic can, in this case, be
expressed as

𝑇 (1)
𝑛,𝐿 := 𝐿1,𝐿 (𝑤𝑛, 𝑤1) =

𝑚∑︁
𝑥=0

|𝑤𝑛 (𝑥) − 1|e−𝑥 +
∞∑︁

𝑥=𝑚+1
e−𝑥

=
𝑚∑︁
𝑥=0

|𝑤𝑛 (𝑥) − 1|e−𝑥 + e−(𝑚+1)

1 − e−1 .

We now turn our attention to the tests based on weighted 𝐿2 type distances. Using notation similar
to that used above, we define the test statistics 𝑇 (2)

𝑛, 𝑓𝜆
, 𝑇 (2)
𝑛, 𝑓𝑛

and 𝑇 (2)
𝑛,𝐿 . The required test statistics can

be expressed as

𝑇 (2)
𝑛, 𝑓𝜆

:= 𝐿2, 𝑓𝜆 (𝑤𝑛, 𝑤1) =
(
𝑚∑︁
𝑥=0

|𝑤𝑛 (𝑥) − 1|2 𝑓𝜆 (𝑥) + 1 − 𝐹�̂� (𝑚)
)1/2

,

𝑇 (2)
𝑛, 𝑓𝑛

:= 𝐿2, 𝑓𝑛 (𝑤𝑛, 𝑤1) =
(
𝑚∑︁
𝑥=0

|𝑤𝑛 (𝑥) − 1|2 𝑓𝑛 (𝑥)
)1/2

,

𝑇 (2)
𝑛,𝐿 := 𝐿2,𝐿 (𝑤𝑛, 𝑤1) =

(
𝑚∑︁
𝑥=0

|𝑤𝑛 (𝑥) − 1|2e−𝑥 + e−(𝑚+1)

1 − e−1

)1/2
.
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Next, we consider test statistics based on weighted 𝐿∞ distances. In general, we have that

𝑇 (∞)
𝑛,𝑔 := 𝐿∞,𝑔 (𝑤𝑛, 𝑤1)

= max
𝑥∈{0,1,... }

{|𝑤𝑛 (𝑥) − 1|𝑔(𝑥)}

= max
{

max
𝑥∈{0,1,...,𝑚}

{|𝑤𝑛 (𝑥) − 1|𝑔(𝑥)} , max
𝑥∈{𝑚+1,𝑚+2,... }

{|𝑤𝑛 (𝑥) − 1|𝑔(𝑥)}
}

= max
{

max
𝑥∈{0,1,...,𝑚}

{|𝑤𝑛 (𝑥) − 1|𝑔(𝑥)} , max
𝑥∈{𝑚+1,𝑚+2,... }

𝑔(𝑥)
}
, (6)

where the final equality follows from the fact that 𝑤𝑛 (𝑥) = 0 for all 𝑥 greater than the sample
maximum. Consider the final term of (6):

max
𝑥∈{𝑚+1,𝑚+2,... }

𝑔(𝑥). (7)

If 𝑔(𝑥) = 𝑓𝑛 (𝑥) is used as weight function, then this term can be omitted since 𝑓𝑛 (𝑥) = 0 for all
𝑥 > 𝑋(𝑛) . Since 𝑔(𝑥) = e−𝑥 is a decreasing function of 𝑥, the term in (7) can be replaced by e−(𝑚+1) .
In the case where 𝑔(𝑥) = 𝑓𝜆 (𝑥), it can be shown that

max
𝑥∈{𝑚+1,𝑚+2,... }

𝑓𝜆 (𝑥) = 𝑓𝜆 (𝑚 + 1),

for a derivation, see Appendix A.
The three test statistics based on weighted 𝐿∞ distances can be expressed as

𝑇 (∞)
𝑛, 𝑓𝜆

:= 𝐿∞, 𝑓𝜆 (𝑤𝑛, 𝑤1) = max
{

max
𝑥∈{0,1,...,𝑚}

{ |𝑤𝑛 (𝑥) − 1| 𝑓𝜆 (𝑥)
}
, 𝑓𝜆 (𝑚 + 1)

}
,

𝑇 (∞)
𝑛, 𝑓𝑛

:= 𝐿∞, 𝑓𝑛 (𝑤𝑛, 𝑤1) = max
𝑥∈{0,1,...,𝑚}

{|𝑤𝑛 (𝑥) − 1| 𝑓𝑛 (𝑥)} ,

𝑇 (∞)
𝑛,𝐿 := 𝐿∞,𝐿 (𝑤𝑛, 𝑤1) = max

{
max

𝑥∈{0,1,...,𝑚}
{|𝑤𝑛 (𝑥) − 1|e−𝑥} , e−(𝑚+1)

}
.

3. Numerical results
Below we compare the performance of the newly proposed tests to that of existing tests for the Poisson
distribution. This is achieved through a Monte Carlo study in which empirical powers are calculated
using a warp-speed bootstrap approach. Thereafter, we turn our attention to two observed datasets
which have been modelled using a Poisson distribution and we demonstrate the use of the proposed
techniques in order to test this assumption.

3.1 Monte Carlo setup
The finite sample powers below are calculated based on a significance level of 5%. We include results
pertaining to sample sizes of 20, 50, and 100. We consider the performance of various tests against a
range of alternative distributions. The pmf and notation used for each of the alternatives distributions
used can be found in Table 1. These alternatives are selected since they are commonly used when
testing the assumption of the Poisson distribution; see Mijburgh and Visagie (2020), Gürtler and
Henze (2000) and Karlis and Xekalaki (2000).
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Table 1. Alternative distributions considered.

Alternative distribution Notation Probability mass function

Discrete uniform 𝐷𝑈 (𝑎, 𝑏) (𝑏 − 𝑎 + 1)−1

Binomial 𝐵𝑖𝑛(𝑚, 𝑝) (𝑚
𝑥

)
𝑝𝑥 (1 − 𝑝)𝑥

Negative binomial 𝑁𝐵(𝑟, 𝑝) (𝑟+𝑥−1
𝑥

)
𝑝𝑟 (1 − 𝑝)𝑥

Poisson Mixtures 𝑃𝑀 (𝑝, 𝜆1, 𝜆2) (𝑥!)−1 {
𝑝𝜆𝑥1 e−𝜆1 + (1 − 𝑝) 𝜆𝑥2 e−𝜆2

}
Zero inflated Poisson 𝑍𝐼𝑃(𝑝, 𝜆)

(
𝑝 𝑥!
𝑒−𝜆𝜆𝑥 I (𝑥 = 0) + 1 − 𝑝

)
𝑒−𝜆𝜆𝑥
𝑥!

Weighted Poisson 𝑊𝑃(𝜆, 𝑎, 𝑏) (𝑦!)−1𝜆𝑦exp(−𝜆) 𝑎𝑦2+𝑏𝑦+1
𝑎 (𝜆+𝜆2 )+𝑏𝜆+1

3.2 Existing tests for the Poisson distribution
We consider four tests based on the empirical distribution function (edf),

𝐹𝑛 (𝑥) = 1
𝑛

𝑛∑︁
𝑗=1

I(𝑋 𝑗 ≤ 𝑥).

These tests include the classical Kolmogorov-Smirnov test,

𝐾𝑆𝑛 = max
𝑥∈{0,1,... }

��𝐹𝜆 (𝑥) − 𝐹𝑛 (𝑥)�� ,
the Cramér-von Mises test,

𝐶𝑉𝑛 =
1
𝑛

∞∑︁
𝑥=0

(𝐹𝜆 (𝑥) − 𝐹𝑛 (𝑥))2 𝑓𝜆 (𝑥), (8)

as well as the Anderson-Darling test,

𝐴𝐷𝑛 =
1
𝑛

∞∑︁
𝑥=0

(𝐹𝜆 (𝑥) − 𝐹𝑛 (𝑥))2 𝑓𝜆 (𝑥)
𝐹𝜆 (𝑥)

(
1 − 𝐹𝜆 (𝑥)

) . (9)

Note that the calculation of 𝐶𝑉𝑛 in (8) and 𝐴𝐷𝑛 in (9) require the computation of an infinite summa-
tion. In both cases we use an approximation obtained by truncating the sum at 𝑥 = 100. While this
cut off point is certainly arbitrary, it is chosen to be sufficiently large to for numerical approximations.
The final edf based test considered is that proposed in Klar (1999). The corresponding test statistic
is the sum of the absolute differences between the fitted and empirical distribution functions:

𝐾𝐿𝑛 =
√
𝑛

𝑛∑︁
𝑗=1

��𝐹 (
𝑋( 𝑗 )

) − 𝐹𝜆 (
𝑋( 𝑗 )

) �� , (10)

where 𝑋(1) , . . . , 𝑋(𝑛) denotes the order statistics of the sample.
It should be noted that the asymptotic distributions and properties for the edf based tests in the

case of discrete distributions is quite different from those corresponding to the continuous case. For
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more detailed discussions regarding these empirical properties of these tests, the reader is referred to
Mijburgh and Visagie (2020), while the asymptotic properties of these tests can be found in Gürtler
and Henze (2000).

Klar (1999) also introduces a test statistic based on the supremum difference between the integrated
distribution function (idf) of the Poisson distribution and the empirical version of this function. The
idf is defined to be

Ψ (𝑡) =
∫ ∞

𝑡
(1 − 𝐹 (𝑥)) d𝑥,

while the empirical idf is

Ψ𝑛 (𝑡) = 1
𝑛

𝑛∑︁
𝑗=1

(
𝑋 𝑗 − 𝑡

)
𝐼
(
𝑋 𝑗 > 𝑡

)
.

The associated test statistic is denoted by

𝐼𝐷𝑛 = sup𝑡≥0
√
𝑛
��Ψ𝜆 (𝑡) − Ψ𝑛 (𝑡)

�� .
For further details regarding the calculation of Ψ𝑛 and 𝐼𝐷𝑛, see Kirui (2023). Each of the tests
discussed above, rejects the null hypothesis for large values of the test statistic.

3.3 Power calculations
Since 𝜆 is an unknown shape parameter, we use a parametric bootstrap procedure in order to
approximate the distribution of the test statistics used. In order to speed up the required calculations
we use the so-called warp-speed bootstrap, detailed in Giacomini et al. (2013), in order to arrive at
the finite sample results shown. We use the algorithm below to implement the warp-speed bootstrap,
this algorithm is an adapted version of the algorithm found in Allison et al. (2022) and Mijburgh and
Visagie (2020).

1. Sample 𝑋1, . . . , 𝑋𝑛 from distribution function 𝐹 and estimate 𝜆 by 𝜆 = 1
𝑛

∑𝑛
𝑗=1 𝑋 𝑗 .

2. Calculate the value of the test statistic: 𝑆 := 𝑆(𝑋1, . . . , 𝑋𝑛).

3. Generate 𝑋∗
1 , . . . , 𝑋

∗
𝑛 from a 𝑃𝑜𝑖𝑠(𝜆) distribution. Calculate the test statistic based on this

sample: 𝑆∗ = 𝑆(𝑋∗
𝑛,1, . . . , 𝑋

∗
𝑛,𝑛).

4. Repeat Steps 1 to 3 𝑀 times. Let 𝑆𝑚 be the value of the test statistic calculated using the
𝑚th dataset generated from 𝐹 and let 𝑆∗𝑚 be the value of the test statistic calculated from the
bootstrap sample obtained in the 𝑚th iteration of the Monte Carlo simulation. As a result, we
obtain 𝑆1, . . . , 𝑆𝑀 and 𝑆∗1, . . . , 𝑆

∗
𝑀 .

5. We reject the hypothesis of the Poisson distribution for the 𝑗 th sample from 𝐹 if 𝑆 𝑗 >
𝑆∗(⌊𝑀 · (1−𝛼) ⌋ ) , 𝑗 = 1, . . . , 𝑀 , where 𝑆∗(1) ≤ . . . ≤ 𝑆∗(𝑀 ) are the order statistics obtained
from the bootstrap samples.

Table 2 shows the empirical powers obtained by the various tests considered for samples of size 50.
The table shows the percentage of samples (rounded to the nearest integer) that results in a rejection
of the null hypothesis against each of the alternative distributions considered. The results presented

28 KIRUI, BOTHMA, SMUTS, STEYN & VISAGIE



are based on 50 000 Monte Carlo replications. When discussing the results, we compare the powers
achieved by the newly proposed tests and to those of the existing tests. Note that Table 2 contains a
column indicating 𝐹𝐼, the Fisher index of the alternative distribution considered. This quantity, for a
given distribution, is the ratio of the variance and the mean. Note that the Fisher index is 1 for every
Poisson distribution. The discussion further distinguishes between alternatives based on their Fisher
index. That is, we comment on performance against equidispersed as well as under and overdispersed
alternatives. For ease of comparison, the highest power achieved against each alternative distribution
is printed in bold. In the event that the maximal power is achieved by multiple tests, all of these
instances are printed in bold font. The computer code used to calculate these results can be obtained
from the authors upon request.

The results in Table 2 indicate that all tests considered achieve the specified nominal significance
level of 5% closely. Equidispersed alternatives to the Poisson are not particularly prevalent in the
statistical literature, as a result, we include a single equidispersed alternative: 𝐷 [0, 4]. The 𝐴𝐷𝑛 test
performs best against this alternative, achieving an empirical power of 63% for a sample of size 50.
This performance is closely followed by 𝑇 (1)

𝑛, 𝑓𝜆
which achieves a power of 62%.

When turning our attention to the underdispersed alternatives, many of the newly proposed tests do
not perform well. It should be noted that some of the newly proposed tests suffer from sub-nominal
powers against a few of the alternatives considered. That is, for several of the newly proposed tests,
powers of less than 5% are recorded in a few instances. The tests suffering this weakness are the three
tests based on the weighted 𝐿2 distance, as well as the 𝑇 (1)

𝑛, 𝑓𝑛
and 𝑇 (∞)

𝑛, 𝑓𝑛
tests (the tests employing the

empirical mass function). However, the sub-nominal powers observed are not to be found in any of
the overdispersed alternatives. Furthermore, the remaining four tests do not suffer from this problem.
As a result, in the event that the assumption of the Poisson distribution is to be tested in practice,
if there is reason to expect that the underlying distribution may be underdispersed, we recommend
using one of the tests not exhibiting sub-nominal powers.

The final class of alternatives considered is the overdispersed distributions. The newly proposed
tests notably outperform the existing tests for the Poisson distribution against the majority of the
overdispersed alternatives considered, 𝑇 (1)

𝑛, 𝑓𝑛
outperforms all other tests in 7 out of 14 instances

considered. Additionally, this test is outperformed by the 𝐼𝐷𝑛 test against both the 𝑃𝑀 (0.5, 3, 5)
and the 𝑁𝐵(15, 0.75) distributions only by a single percentage point. The table further illustrates
that 𝑇 (1)

𝑛,𝐿 is the second most powerful test against this class of distributions; this test outperforms
each of the remaining tests against 4 of the remaining 7 alternatives. In summary, 𝑇 (1)

𝑛, 𝑓𝑛
and 𝑇 (1)

𝑛,𝐿

either outperform, or produce empirical powers that are no less than 1% inferior to the highest power
achieved by the existing tests in 13 of the 14 cases considered. Based on the impressive power
performance of 𝑇 (1)

𝑛,𝐿 , together with the fact that this test does not suffer from sub-nominal powers
against underdispersed alternatives, we recommend using this test in practice.

Empirical powers obtained for samples of sizes 20 and 100 are available in Appendix B. The
results for these sample sizes are also encouraging and generally exhibit similar patterns to those
described above. As expected, the empirical powers increase with sample size.

3.4 Practical applications
We consider two practical examples in this section. The first pertains to the distribution of Sparrow
nests. Zar (1999) records the number of sparrow nests discovered on 40 one hectare plots. Table 3
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shows the frequencies of the observed number of nests. As a second example, we consider the annual
number of deaths due to horse kick in the Prussian army between 1875 and 1894. Table 4 shows the
observed frequency of these counts.

Table 3. The number of sparrow nests found on 40 one hectare plots.

Frequency 0 1 2 3 4
Count 9 22 6 2 1

Table 4. The annual number of deaths due to horse kick in the Prussian army.

Frequency 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Count 1 1 2 2 1 1 2 1 3 1 0 1 2 0 1 1

We test the hypotheses that the frequency distribution of the Sparrow nests, as well as that of the
deaths due to horse kick are realised from a Poisson distributed. In each case, to estimate the p-values
of the tests, a classical parametric bootstrap approach using 100 000 replications is employed; see
Gürtler and Henze (2000). The calculated test statistics and estimated p-values associated with each
test are provided in Table 5, where the results of the two examples are treated separately.

Table 5. The calculated test statistics and estimated p-values for the two practical examples.

Sparrow nests Horse kicks
Tests Statistic p-value Statistic p-value
𝐾𝑆𝑛 0.682 0.037 0.701 0.095
𝐶𝑉𝑛 0.000 0.027 0.000 0.102
𝐴𝐷𝑛 0.001 0.054 0.003 0.017
𝐾𝐿𝑛 1.364 0.074 5.094 0.016
𝐼𝐷𝑛 0.682 0.050 2.481 0.013

𝑇 (1)
𝑛, 𝑓𝜆

0.377 0.039 0.705 0.265
𝑇 (1)
𝑛, 𝑓𝑛

0.409 0.092 1.432 0.142
𝑇 (1)
𝑛,𝐿 0.574 0.033 1.776 0.116
𝑇 (2)
𝑛, 𝑓𝜆

0.155 0.205 1.179 0.176
𝑇 (2)
𝑛, 𝑓𝑛

0.179 0.268 5.282 0.182
𝑇 (2)
𝑛,𝐿 0.223 0.145 2.673 0.119
𝑇 (∞)
𝑛, 𝑓𝜆

0.184 0.017 0.075 0.929
𝑇 (∞)
𝑛, 𝑓𝑛

0.276 0.064 0.365 0.437
𝑇 (∞)
𝑛,𝐿 0.324 0.040 1.000 0.055
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Following our recommendation made in the previous section, we base our interpretation on the
𝑇 (1)
𝑛,𝐿 test. This test rejects the assumption of the Poisson distribution at the 5% significance level.

As a result, we reject the null hypothesis and we conclude that the dataset is not realised from a
Poisson distribution. It should be noted that the majority of the other tests considered also rejected
the Poisson assumption.

Next we consider the results relating to the deaths by horse kick in the Prussian army. 𝑇 (1)
𝑛,𝐿 does

not reject the hypothesis of the Poisson distribution at the 5% level in this case. We conclude that
the Poisson distribution is an appropriate model in this case. Note that the majority of the tests
considered do not reject the Poisson hypothesis at the 5% level.

4. Conclusions and recommendations
In this paper, we propose new goodness-of-fit tests for the Poisson distribution. These tests are related
to a generalisation of the Poisson distribution known as the weighted Poisson. The probability mass
function of a weighted Poisson random variable is obtained by multiplying that of a Poisson random
variable with a weight function. In its most general form, the probability mass function of the
weighted Poisson distribution can take on any form over the non-negative integers. As a result, we
may choose a weight function so that the fitted probability mass function coincides exactly with the
empirical mass function. We refer to the weight function for which this is the case as the empirical
weight function. In the case of a given, large dataset which is realised from some Poisson distribution,
the empirical weight function is expected to be close to 𝑤1 (𝑥) = 1 for all 𝑥 ∈ {0, 1, . . . }. As a result,
we may base a test for the Poisson distribution on some distance measure between the empirical
weight function and the unit weight function 𝑤1.

We base tests on weighted 𝐿1, 𝐿2 and 𝐿∞ distances between the empirical weight function and 𝑤1.
In each case, we use three different weight functions in the calculation of test statistics. These are
the fitted Poisson mass function, the empirical mass function as well as a Laplace type kernel. The
latter of these contains a tuning parameter, but the tests show remarkable insensitivity to the choice
of the tuning parameter, meaning that we restrict our attention to a single choice. The three weighted
distance measures, each calculated with reference to three different weight functions, result in a total
of nine new goodness-of-fit tests for the Poisson distribution.

A Monte Carlo study is performed in order to compare the empirical powers of the newly proposed
tests to that of existing tests. The Monte Carlo study comprises various sample sizes and employs a
warp-speed bootstrap methodology in order to calculate empirical powers. We find that the newly
proposed tests achieve the specified nominal significance level. Furthermore, these tests are highly
competitive, generally outperforming the existing tests, against overdispersed alternatives. However,
in certain settings, the newly proposed tests are not particularly powerful against underdispersed
alternatives. The paper concludes with two practical examples demonstrating the use of goodness-
of-fit tests in practice.

Appendix A: Proof of (6) when 𝑔(𝑥) = 𝑓𝜆 (𝑥)
The pmf of a 𝑃𝑜𝑖𝑠(𝜆) random variable can be shown to be a non-increasing function in the case
where 𝜆 ≤ 1. On the other hand, if 𝜆 > 1, then the pmf increases initially and decreases after attaining
some maximum value. As a result, in order to calculate the final term in (6), we are required to
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determine the mode of a 𝑃𝑜𝑖𝑠(𝜆) distribution. To this end, consider the following ratio:

𝑓𝜆 (𝑥)
𝑓𝜆 (𝑥 − 1) =

𝜆𝑥𝑒−𝜆

𝑥!

/
𝜆𝑥−1𝑒−𝜆

(𝑥 − 1)! =
𝜆

𝑥
,

which shows that
𝑓𝜆 (𝑥) ≥ 𝑓𝜆 (𝑥 − 1) ⇔ 𝜆 ≥ 𝑥. (11)

As a result, 𝑓𝜆 (𝑥) is non-decreasing in 𝑥 for 𝑥 ≤ 𝜆 and non-increasing for 𝑥 ≥ 𝜆. In the case where 𝜆 is
an integer, the 𝑃𝑜𝑖𝑠(𝜆) distribution has two modes: 𝜆− 1 and 𝜆. Turning our attention to non-integer
𝜆, it follows from (11) that the mode is ⌊𝜆⌋, where ⌊𝑥⌋ denotes the integer part of 𝑥.

Combining the results for integer and non-integer 𝜆, we know that ⌊𝜆⌋ is a mode of the 𝑃𝑜𝑖𝑠(𝜆)
distribution. In the case of integer 𝜆, this value corresponds to the larger of the two modes. However,
we are interested in finding the smallest value of 𝑥 from which 𝑔(𝑥) = 𝑓𝜆 (𝑥) is non-increasing so
that we may calculate the final term in (6). Hence, the smallest mode is ⌈𝜆⌉ − 1, where ⌈𝑥⌉ denotes
the ceiling of 𝑥. As a result, we have that 𝑔(𝑥) = 𝑓𝜆 (𝑥) is non-increasing in 𝑥 ∈ {⌈𝜆⌉ − 1, ⌈𝜆⌉, . . . }.

When computing (6), we are interested in determining whether 𝑔(𝑥) = 𝑓𝜆 (𝑥) is non-increasing in
𝑥 ∈ {𝑚 + 1, 𝑚 + 2, . . . }. Note that

⌈𝜆⌉ − 1 < 𝜆 =
1
𝑛

𝑛∑︁
𝑗=1

𝑋 𝑗 ≤ 1
𝑛

𝑛∑︁
𝑗=1
𝑚 < 𝑚 + 1.

Taking the above arguments into account, we have that 𝑔(𝑥) = 𝑓𝜆 (𝑥) is non-increasing in 𝑥 ∈
{𝑚 + 1, 𝑚 + 2, . . . }. As a result, the final term in (6) simplifies to

max
𝑥∈{𝑚+1,𝑚+2,... }

𝑓𝜆 (𝑥) = 𝑓𝜆 (𝑚 + 1).

Appendix B: Additional numerical results
This appendix contains the empirical powers obtained for the sample sizes not discussed in the main
text. Table 6 contains the results associated with samples of size 20, while Table 7 contains the
results associated with samples of size of 100. As before, the tables contain the Fisher index of the
alternative distributions used and, in order to ease comparison between the tests, the highest power
against each alternative distribution is printed in bold.
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