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In this paper, Bayesian statistical process control limits are derived for Cronbach’s
coefficient alpha (𝛼) in the case of the balanced one-way random effects model.
Cronbach’s alpha is one of the most commonly used measures for assessing a set
of items’ internal consistency or reliability, thereby assessing the assumption that
they measure the same latent construct. By using the available data and the Jeffreys
independence prior, the posterior distribution of 𝛼 and the predictive density of a
future (unknown) Cronbach’s alpha (𝛼̂ 𝑓 ) can be derived. Given a stable Phase 𝐼
process, the predictive density function

(
𝑓
(
𝛼̂ 𝑓 |𝛼̂

) )
and the conditional predictive

density functions
(
𝑓
(
𝛼̂ 𝑓 |𝛼

) )
are used to calculate central values, variances, control

limits, run-lengths and the average run-length. The predictive density of a future
run-length is the average of a large number of geometrical distributions, each with
its own parameter value. Three applications of interest are included in this paper.
From the results, it can be seen that the average and median run-lengths are usually
larger than the theoretical values. An advantage of the Bayesian procedure, however,
is that the control limits, in other words, 𝛽, can be adjusted in such a way that the
average or median run-length has a specific value.

Keywords: Average run-length, Bayesian analysis, Control limits, Cronbach’s alpha, Posterior
predictive density, Run-length, Statistical process control.

1. Introduction
Cronbach’s coefficient alpha was introduced in Cronbach’s (1951) article based on the work of
Guttman (1945). It is one of the most commonly used measures for assessing a set of items’
internal consistency or reliability, thereby assessing the assumption that they measure the same latent
construct. It measures reliability in education, psychology, sociology, medicine, accounting and
economics. In economics, for example, researchers might apply it in studies assessing consumer
behaviour, while in accounting, they could use it in research related to financial reporting or the
auditing of observations. Overall, it helps researchers to ensure that their measurement tools yield
reliable data. For more details, see, for example, Hulin et al. (1983), Feldt et al. (1987), Cortina
(1993), Kaplan and Saccuzzo (1993), van Zyl et al. (2000), Koning and Franses (2003), Duhachek
and Iacobucci (2004) and Izally et al. (2025). According to Cortina (1993), Cronbach’s (1951) article
was cited approximately sixty times yearly from 1966 to 1990 and in two hundred and seventy-eight
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journals. Recently, it was cited 69 919 times on Google Scholar (Accessed on February 5, 2025). As
mentioned by Padilla and Zhang (2011), the reason for the popularity of Cronbach’s alpha is that it
is computationally simple. Only the sample size and the variance components are needed.

While statistical process control (SPC) techniques, such as control charts, have not been widely
applied to Cronbach’s alpha (𝛼), they could serve as a valuable method for monitoring whether the
reliability of a test remains stable across different samples or time points. If variation in alpha is
observed across different samples or time points, SPC could help determine whether this variability
is attributable to natural variation or special causes.

Since Bayesian statistical process control (SPC) techniques applied to Cronbach’s alpha are even
less common than classical SPC methods, and given that Cronbach’s coefficient alpha is a key statistic
in the field of reliability research, this study implements Bayesian SPC procedures for monitoring
alpha.

Statistical process control (SPC) refers to statistical procedures and problem-solving methods used
to control and monitor the quality of the output of a production process. SPC aims to detect and
eliminate uncontrolled variation in the process. For more information, see, for example, Balakrishnan
et al. (2006), Montgomery (2005) and Human (2009). Statistical process control usually involves two
phases. During Phase 𝐼, the system establishes control limits, and in Phase 𝐼 𝐼, the system monitors
the process to detect any breaches of these limits. van Zyl and van der Merwe (2019) indicate that the
conventional approach to statistical process control is frequentist, where a Phase 𝐼 study estimates
unknown parameters using maximum likelihood estimates. The system uses these estimates to model
distributions in Phase 𝐼 𝐼 . The Bayesian framework argues that deriving the true underlying parameter
values in such a way is unsatisfactory. Instead, it derives the posterior distributions of the unknown
parameters by using a prior distribution. The posterior distributions illustrate the uncertainties in the
parameter values and incorporate them through predictive distributions.

Several Bayesian process monitoring schemes use predictive distributions. See, for example,
Menzefricke (2002, 2007, 2010a, 2010b) and van Zyl and van der Merwe (2019). Also, in Tsiamyrtzis
and Hawkins (2006), the following is mentioned: “A particularly interesting feature in the Bayesian
paradigm is forecasting. Namely, one can use the available data to derive the predictive distribution
of the next (unseen) observation". In this paper, it will be the next (unseen) Cronbach’s alpha (𝛼̂ 𝑓 ).
Given a stable Phase 𝐼 process, the predictive distribution

(
𝑓
(
𝛼̂ 𝑓 |data

) )
will be used to calculate

central values, variances, prediction intervals, control limits, the run-length and the average run-length
of a future Cronbach’s alpha. Bayarri and García-Donato (2005) highlighted the following reasons
for recommending a Bayesian analysis for control charts: (i) Bayesian methods allow naturally for
prediction and control charts rely on future observations. (ii) Objective Bayesian procedures are
possible without introducing information other than the model. (iii) The numerical difficulties of
a Bayesian procedure are easily handled via Monte Carlo simulation. The unconditional predictive
distribution of a future Cronbach’s coefficient, 𝛼̂ 𝑓 , will be obtained using Monte Carlo simulation
and the Rao-Blackwell procedure or numerical integration. The advantage of a Bayesian approach to
process monitoring arises from the sequential nature of Bayes’ theorem. As pointed out by Tsiamyrtzis
and Hawkins (2006), Shiau and Feltz (2006), Alt (2006), Tagaras and Nenes (2006) and Graves
(2006), a Bayesian approach allows a more flexible framework, in particular concerning the usual
assumption made in SPC charts about known parameters. The above-mentioned authors considered
both univariate and multivariate process monitoring techniques. They discuss the applications and
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development of full Bayesian approaches and empirical Bayesian methods.
The researchers Peterson (2006) and Moreno (2006) focussed on Bayesian methods for process

optimisation. According to them, the predictive approach to response surface optimisation repre-
sented a major advance in response surface method techniques as it incorporates the uncertainty of
the parameter estimates in the optimisation process. They also mentioned that this has no frequentist
counterpart.

Section 2 derives the model, the choice of prior, and the posterior distribution of 𝛼. Section 3
provides an example and shows how to obtain the predictive density function of a future (unseen)
Cronbach’s alpha using numerical integration or the Rao-Blackwell simulation procedure. In Section
4, the run-length and average run-length are discussed. The predictive density function of a future
run-length is the average of a large number of geometric distributions, each with its own parameter
value. Section 5 calculates the posterior and predictive densities for a larger example, and Section
6 considers the “In Control” and “Out of Control” situations. Section 7 analyses an example of
measured values of “Bore diameter”. Conclusions are given in Section 8.

2. The balanced random effects model
2.1 The model
The model that will be used is the balanced one-way random effects (variance components) model

𝑌𝑖 𝑗 = 𝜃 + 𝑟𝑖 + 𝜖𝑖 𝑗 for 𝑖 = 1, ..., 𝐼, and 𝑗 = 1, ...𝐽, (1)

where 𝑌𝑖 𝑗 is the value corresponding to the 𝑗 th observation made at the 𝑖th group (sample). 𝜃 is a
constant referred to as the overall mean, and it is unknown. The 𝑟𝑖 and 𝜖𝑖 𝑗 are independent normal
variables with zero means and variances 𝜎2

𝑟 and 𝜎2
𝜖 , respectively. Let Yi = [𝑌𝑖1, 𝑌𝑖2, ...𝑌𝑖𝐽 ]

′
be the

observations associated with group 𝑖. It can be shown that 𝑉𝑎𝑟
(
Y|𝜃, 𝜎2

𝜖 , 𝜎
2
𝑟

)
= 𝜎2

𝜖 Ĩ + 11′𝜎2
𝑟 = 𝚺

where Ĩ is the 𝐽 × 𝐽 identity matrix and 1 = [1 1... 1] ′ is a 𝐽 × 1 column vector of ones. The model in
Equation 1 is called the balanced one-way random effects model because the number of observations,
𝐽, in each sample are the same. The covariance matrix is given by

𝚺 =



𝜎2
𝜖 + 𝜎2

𝑟 𝜎2
𝑟 𝜎2

𝑟 . . . 𝜎2
𝑟

𝜎2
𝑟 𝜎2

𝜖 + 𝜎2
𝑟 𝜎2

𝑟 . . . 𝜎2
𝑟

𝜎2
𝑟 . . . 𝜎2

𝜖 + 𝜎2
𝑟 · · · 𝜎2

𝑟
...

...
...

. . .
...

𝜎2
𝑟 𝜎2

𝑟 𝜎2
𝑟 · · · 𝜎2

𝜖 + 𝜎2
𝑟

 𝐽×𝐽
.

The covariance matrix is called compound symmetric since all the variances along the diagonal are
the same, namely 𝜎2

𝜖 + 𝜎2
𝑟 and all the covariances 𝜎2

𝑟 are equal. A general definition for 𝛼 is

𝛼 =
𝐽

(𝐽 − 1)

{
1 − 𝑡𝑟 (𝚺)

1′𝚺1

}
,

where 𝑡𝑟 (𝚺) is the sum of the covariance matrix’s diagonal elements (variances). For the random
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effects model

𝛼 =
𝐽

(𝐽 − 1)

{
1 − 𝐽

(
𝜎2
𝜖 + 𝜎2

𝑟

)
𝐽
(
𝜎2
𝜖 + 𝜎2

𝑟

) + 𝐽 (𝐽 − 1) 𝜎2
𝑟

}

=
𝐽𝜎2

𝑟

𝜎2
𝜖 + 𝐽𝜎2

𝑟

= 1 − 𝜎2
𝜖

𝜎2
𝜖 + 𝐽𝜎2

𝑟

. (2)

2.2 The prior and posterior distribution of 𝛼
In Box and Tiao (1973), it is shown that the likelihood function for the model defined in Equation 1
is

ℓ(𝜃, 𝜎2
𝜖 , 𝜎

2
𝑟 |𝑑𝑎𝑡𝑎) ∝

(
𝜎2
𝜖

)−𝑣1/2 (
𝜎2
𝜖 + 𝐽𝜎2

𝑟

)−(𝑣2+1)/2

× exp

{
−1

2

[
𝐼𝐽

(
𝑌.. − 𝜃

)2(
𝜎2
𝜖 + 𝐽𝜎2

𝑟

) + 𝑣2𝑚2(
𝜎2
𝜖 + 𝐽𝜎2

𝑟

) + 𝑣1𝑚1

𝜎2
𝜖

]}
,

where 𝑣1 = 𝐼 (𝐽 − 1) , 𝑣2 = 𝐼 − 1, 𝑌𝑖. = 1
𝐽

∑𝐽
𝑗=1𝑌𝑖 𝑗 , 𝑌.. =

1
𝐼 𝐽

∑𝐼
𝑖=1

∑𝐽
𝑗=1𝑌𝑖 𝑗 , 𝑣1𝑚1 =

∑𝐼
𝑖=1

∑𝐽
𝑗=1 (𝑌𝑖 𝑗 −

𝑌𝑖.)2 and 𝑣2𝑚2 = 𝐽
∑𝐼

𝑖=1(𝑌𝑖. −𝑌..)2. The quantity 𝑣1𝑚1 is the within group sums of squares and 𝑣2𝑚2
is the between groups sums of squares. Since 𝐸 (𝑚1) = 𝜎2

𝜖 and 𝐸 (𝑚2) = 𝜎2
𝜖 + 𝐽𝜎2

𝑟 an estimate of
𝛼 is

𝛼̂ = 1 − 𝑚1
𝑚2
.

The prior that will be used in the analysis, is the Jeffreys independence prior

𝑝
(
𝜎2
𝜖 , 𝜎

2
𝑟

)
∝
(
𝜎2
𝜖

)−1 (
𝜎2
𝜖 + 𝐽𝜎2

𝑟

)−1
.

It can be shown that it is also a reference and probability matching prior. By multiplying the
likelihood with the prior and integrating with respect to 𝜃 the posterior density function of the
variance components is given by

𝑝(𝜎2
𝜖 , 𝜎

2
𝑟 |𝑑𝑎𝑡𝑎) ∝

(
𝜎2
𝜖

)−(𝑣1+2)/2 (
𝜎2
𝜖 + 𝐽𝜎2

𝑟

)−(𝑣2+2)/2
exp

{
−1

2

[
𝑣1𝑚1

𝜎2
𝜖

+ 𝑣2𝑚2

𝜎2
𝜖 + 𝐽𝜎2

𝑟

]}
, (3)

for 𝜎2
𝜖 > 0, 𝜎2

𝑟 > 0. From Equation 3 it is clear that 𝑝(𝜎2
𝜖 , 𝜎

2
𝜖 + 𝐽𝜎2

𝑟 |𝑑𝑎𝑡𝑎) = 𝑝(𝜎2
𝜖 |𝑑𝑎𝑡𝑎)𝑝(𝜎2

𝜖 +
𝐽𝜎2

𝑟 |𝑑𝑎𝑡𝑎). Since the posterior distributions of 𝜎2
𝜖 and 𝜎2

𝜖 + 𝐽𝜎2
𝑟 are independent inverse-gamma

distributions, it follows that

𝜎2
𝜖 ∼ 𝑣1𝑚1

𝜒2
𝑣1

and 𝜎2
𝜖 + 𝐽𝜎2

𝑟 ∼ 𝑣2𝑚2

𝜒2
𝑣2

.

The posterior density function of 𝛼 = 1 − 𝜎2
𝜖

𝜎2
𝜖 +𝐽𝜎2

𝑟
can therefore easily be obtained and is given in

Theorem 1.

Theorem 1. The posterior density function of 𝛼 is given by

𝑝 (𝛼 |𝛼̂) = 𝐾1

(
𝑣2
𝑣1

) 1
2 𝑣2 ( 1

1 − 𝛼̂

) 1
2 𝑣2

(1 − 𝛼) 1
2 𝑣2−1 ×

[
1 + 𝑣2

𝑣1

(
1 − 𝛼
1 − 𝛼̂

)]− 1
2 (𝑣1+𝑣2 )

,
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where

𝐾1 =
𝛤
( 𝑣1+𝑣2

2
)

𝛤
( 𝑣1

2
)
𝛤
( 𝑣2

2
)

and 𝛼̂ = 1 − 𝑚1
𝑚2
. Since

𝛼 |𝛼̂ ∼ 1 − (1 − 𝛼̂) 𝐹𝑣2 ,𝑣1 , (4)

𝐸 (𝛼 |𝛼̂) = 1 − (1 − 𝛼̂)
(
𝑣1

𝑣1 − 2
,

)

and 𝑉𝑎𝑟 (𝛼 |𝛼̂) = (1 − 𝛼̂)2 2𝑣2
1 (𝑣2+𝑣1−2)

𝑣2 (𝑣1−2)2 (𝑣1−4) .

Proof. The proof is given in Appendix A. ■

3. Simulation procedure of the predictive density function
3.1 The predictive density function of a future Cronbach’s 𝛼
Consider a future (unseen) experiment

𝑌𝑖 𝑗 = 𝜃 + 𝑟𝑖 + 𝜖𝑖 𝑗 for 𝑖 = 1, ...𝐼 and 𝑗 = 1, ...𝐽

where 𝑌𝑖 𝑗 is the value of the 𝑗 𝑡ℎ observation in the 𝑖𝑡ℎ group (sample). The number of samples in the
future experiment

(
𝐼
)

can differ from those in the original experiment (data set) (𝐼) . However, the
number of observations per sample is the same in both experiments, namely 𝐽. As before, the 𝑟𝑖 and
𝜖𝑖 𝑗 are independent normal variables with zero means and variances 𝜎2

𝑟 and 𝜎2
𝜖 , respectively. Define

𝑣̃1𝑚̃1 =
𝐼∑︁

𝑖=1

𝐽∑︁
𝑗=1

(𝑌𝑖 𝑗 − ¯̃𝑌𝑖.)2

and

𝑣̃2𝑚̃2 = 𝐽
𝐼∑︁

𝑖=1
( ¯̃𝑌𝑖. − ¯̃𝑌..)2

where 𝑣̃1 = 𝐼 (𝐽 − 1) , 𝑣̃2 = 𝐼 − 1, ¯̃𝑌𝑖. = 1
𝐽

∑𝐽
𝑗=1𝑌𝑖 𝑗 ,

¯̃𝑌.. = 1
𝐼 𝐽

∑𝐼
𝑖=1

∑𝐽
𝑗=1𝑌𝑖 𝑗 . The quantity 𝑣̃1𝑚̃1 is the

within group sums of squares and 𝑣̃2𝑚̃2 is the between groups sums of squares of the new (unseen)
experiment (data set). It is well known from classical (traditional) statistics that 𝐸 (𝑚1) = 𝜎2

𝜖 and
𝐸 (𝑚2) = 𝜎2

𝜖 + 𝐽𝜎2
𝑟 . A future (unseen) Cronbach’s alpha is therefore defined as

𝛼̂ 𝑓 = 1 − 𝑚1
𝑚2
.

For given 𝜎2
𝜖 and 𝜎2

𝜖 + 𝐽𝜎2
𝑟 , it follows that 𝑣̃1𝑚̃1

𝜎2
𝜖

∼ 𝜒2
𝑣̃1

and 𝑣̃2𝑚̃2
𝜎2

𝜖 +𝐽𝜎2
𝑟
∼ 𝜒2

𝑣̃2
. Therefore 𝑚1 ∼ 𝜎2

𝜖

𝜒2
𝑣̃1
𝑣̃1
,

𝑚2 ∼ (
𝜎2
𝜖 + 𝐽𝜎2

𝑟

) 𝜒2
𝑣̃2
𝑣̃2

and
𝑚1
𝑚2

∼ 𝜎2
𝜖

𝜎2
𝜖 + 𝐽𝜎2

𝑟

𝐹𝑣̃1 ,𝑣̃2.
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Also 𝛼̂ 𝑓 = 1 − 𝑚̃1
𝑚̃2

∼ 1 − 𝜎2
𝜖

𝜎2
𝜖 +𝐽𝜎2

𝑟
𝐹𝑣̃1 ,𝑣̃2 and therefore

𝛼̂ 𝑓 |𝛼 ∼ 1 − (1 − 𝛼) 𝐹𝑣̃1 ,𝑣̃2 (5)

where 𝐹𝑣̃1 ,𝑣̃2 is an 𝐹 distribution with 𝑣̃1 and 𝑣̃2 degrees of freedom. The following theorem can now
be proved.

Theorem 2. The predictive density of a future Cronbach’s alpha (𝛼̂ 𝑓 ), for given 𝛼 is

𝑓
(
𝛼̂ 𝑓 |𝛼

)
= 𝐾2

(
𝑣̃1
𝑣̃2

) 𝑣̃1
2
(

1
1 − 𝛼

) 𝑣̃1
2 (

1 − 𝛼̂ 𝑓
) 1

2 𝑣̃1−1
[
1 + 𝑣̃1

𝑣̃2

(1 − 𝛼̂ 𝑓

1 − 𝛼

)]− 1
2 (𝑣̃1+𝑣̃2 )

(6)

where 𝐾2 =
𝛤
(
𝑣̃1+𝑣̃2

2

)
𝛤
(
𝑣̃1
2

)
𝛤
(
𝑣̃2
2

) . Also,

𝐸
(
𝛼̂ 𝑓 |𝛼

)
= 1 − (1 − 𝛼)

(
𝑣̃2

𝑣̃2 − 2

)

and 𝑉𝑎𝑟
(
𝛼̂ 𝑓 |𝛼

)
= (1 − 𝛼)2 2(𝑣̃2 )2 (𝑣̃2+𝑣̃1−2)

𝑣̃1 (𝑣̃2−2)2 (𝑣̃2−4) .

Proof. The proof is given in Appendix B. ■

3.2 The unconditional predictive density function of a future Cronbach’s alpha (𝛼̂ 𝑓 )
The predictive density of a future Cronbach’s alpha is

𝑓
(
𝛼̂ 𝑓 |𝛼̂

)
=
∫

𝑓
(
𝛼̂ 𝑓 |𝛼

)
𝑝 (𝛼 |𝛼̂) 𝑑𝛼, (7)

where 𝑝 (𝛼 |𝛼̂) is the posterior density function of 𝛼 derived in Theorem 1 and 𝑓
(
𝛼̂ 𝑓 |𝛼

)
is the

conditional predictive density function derived in Theorem 2. The integral in Equation 7 is difficult
to solve analytically, but can be obtained by either numerical integration or the following simulation
procedure:

1. Calculate 𝛼̂ = 1 − 𝑚1
𝑚2
.

2. Simulate 𝛼 from its posterior distribution and substitute it in 𝑓
(
𝛼̂ 𝑓 |𝛼

)
and draw the density

function. In the proof of Theorem 1 it is shown that

𝛼 |𝛼̂ ∼ 1 − (1 − 𝛼̂) 𝐹𝑣2 ,𝑣1 . (8)

It is, therefore, easy to simulate 𝛼 from its posterior distribution.

3. Iterate step two 100 000 times and determine the average of the 100 000 conditional predictive
density functions to obtain 𝑓

(
𝛼̂ 𝑓 |𝛼̂

)
, the unconditional predictive density function. This

method is called the Rao-Blackwell procedure. 𝛼̂ represents the data.

4. Determine the mean, median, mode and variance of 𝑓
(
𝛼̂ 𝑓 |𝛼̂

)
as well as the 90𝑡ℎ and 95𝑡ℎ

prediction intervals. For the Dyestuff data, it will first be assumed that 𝑣̃1 = 𝑣1 = 24 and
𝑣̃2 = 𝑣2 = 5. In other words, future experiments will have the same number of samples and
observations per sample as the original data set.
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Table 1. Dyestuff data.

Batch
1 2 3 4 5 6

1545 1540 1595 1445 1595 1520
1440 1555 1550 1440 1630 1455
1440 1490 1605 1595 1515 1450
1520 1560 1510 1465 1635 1480
1580 1495 1560 1545 1625 1445

For the predictive density function 𝑓
(
𝛼̂ 𝑓 |𝛼̂

)
, the exact mean and variance can be derived analytically.

The following theorem can now be stated.

Theorem 3. The mean and variance of 𝑓
(
𝛼̂ 𝑓 |𝛼̂

)
, the unconditional predictive density function of

𝛼̂ 𝑓 , are given by

𝐸
(
𝛼̂ 𝑓 |𝛼̂

)
= 1 − (1 − 𝛼̂)

(
𝑣1

𝑣1 − 2

) (
𝑣̃2

𝑣̃2 − 2

)
(9)

and

𝑉𝑎𝑟
(
𝛼̂ 𝑓 |𝛼̂

)
= (1 − 𝛼̂)2

{
𝑉𝑎𝑟

(
𝐹𝑣2 ,𝑣1

) + (
𝑣1

𝑣1 − 2

)2
}
𝑉𝑎𝑟

(
𝐹𝑣̃1 ,𝑣̃2

)

+ (1 − 𝛼̂)2
(
𝑣̃2

𝑣̃2 − 2

)2
𝑉𝑎𝑟

(
𝐹𝑣2 ,𝑣1

)
, (10)

where 𝑉𝑎𝑟
(
𝐹𝑎,𝑏

)
= 2𝑏2 (𝑎+𝑏−2)

𝑎 (𝑏−2)2 (𝑏−4) .

Proof. The proof is given in Appendix C. ■

3.3 Example: The Dyestuff data
Consider the following example from Box and Tiao (1973), which concerns dyestuff data. The
experiment was aimed at learning to what extent batch to batch variation in a certain raw material
was responsible for variation in the final product yield. Five samples from each of six randomly
chosen batches of raw material were taken, and a single laboratory determination of product yield
was made for each of the resulting 30 samples. The data is from Davies and Goldsmith (1972),
where they reported the data from an experiment designed to investigate the batch to batch variation
in the quality of an intermediate product (H-acid) on the yield of a dyestuff (Naphthlence Black
1213) made from it. Six samples of the H-acid representing different batches of works manufactured
were selected and five preparations of the dyestuff were made in the laboratory for each sample. The
equivalent yields of each preparation as grams of standard colour were determined by dye-trial, and
the data are given in Table 1 (Sahai and Ojeda, 2004). This is a repetitive process. In this example,
𝐼 = 6 refers to the number of batches, and 𝐽 = 5 denotes the number of observations contained within
each batch.
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Table 2. Summary statistics and credibility intervals of 𝛼.

Mean (𝛼) Median (𝛼) Mode (𝛼) Var (𝛼)
0.7666 0.8051 0.879 0.0266

90% HPD interval 95% HPD interval
(0.5187; 0.9705) (0.3990; 0.9746)

Figure 1. Posterior density function 𝑝 (𝛼 |𝛼̂) in the case of the Dyestuff data.

From the data, it follows that 𝑣1𝑚1 =
∑𝐼

𝑖=1
∑𝐽

𝑗=1 (𝑦𝑖 𝑗 − 𝑦̄𝑖.)2 = 58 830 and 𝑣2𝑚2 = 𝐽
∑𝐼

𝑖=1 ( 𝑦̄𝑖. −
𝑦̄..)2 = 56 358 and 𝛼̂ = 1 − 𝑚1

𝑚2
= 0.7825268. The posterior distribution of 𝛼 which is derived in

Theorem 1 is illustrated for the Dyestuff data in Figure 1.
The values for the Mean (𝛼) = 0.7666 and Var (𝛼) = 0.0266 correspond well with the theoretical

values
𝐸 (𝛼 |𝛼̂) = 1 − (1 − 𝛼̂)

(
𝑣1

𝑣1 − 2

)
= 0.7627564

and

𝑉𝑎𝑟 (𝛼 |𝛼̂) = (1 − 𝛼̂)2 2𝑣2
1 (𝑣2 + 𝑣1 − 2)

𝑣2 (𝑣1 − 2)2 (𝑣1 − 4)
= 0.0303936.

In Figure 2, the predictive density 𝑓
(
𝛼̂ 𝑓 |𝛼̂

)
of a future Cronbach’s alpha is illustrated. For the

Dyestuff data, 𝐸
(
𝛼̂ 𝑓 |𝛼̂

)
= 0.6045941 and 𝑉𝑎𝑟

(
𝛼̂ 𝑓 |𝛼̂

)
= 0.6261647. The numerical values of the

mean and variance given in Table 3 are for all practical purposes the same as the exact values.
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Figure 2. Predictive density function 𝑓
(
𝛼̂ 𝑓 |𝛼̂

)
for the Dyestuff data.

Table 3. Summary statistics and credibility intervals of 𝛼̂ 𝑓 for the Dyestuff data, 𝛽 = 0.1.

Mean
(
𝛼̂ 𝑓

)
Median

(
𝛼̂ 𝑓

)
Mode

(
𝛼̂ 𝑓

)
Var

(
𝛼̂ 𝑓

)
0.6038 0.780 0.922 0.6023

90% Equal-tailed interval 95% HPD interval
(−0.275; 0.9638) (−0.332; 0.989)

4. Run-length distribution illustration
Assuming that the process remains stable, the predictive distribution of 𝛼̂ 𝑓 can be used to derive the
run-length and average run-length distribution. Montgomery (1996) defines the average run length as
the average number of points that must be plotted before a point indicates an out-of-control condition.
The run-length (𝑟) is the number of future 𝛼̂ 𝑓 values until the process goes out of control (until the
control charts signal for the first time). Note that 𝑟 does not include the 𝛼̂ 𝑓 value when the control
chart signals.

The resulting region of size 𝛽 for the determination of the run-length is given by

𝛽 =
∫
𝑅 (𝛽)

𝑓
(
𝛼̂ 𝑓 |𝛼̂

)
𝑑𝛼̂ 𝑓 , (11)

where 𝑓
(
𝛼̂ 𝑓 |𝛼̂

)
is defined in Equation 7.

In the case of the 90% prediction interval with 𝛽 = 0.10, 𝑅 (𝛽) presents those values of 𝛼̂ 𝑓 that
are smaller than -0.275 and larger than 0.9628. The process goes out of control if 𝛼̂ 𝑓 is less than
-0.275 or larger than 0.9628. Given 𝛼 and a stable Phase 𝐼 process, the distribution of the run-length
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is geometrical with parameter

𝛹 (𝛼) =
∫
𝑅 (𝛽)

𝑓
(
𝛼̂ 𝑓 |𝛼

)
𝑑𝛼̂ 𝑓 , (12)

where 𝑓
(
𝛼̂ 𝑓 |𝛼

)
is the distribution of a future 𝛼̂ 𝑓 value given that 𝛼 is known; see Theorem 2,

Equation 6. The values of 𝛼 are however, unknown, and its uncertainty is described by the posterior
distribution given in Theorem 1. By simulating 𝛼 from the posterior distribution and substituting it
in Equation 12,𝛹 (𝛼) can be calculated. This procedure must be done for each future experiment.
Therefore by simulating a large number of 𝛼 values, a large number of𝛹 (𝛼) values can be obtained.
Also a large number of geometric distributions, i.e., a large number of run-length distributions, each
with a different set of parameter values

{
𝛹

(
𝛼 (1) ) ,𝛹 (

𝛼 (2) ) , ...,𝛹 (
𝛼 (𝑚) )} will be obtained. Since

the run-length 𝑟 for given 𝛼 is geometrical distributed with mean

𝐸 (𝑟 |𝛼) = 1 −𝛹 (𝛼)
𝛹 (𝛼)

and variance

𝑉𝑎𝑟 (𝑟 |𝛼) = 1 −𝛹 (𝛼)
𝛹 2 (𝛼) ,

the unconditional mean

𝐸 (𝑟 |𝛼̂ ) = 𝐸 {𝐸 (𝑟 |𝛼)}

and the unconditional variance

𝑉𝑎𝑟 (𝑟 |𝛼̂ ) = 𝐸 {𝑉𝑎𝑟 (𝑟 |𝛼)} +𝑉𝑎𝑟 {𝐸 (𝑟 |𝛼)}

can be calculated. The expectation and variance are taken with respect to the posterior distribution
𝑝 (𝛼 |𝛼̂ ).

In Figure 3, the distribution of the geometric parameter𝛹 (𝛼) is given and the summary statistics
and credibility intervals are given in Table 4.

As it should be, the mean of 0.0989 is in the line with 𝛽 = 0.1. The long tail of the above
distribution indicates the uncertainty in the parameter 𝛹 (𝛼) . In Figure 4, the distribution of the
expected run-length 𝐸 (𝑟 |𝛼) is illustrated. Summary statistics and credibility intervals are given in
Table 5. In Figure 5, the distribution of 𝑉𝑎𝑟 (𝑟 |𝛼) is given and in Figure 6, the predictive density
function of a future run-length, which is the average of a large number of geometric distributions

Table 4. Summary statistics and credibility intervals of𝛹 (𝛼).
Mean (𝛹 (𝛼)) Median (𝛹 (𝛼)) Mode (𝛹 (𝛼)) Var (𝛹 (𝛼))

0.0989 0.0545 0.0228 0.0149

90% Equal-tailed interval 95% HPD interval
(0.0240; 0.4816) (0.0239; 0.3185)
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Figure 3. Histogram of𝛹 (𝛼).

Figure 4. Distribution of the expected run-length 𝐸 [𝑟 |𝛼 ] in the case of the 90% prediction interval.
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Figure 5. Histogram of 𝑉𝑎𝑟 (𝑟 |𝛼 ) .

r

Figure 6. The predictive density function 𝑓 (𝑟 |𝛼̂ ) in the case of the 90% prediction interval (𝛽 = 0.1).
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Table 5. Summary statistics and credibility intervals of 𝐸 [𝑟 |𝛼].
Mean (𝐸 [𝑟 |𝛼]) Median (𝐸 [𝑟 |𝛼]) Mode (𝐸 [𝑟 |𝛼]) Var (𝐸 [𝑟 |𝛼])

19.4147 17.3609 40 164.2296

95% HPD interval
(2.1222; 40.8112)

Table 6. Summary statistics and credibility intervals of 𝑟.

Mean (𝑟 |𝛼̂ ) Median (𝑟 |𝛼̂ ) Var (𝑟 |𝛼̂ )
19.4113 9.01 723.41

90% HPD interval 95% HPD interval
(0; 50.33) (0; 72.27)

each with its own parameter value,𝛹 (𝛼) , is given. Summary statistics and credibility intervals are
given in Table 6.

A comparison of Figures 4 and 6 shows that 𝑀𝑒𝑎𝑛 (𝐸 [𝑟 |𝛼 ]) = 19.4147 and 𝑀𝑒𝑎𝑛 (𝑟 |𝛼̂ ) =
19.4113. The means are for all practical purposes the same. Theoretically, this should have been the
case. Also 𝑉𝑎𝑟 (𝑟 |𝛼̂) = 𝐸 {𝑉𝑎𝑟 (𝑟 |𝛼)} + 𝑉𝑎𝑟 {𝐸 (𝑟 |𝛼)} = 560.5730 + 164.22 = 724.8026. From
Table 6, it is clear that 𝑉𝑎𝑟 (𝑟 |𝛼̂) = 723.41. The two methods of calculating 𝑉𝑎𝑟 (𝑟 |𝛼̂) give for all
practical purposes the same answer. A mean run-length of 19.41 is larger than 1−0.1

0.1 = 9, which
would have been expected if 𝛽 = 0.1. The reason for this larger average run-length is the small
parameter values of some of the geometric distributions. The median run-length of 9.01 however
corresponds well with the theoretical value of 9. A mean run-length of 19.4 is an indication that
the charting statistic (𝛼̂ 𝑓 ) will signal on average every 19𝑡ℎ or 20𝑡ℎ experiment even if the Phase 𝐼
process is stable (in control). It can however take much longer. According to the 95% HPD interval,
it can take as long as 72 experiments. It is however not impossible that 𝛼̂ 𝑓 will signal as early as the
first experiment.

5. Example: A larger experiment
In the example of the Dyestuff data, it was mentioned that it is a repetition process. So let us
assume that after a certain time period the number of samples obtained were 120 and the number
of observations per sample was five, which means that 𝐼 = 120, 𝐽 = 5, 𝑣1 = 𝐼 (𝐽 − 1) = 480,
𝑣2 = 𝐼 − 1 = 119 and 𝛼̂ = 0.7825. In Figure 7 the posterior distribution of 𝛼 is illustrated. Using the
formulas derived in Theorem 1, the exact mean and variance can be calculated 𝐸 (𝛼 |𝛼̂) = 0.7815899

Table 7. Summary statistics and credibility intervals of 𝛼.

Mean (𝛼) Median (𝛼) Mode (𝛼) Var (𝛼)
0.7816 0.7834 0.786 0.0010

90% Equal-tailed interval 95% Equal-tailed interval
(0.7264; 0.8306) (0.7143; 0.8386)
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Figure 7. Posterior density function 𝑝 (𝛼 |𝛼̂) with 𝑣1 = 480, 𝑣2 = 119 and 𝛼̂ = 0.7825.

Table 8. Summary statistics and credibility intervals of 𝛼̂ 𝑓 for the Larger Data, 𝛽 = 0.1.

Mean
(
𝛼̂ 𝑓

)
Median

(
𝛼̂ 𝑓

)
Mode

(
𝛼̂ 𝑓

)
Var

(
𝛼̂ 𝑓

)
0.7765 0.7822 0.79 0.0025

90% Equal-tailed Interval 95% HPD Interval
(0.6854; 0.8486) (0.6763; 0.8677)

and 𝑉𝑎𝑟 (𝛼 |𝛼̂) = 0.0010055. The theoretical values are for all practical purposes the same as the
numerical values, 𝑀𝑒𝑎𝑛(𝛼) = 0.7816 and 𝑉𝑎𝑟 (𝛼) = 0.0010. The predictive density function of 𝛼̂ 𝑓

for a future (unseen) experiment consisting of 90 samples and five observations per sample ( 𝐼 = 90,
𝐽 = 5, 𝑣̃1 = 𝐼 (𝐽 − 1) = 360, 𝑣̃2 = 𝐼 − 1 = 89 and 𝛼̂ = 0.7825 ) is displayed in Figure 8.

The formulas for the exact mean and variance are derived in Theorem 3, which is given by
𝐸
(
𝛼̂ 𝑓 |𝛼̂

)
= 0.776569 and 𝑉𝑎𝑟

(
𝛼̂ 𝑓 |𝛼̂

)
= 0.0025414. The theoretical values are similar to those

given in Table 8, which are equal to 𝑀𝑒𝑎𝑛(𝛼̂ 𝑓 ) = 0.7765 and 𝑉𝑎𝑟 (𝛼̂ 𝑓 ) = 0.0025. The posterior
and predictive density functions illustrated in Figures 7 and 8 are much more symmetrical than those
shown in Figures 1 and 2. The reason for this is the larger sample sizes. Researchers are usually
interested in a run-length of about 370. The reason for this originated from the fact that if a random
variable 𝑍 ∼ 𝑁 (0, 1) then 𝑃 (−3 < 𝑍 < 3) = 0.0027. In other words, if 𝛽 = 0.0027, the expected
run-length 𝐸 (𝑟 |𝛼) = 1−0.0027

0.0027 = 369.37. However, a 𝛽 = 0.0027 will give a much larger average
run-length than 370. The reason for this is the variation in 𝛼 which is illustrated by the posterior
distribution in Figure 7. The run-length will also be large if the parameter values of the geometric
distributions are small. However, an advantage of the Bayesian procedure is that 𝛽 can be adjusted
so that the average or median run-length takes on a value near 370. In our case, a median run-length
of 354 will be used. In Table 9, the average and median run-lengths for 𝛼̂ 𝑓 are given for the different
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Figure 8. Predictive Density Function 𝑓
(
𝛼̂ 𝑓 |𝛼̂

)
with 𝑣̃1 = 360, 𝑣̃2 = 89 and 𝛼̂ = 0.7825.

values of 𝛽. The theoretical run-length is 1−𝛽
𝛽 .

6. The out of control situation
Assume in a future experiment with 𝐼 = 90 and 𝐽 = 5 the true parameter value of 𝛼 has changed from
0.78 to 0.74 then the average run-length might change dramatically. If the process is in control and
if the desired median run-length is 354, then 𝛽 = 0.007 and 𝑅 (𝛽) presents those values of 𝛼̂ 𝑓 that
are smaller than 𝐴 = 0.6003 and larger than 𝐵 = 0.88. For the out of control situation the parameter
of the geometric distribution is

𝛹 (𝛼) =
∫
𝑅 (𝛽)

𝑓
(
𝛼̂ 𝑓 |𝛼

)
𝑑𝛼̂ 𝑓 = 0.0077,

which means that for 𝛼 = 0.74 the average run-length is now

𝐸 (𝑟 |𝛼) = 1 −𝛹 (𝛼)
𝛹 (𝛼) =

1 − 0.0077
0.0077

= 128.87

and the variance of the run-length is

𝑉𝑎𝑟 (𝑟 |𝛼) = 1 −𝛹 (𝛼)
𝛹 2 (𝛼) = 16 736.38.

A change in run-length from 354 to 129 is quite large and indicates that the process is out of control.
In Figure 9, the “in control” and “out of control” situations are illustrated.
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Table 9. Run-lengths (𝑟) for 𝛼̂ 𝑓 in the case of different 𝛽 values. 𝑣1 = 480, 𝑣2 = 119, 𝑣̃1 = 360,
𝑣̃2 = 89 and 𝛼̂ = 0.7825.

𝛽 𝐸 [𝑟 |𝛼̂] 𝑀𝑒𝑑𝑖𝑎𝑛 [𝑟 |𝛼̂] Theoretical Run-Length

0.0050 1754.9 562 199.0
0.0060 1356.5 456 165.7
0.0070 1027.7 354 141.9
0.0080 843.7 305 124.0
0.0090 891.2 250 110.1
0.0100 577.8 215 99.0
0.0150 305.3 120 65.7
0.0200 194.2 80 49.0
0.0250 137.9 58 39.0
0.0300 103.3 44 32.3
0.0350 80.9 35 27.6
0.0400 66.7 30 24.0
0.0450 56.7 25 21.2
0.0500 47.5 21 19.0
0.0550 41.2 19 17.2
0.0600 36.4 17 15.7
0.0650 31.8 14 14.4
0.0700 28.5 13 13.3
0.0750 26.0 12 12.3
0.0800 23.6 11 11.5
0.0850 21.4 10 10.8
0.0900 19.8 9 10.0
0.0950 18.3 8 9.5
0.1000 16.6 7 9.0

7. Example: Bore diameter data
The data in this example are the data from the manufacturing industry provided by Wooluru et al.
(2014). The critical quality characteristic is the “Bore diameter” on the driver gear. The number
of batches (samples) is 𝐼 = 20 and the number of observations per sample is 𝐽 = 5. The sample
Cronbach’s alpha is 𝛼̂ = 0.4952. In Figure 10, the posterior density function of 𝛼 is given and in
Figure 11, the predictive density function of 𝛼̂ 𝑓 is given. The number of batches in the future data
set are also 20. Therefore, 𝐼 = 20 and 𝐽 = 5.

In Table 12, the average and median run-lengths for 𝛼̂ 𝑓 are given for the different values of 𝛽.
From the table, it can be seen that for an average run-length in the vicinity of 370, 𝛽 = 0.0180 should
be used instead of 𝛽 = 0.0027.
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Figure 9. Graphs of the in control and out of control situations.

Figure 10. Posterior distribution 𝑓 (𝛼 |𝛼̂) , 𝑣1 = 80 and 𝑣2 = 19.
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Table 10. Summary statistics and credibility intervals of 𝛼.

Mean (𝛼) Median (𝛼) Mode (𝛼) Var (𝛼)
0.4822 0.5089 0.56 0.0359

90% Equal-tailed Interval 95% Equal-tailed Interval
(0.1330; 0.7414) (0.0400; 0.7741)

Figure 11. Predictive density 𝑓
(
𝛼̂ 𝑓 |𝛼̂

)
, 𝑣̂1 = 80 and 𝑣̂2 = 19.

8. Conclusion
In this paper, statistical process control limits have been obtained for Cronbach’s coefficient alpha
in the case of the balanced one-way random effects model. This has been achieved by deriving the
predictive distribution of a future (unseen) Cronbach’s coefficient alpha . For given variance com-
ponents, it was shown that the predictive density function of 𝑓

(
𝛼̂ 𝑓 |𝛼

)
can be derived analytically.

The Jeffreys independence prior was used to derive the posterior distribution of 𝛼. The uncondi-
tional posterior predictive density function 𝑓

(
𝛼̂ 𝑓 |𝛼̂

)
can be obtained by Monte Carlo simulation or

numerical integration. The predictive density function 𝑓
(
𝛼̂ 𝑓 |𝛼̂

)
as well as the conditional predictive

density functions 𝑓
(
𝛼̂ 𝑓 |𝛼

)
can be used to determine the run-length and the average run-length. The

distribution of the run-length 𝑓 (𝑟 |𝛼̂) is the average of a large number of geometric distributions
each with its own parameter value. Three examples were considered. The first example had to do
with Dyestuff data from Box and Tiao (1973). In the second example, it is assumed that the number
of Dyestuff samples has increased from six to 120, and the number of samples in a future (unseen)
data set is ninety. The third example is from Wooluru et al. (2014) and is measured values of “Box
diameter” on the driver gear. The results showed that the average and median run-lengths are usually
larger than the theoretical values. An advantage of the Bayesian procedure, however, is that control
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Table 11. Summary statistics and credibility intervals of 𝛼̂ 𝑓 for the Bore diameter data, 𝛽 = 0.1.

Mean
(
𝛼̂ 𝑓

)
Median

(
𝛼̂ 𝑓

)
Mode

(
𝛼̂ 𝑓

)
Var

(
𝛼̂ 𝑓

)
0.4213 0.4951 0.61 0.1064

90% Equal tail Interval 95% HPD Interval
(−0.1901; 0.7858) (−0.2091; 0.8819)

Table 12. Run-lengths (𝑟) for 𝛼̂ 𝑓 in the case of different 𝛽 values. 𝑣1 = 80, 𝑣2 = 19, 𝑣̃1 = 80,
𝑣̃2 = 19.

𝛽 𝐸 [𝑟 |𝛼̂] 𝑀𝑒𝑑𝑖𝑎𝑛 [𝑟 |𝛼̂]
0.0050 3030.3 820
0.0060 2355.4 643
0.0070 1887.2 528
0.0080 1493.5 431
0.0090 1214.6 353
0.0100 1023.9 304
0.0110 870.8 266
0.0120 733.8 231
0.0130 638.7 203
0.0140 564.6 185
0.0150 504.9 165
0.0160 453.7 151
0.0170 406.5 138
0.0180 371.7 127
0.0190 336.5 115
0.0200 305.9 106

limits can be adjusted in such a way that the average or median run-length has a specific value.

Appendix A: Proof of Theorem 1
From the posterior distribution it follows that

𝜎2
𝜖

𝜎2
𝜖 + 𝐽𝜎2

𝑟

∼
𝑣1𝑚1
𝜒2
𝑣1

𝑣2𝑚2
𝜒2
𝑣2

=
𝑚1
𝑚2

𝜒2
𝑣2
𝑣2

𝜒2
𝑣1
𝑣1

.

Therefore

𝜎2
𝜖

𝜎2
𝜖 + 𝐽𝜎2

𝑟

∼ (1 − 𝛼̂) 𝐹𝑣2 ,𝑣1

and

1 − 𝛼 ∼ (1 − 𝛼̂) 𝐹𝑣2 ,𝑣1 .

BAYESIAN PROCESS CONTROL FOR CRONBACH’S ALPHA 103



Therefore
𝛼 |𝛼̂ ∼ 1 − (1 − 𝛼̂) 𝐹𝑣2 ,𝑣1 .

Let 𝑓 = 𝐹𝑣2 ,𝑣1 , then

𝑔( 𝑓 ) =𝐾1

(
𝑣2
𝑣1

) 1
2 𝑣2

𝑓
1
2 𝑣2−1

(
1 + 𝑣2

𝑣1
𝑓

)− 1
2 (𝑣1+𝑣2 )

.

Since 𝛼 = 1 − (1 − 𝛼̂) 𝑓 , it follows that

𝑓 =
1 − 𝛼
1 − 𝛼̂ and

���� 𝑑𝑓𝑑𝛼
���� = 1

1 − 𝛼̂ .

Therefore

𝑝 (𝛼 |𝛼̂) = 𝐾1

(
𝑣2
𝑣1

) 1
2 𝑣2 ( 1

1 − 𝛼̂

) 1
2 𝑣2

(1 − 𝛼) 1
2 𝑣2−1 ×

[
1 + 𝑣2

𝑣1

(
1 − 𝛼
1 − 𝛼̂

)]− 1
2 (𝑣1+𝑣2 )

where 𝐾1 =
𝛤
(
𝑣1+𝑣2

2

)
𝛤 ( 𝑣1

2 )𝛤 ( 𝑣2
2 ) . Since

𝐸 (𝛼 |𝛼̂) = 1 − (1 − 𝛼̂) 𝐸 (
𝐹𝑣2 ,𝑣1

)
= 1 − (1 − 𝛼̂)

(
𝑣1

𝑣1 − 2

)

and

𝑉𝑎𝑟 (𝛼 |𝛼̂) = (1 − 𝛼̂)2𝑉𝑎𝑟
(
𝐹𝑣2 ,𝑣1

)
= (1 − 𝛼̂)2 2𝑣2

1 (𝑣2 + 𝑣1 − 2)
𝑣2 (𝑣1 − 2)2 (𝑣1 − 4)

.

Appendix B: Proof of Theorem 2
Let 𝑓 = 𝐹𝑣̃1 ,𝑣̃2 . Therefore

𝑓 ( 𝑓 ) =𝐾2

(
𝑣̃1
𝑣̃2

) 1
2 𝑣̃1

𝑓
1
2 𝑣̃1−1

(
1 + 𝑣̃1

𝑣̃2
𝑓

)− 1
2 (𝑣̃1+𝑣̃2 )

.

Since 𝛼̂ 𝑓 = 1 − (1 − 𝛼) 𝑓 , it follows that

𝑓 =
1 − 𝛼̂ 𝑓

1 − 𝛼 and
���� 𝑑 𝑓𝑑𝛼̂ 𝑓

���� = 1
1 − 𝛼 .

Therefore

𝑓 (𝛼̂ 𝑓 |𝛼) =𝐾2

(
𝑣̃1
𝑣̃2

) 1
2 𝑣̃1 (1 − 𝛼̂ 𝑓

1 − 𝛼

) 1
2 𝑣̃1−1 [

1 + 𝑣̃1
𝑣̃2

(1 − 𝛼̂ 𝑓

1 − 𝛼

)]− 1
2 (𝑣̃1+𝑣̃2 ) ( 1

1 − 𝛼

)

=𝐾2

(
𝑣̃1
𝑣̃2

) 1
2 𝑣̃1 ( 1

1 − 𝛼

) 1
2 𝑣̃1 (

1 − 𝛼̂ 𝑓
) 1

2 𝑣̃1−1
[
1 + 𝑣̃1

𝑣̃2

(1 − 𝛼̂ 𝑓

1 − 𝛼

)]− 1
2 (𝑣̃1+𝑣̃2 )

,

104 VAN DER MERWE, IZALLY & RAUBENHEIMER



where 𝐾2 =
𝛤
(
𝑣̃1+𝑣̃2

2

)
𝛤
(
𝑣̃1
2

)
𝛤
(
𝑣̃2
2

) . Also

𝐸
(
𝛼̂ 𝑓 |𝛼

)
= 1 − (1 − 𝛼) 𝐸 (

𝐹𝑣̃1 ,𝑣̃2

)
= 1 − (1 − 𝛼)

(
𝑣̃2

𝑣̃2 − 2

)

and

𝑉𝑎𝑟
(
𝛼̂ 𝑓 |𝛼̂

)
= (1 − 𝛼)2𝑉𝑎𝑟

(
𝐹𝑣̃1 ,𝑣̃2

)
= (1 − 𝛼)2 2 (𝑣̃2)2 (𝑣̃2 + 𝑣̃1 − 2)

𝑣̃1 (𝑣̃2 − 2)2 (𝑣̃2 − 4)
.

Appendix C: Proof of Theorem 3
𝛼̂ 𝑓 |𝛼 = 1 − (1 − 𝛼) 𝐹𝑣̃1 ,𝑣̃2 (13)

and
𝛼 |𝛼̂ = 1 − (1 − 𝛼̂) 𝐹𝑣2 ,𝑣1 (14)

From Equation 13, it follows that

𝐸
(
𝛼̂ 𝑓 |𝛼

)
= 1 − (1 − 𝛼) 𝐸 (

𝐹𝑣̃1 ,𝑣̃2

)
= 1 − (1 − 𝛼)

(
𝑣̃2

𝑣̃2 − 2

)

and from Equation 14, it follows that

(1 − 𝛼) ∼ (1 − 𝛼̂) 𝐹𝑣2 ,𝑣1 .

Therefore

𝐸
(
𝛼̂ 𝑓 |𝛼̂

)
= 𝐸

{
𝐸
(
𝛼̂ 𝑓 |𝛼

)}
= 1 − (1 − 𝛼̂)

(
𝑣1

𝑣1 − 2

) (
𝑣̃2

𝑣̃2 − 2

)
.

Also, for the variance,

𝑉𝑎𝑟
(
𝛼̂ 𝑓 |𝛼̂

)
= 𝐸

{
𝑉𝑎𝑟

(
𝛼̂ 𝑓 |𝛼

)} +𝑉𝑎𝑟 {𝐸 (
𝛼̂ 𝑓 |𝛼

)}
.

Now,

𝑉𝑎𝑟
(
𝛼̂ 𝑓 |𝛼

)
= (1 − 𝛼)2𝑉𝑎𝑟

(
𝐹𝑣̃1 ,𝑣̃2

)
and

𝐸
(
𝛼̂ 𝑓 |𝛼

)
= 1 − (1 − 𝛼)

(
𝑣̃2

𝑣̃2 − 2

)
.
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Further,

𝐸
{
𝑉𝑎𝑟

(
𝛼̂ 𝑓 |𝛼

)}
=𝐸 (1 − 𝛼)2𝑉𝑎𝑟

(
𝐹𝑣̃1 ,𝑣̃2

)
=
{
𝑉𝑎𝑟 (1 − 𝛼) + [𝐸 (1 − 𝛼)]2}𝑉𝑎𝑟 (𝐹𝑣̃1 ,𝑣̃2

)
.

Since
(1 − 𝛼) ∼ (1 − 𝛼̂) 𝐹𝑣2 ,𝑣1 ,

it follows that
𝑉𝑎𝑟 (1 − 𝛼) = (1 − 𝛼̂)2𝑉𝑎𝑟

(
𝐹𝑣2 ,𝑣1

)
and

[𝐸 (1 − 𝛼)]2 = (1 − 𝛼̂)2
(
𝑣1

𝑣1 − 2

)2
.

Therefore,

𝐸
{
𝑉𝑎𝑟

(
𝛼̂ 𝑓 |𝛼

)}
= (1 − 𝛼̂)2

{
𝑉𝑎𝑟

(
𝐹𝑣2 ,𝑣1

) + (
𝑣1

𝑣1 − 2

)2
}
𝑉𝑎𝑟

(
𝐹𝑣̃1 ,𝑣̃2

)

and

𝑉𝑎𝑟
{
𝐸
(
𝛼̂ 𝑓 |𝛼

)}
= 𝑉𝑎𝑟

{
1 − (1 − 𝛼)

(
𝑣̃2

𝑣̃2 − 2

)}

=

(
𝑣̃2

𝑣̃2 − 2

)2
(1 − 𝛼̂)2𝑉𝑎𝑟

(
𝐹𝑣2 ,𝑣1

)
.

From this it follows that

𝑉𝑎𝑟
(
𝛼̂ 𝑓 |𝛼̂

)
= (1 − 𝛼̂)2

{
𝑉𝑎𝑟

(
𝐹𝑣2 ,𝑣1

) + (
𝑣1

𝑣1 − 2

)2
}
𝑉𝑎𝑟

(
𝐹𝑣̃1 ,𝑣̃2

)

+ (1 − 𝛼̂)2
(
𝑣̃2

𝑣̃2 − 2

)2
𝑉𝑎𝑟

(
𝐹𝑣2 ,𝑣1

)
.

References
Alt, F. B. (2006). A Bayesian approach to monitoring the mean of a multivariate normal process.

In Colosimo, B. M. and del Castillo, E. (Editors) Bayesian Process Monitoring, Control and
Optimization. Chapman and Hall, New York, NY, 151–178.

Balakrishnan, N., Kotz, S., Read, C. B., Vidakovic, B., and Johnson, N. L. (2006). Encyclopedia
of Statistical Sciences, Volume 1. Wiley, Hoboken, NJ.

Bayarri, M. J. and García-Donato, G. (2005). A Bayesian sequential look at u-control charts.
Technometrics, 47, 142–151.

Box, G. and Tiao, G. (1973). Bayesian Inference in Statistical Analysis. Addison-Wesley, Reading,
MA.

106 VAN DER MERWE, IZALLY & RAUBENHEIMER



Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications.
Journal of Applied Psychology, 78, 98–104.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16,
297–334.

Davies, O. L. and Goldsmith, P. L. (1972). Statistical Methods in Research and Production. Oliver
and Boyd, London.

Duhachek, A. and Iacobucci, D. (2004). Alpha’s standard error (ASA): An accurate and precise
confidence interval estimate. Journal of Applied Psychology, 89, 792–808.

Feldt, L., Woodruff, D., and Salih, F. (1987). Statistical inference for coefficient alpha. Applied
Psychological Measurement, 11, 93–103.

Graves, S. (2006). Bayes rule of information and monitoring in manufacturing integrated circuits.
In Colosimo, B. M. and del Castillo, E. (Editors) Bayesian Process Monitoring, Control and
Optimization. Chapman and Hall/CRC, 199–224.

Guttman, L. (1945). A basis for analyzing test-retest reliability. Psychometrika, 10, 255–282.
Hulin, C. L., Drasgow, F., and Parsons, C. K. (1983). Item Response Theory: Application to

Psychological Measurement. Dow Jones-Irwin.
Human, S. W. (2009). Univariate parametric and nonparametric statistical quality control techniques

with estimated process parameters. PhD Thesis, University of Pretoria.
Izally, S. R., van der Merwe, A. J., and Raubenheimer, L. (2025). A comparison of objective

priors for Cronbach’s coefficient alpha using a balanced random effects model. Communications
in Statistics - Theory and Methods, 54, 575–603. doi:10.1080/03610926.2024.2315300.

Kaplan, R. M. and Saccuzzo, D. R. (1993). Psychological Testing: Principles, Applications, and
Issues. Brooks/Cole, Pacific Grove, CA.

Koning, A. and Franses, P. (2003). Confidence intervals for comparing Cronbach’s alpha values.
Technical report.

Menzefricke, U. (2002). On the evaluation of control chart limits based on predictive distributions.
Communications in Statistics - Theory and Methods, 31, 1423–1440.

Menzefricke, U. (2007). Control charts for the generalized variance based on its predictive distri-
bution. Communications in Statistics - Theory and Methods, 36, 1031–1038.

Menzefricke, U. (2010a). Control charts for the variance and the coefficient of variation based on
their predictive distribution. Communications in Statistics - Theory and Methods, 39, 2930–2941.

Menzefricke, U. (2010b). Multivariate exponentially weighted moving average charts for a mean
based on its predictive distribution. Communications in Statistics - Theory and Methods, 39,
2942–2960.

Montgomery, D. C. (1996). Introduction to Statistical Quality Control. 3rd edition. Wiley, New York,
NY.

Montgomery, D. C. (2005). Introduction to Statistical Quality Control. 5th edition. Wiley, New York,
NY.

Moreno, C. W. (2006). An application of Bayesian statistics to sequential empirical optimization.
In Colosimo, B. M. and del Castillo, E. (Editors) Bayesian Process Monitoring, Control and

BAYESIAN PROCESS CONTROL FOR CRONBACH’S ALPHA 107



Optimization. Chapman and Hall/CRC, 303–322.
Padilla, M. and Zhang, G. (2011). Estimating internal consistency using Bayesian methods.

Journal of Modern Applied Statistical Methods, 10, 277–286.
Peterson, J. J. (2006). A review of Bayesian reliability approaches to multiple response surface

optimization. In Colosimo, B. M. and del Castillo, E. (Editors) Bayesian Process Monitoring,
Control and Optimization. Chapman and Hall/CRC, 281–302.

Sahai, H. and Ojeda, M. M. (2004). Analysis of Variance for Random Models Volume 1: Balanced
Data. Springer.

Shiau, J.-J. H. and Feltz, C. J. (2006). Empirical Bayes process monitoring techniques. In
Colosimo, B. M. and del Castillo, E. (Editors) Bayesian Process Monitoring, Control and
Optimization. Chapman and Hall/CRC, 121–150.

Tagaras, G. and Nenes, G. (2006). Two-sided Bayesian X control charts for short production runs.
In Colosimo, B. M. and del Castillo, E. (Editors) Bayesian Process Monitoring, Control and
Optimization. Chapman and Hall/CRC, 179–198.

Tsiamyrtzis, P. and Hawkins, D. M. (2006). A Bayesian approach to statistical process control.
In Colosimo, B. M. and del Castillo, E. (Editors) Bayesian Process Monitoring, Control and
Optimization. Chapman & Hall/CRC, 87–108.

van Zyl, J., Neudecker, H., and Nel, D. (2000). On the distribution of the maximum likelihood
estimator of Cronbach’s alpha. Psychometrika, 65, 271–280.

van Zyl, R. and van der Merwe, A. J. (2019). Bayesian process monitoring schemes for the
two-parameter exponential distribution. Communications in Statistics - Theory and Methods, 48,
1766–1797.

Wooluru, Y., Swamy, D., and Nagesh, P. (2014). The process capability analysis – A tool for
process performance measures and metrics – A case study. International Journal for Quality
Research, 8, 399–416.

Manuscript received 2024-01-22, revised 2024-12-03, accepted 2025-04-16.

108 VAN DER MERWE, IZALLY & RAUBENHEIMER


