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Testing for no effect in the spatial functional linear regression
model

Stéphane Bouka', Kowir Pambo Bello® and Guy Martial Nkiet'

I'Département de Mathématiques et Informatique, Université des Sciences et Techniques de Masuku,
Franceville, Gabon
2Ecole Normale Supérieure, Libreville, Gabon

We consider a functional linear regression model with a real-valued response and
a functional random variable with its derivative as covariates. We are interested in
testing the null hypothesis of no covariates effect using a spatially dependent sample.
‘We propose two test statistics which take into account the proximity between sites
and we establish the asymptotic normality of cross covariance operator between
both interest variables. From this result, we derive asymptotic distributions of these
both statistics. Then, we illustrate our test procedure by means of a simulation study.

Keywords: Functional data, Spatial data, Spatial functional linear regression, Testing hypothe-
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1. Introduction

Since the last decade, big data with dynamic components in time and space are becoming more and
more popular in a number of disciplines such as environmental sciences, neuroimaging and genomics,
epidemiology, and hydrology. Functional data analysis (FDA) is well suited to deal with such data
and the linear regression model remains a fundamental tool for modelling relationships between a
real-valued response variable and an explanatory variable which is of functional nature. Since the
seminal paper of Hastie and Mallows (1993) on functional linear models with a scalar response,
several types of functional linear models for independent or time-series data have been developed
for different purposes (see, e.g. Cardot et al., 2003; Liu et al., 2017; Mas and Pumo, 2009; Aue
et al., 2015). Compared to independent data, functional linear regression with spatially dependent
high-dimensional data is still an open research problem (see, e.g., Menafoglio and Secchi (2017),
Giraldo et al. (2018)). Functional spatial linear prediction using kriging methods have been tackled
by Bohorquez et al. (2017), Giraldo et al. (2018). While the one based on spatial autoregressive
functional models have been considered by Ruiz-Medina (2011, 2012). An extension of the functional
linear regression model with a functional variable and its first derivative as covariates, studied in
Mas and Pumo (2009), to the case of spatially dependent data has been introduced in Bouka et al.
(2018). Such models may be used in many applications; for instance in environmental domain for
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forecasting of ozone pollution (see Bouka et al. (2023)). In this paper, we consider the model, as in
Bouka et al. (2018), defined by

Yi=BXoy+(r.X])+e, i€Ecz! dx2, )

where {¥; € R, i € E c Z4} is a real-valued spatial process, {Xi(.), i € E c Z4} is a spatial
functional process with its first derivative {X/(.), i € E ¢ Z%}, {&, i € E c Z%} is a noise
independent of {X;(.), i € E c Z%} and {X/(), ieEC Z4}. All the random variables of the
previous processes are assumed centered, the bivariate process {(Xi, Yi) }ic gz« 18 strictly stationary
and defined on a probability space (L, A,P), valued into H X R with the same distribution as a
random vector (X, Y). Here H is the Sobolev space, defined by H = {x € G,x’ € G} where
G = L?]0, 1] is the Hilbert space of squared integrable functions, x” stands for the first derivative of
x € H. Let (.,.)y and (., .) be the inner products in H and G respectively defined by

1 1 1
(fogdm = /0 F(g()dt + /0 F(0g (Odi. (f.g) = /0 F(Dg(dr:

the associated norms are denoted by ||.|| g and ||.||g respectively. We are interested in testing for the
nullity of the pair (83, 7y) in (1). That is testing whether there is not a linear connection between the
functional variables (Xj, Xi’ ) and the real variable Y; according to relation (1). For that, we consider
the following test:

Hy:B=0andy=0 vs. H;: g#0ory 0. 2)

Despite the potential applications of such no regression effect for spatially dependent data, this
problem has not been addressed in the literature to the best of our knowledge. For the basic functional
linear model Y = (B, X) + &, Cardot et al. (2003) proposed to test the hypothesis Hy : 8 = 0, against
H; : B # 0 for independent data.

Cardot et al. (2004) extended the previous work by considering an additive functional linear
regression model and a test for partial nullity of the involved coefficients. Hilgert et al. (2013)
considered the basic functional linear model and proposed a test statistic that does not depend on the
number of principal components compared to Cardot et al. (2003). Kong et al. (2016) considered
the case where the functional covariate is contaminated by measurement error and may be observed
densely.

In this paper, we first extend the work of Cardot et al. (2003) to the spatial context and then add
an effect of the first derivative of the functional covariate in the model. The rest of the paper is
organised as follows. Section 2 is devoted to the proposed tests for no effect in the model (2). The
test statistics are defined and asymptotic results are given under some mild conditions. Section 3
presents a simulation study. The conclusion is given in Section 4. The proofs of the main results are
postponed to Section 5.

2. Testing for no effect

In this section, we consider the spatial functional linear regression model with derivatives defined in
(1). As mentioned previously, we aim to test the hypothesis H against H as given in (2). For that, let
us consider the covariance and cross-covariance operators I' = E[ X ®y X| (where ®p stands for the
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tensor product defined by (¢ ®g v)h =< u, h >g v) and A such that Ax = E(Y (X, x) ). We denote
by (4,);>1 the sequence of eigenvalues of I and (v;) j>1 the sequence of associated eigenfunctions.
We assume that A;, j = 1,2, ... are strictly positive and verify 7% 1; < +co. Recall that (v;);>1
is an orthonormal basis of Hilbert space H. Let (.,.)#s be the inner product of the space HS of
Hilbert-Schmidt operators, defined by (T, S)¢s = 72 (T'vj,Sv;) and let ||.||4s be its associated
norm. Before giving the test statistic, let us state a relationship between the operators A and I'. This
relationship is obtained by a direct calculation.

Proposition 1. Let ¥ be the continuous linear operator from H to R defined by ¥ (.) = (B, .Yy +
(D*y, .y where D* stands for the adjoint of the differential operator D. Then we have A = VT,

Under Hy, we have A = YT = 0, thatis ['?* = 0, where ¥* is the adjoint operator of ¥. Since the
eigenvalues of I are strictly positive, we deduce that 7* = 0. Since ¥; = ¥ (Xj) + &j, testing for ¥ = 0
is equivalent to testing for A = 0. Let us first study the particular case of functional linear model
without derivative; model (1) without the term (ﬁ’, Xi’ ) + <y, Xi’>, that is

Yi = (B, Xi) +&i. ©)

2.1 Case of the regression model without the derivative

We investigate here the particular test for the hypotheses
Hy:B8=0 against H;: B#0,

corresponding to model (3). We then consider the same problem as in Cardot et al. (2003). The
difference comes from the fact that the used sample is spatially dependent compared to the i.i.d
case considered in Cardot et al. (2003). As in Cardot et al. (2003), let us decompose the space G
asG =NoW, with N=Ker(l') ={x € G:I'x =0} and W = Im(T") where Im(I") = {z €
G,z =T'x,x € G} and Im(T) is the closure in G of Im(T"). Since ¥; = ¥ (Xj) + &, the property
Y =¥ +¥ =0with (¥1,%) € N x W is equivalent to ¥, = 0. Then testing for 8 = 0 is equivalent
to test for A = 0. For giving the proposed test statistics, we consider a spatial sample (Xj, Yj)ic z, with

L= {12, m} %X {1,2,-+ ,na},

where n = (n1,--- ,ng) € (N)4, i =ny X+ Xng, n — +oo means that min;=y,... g{ni} — +oo
and |n; /nj| < C for a constant C such that 0 < C < oo forall i, j such that 1 < i, j < d. We consider
the empirical operators I'y, and A, defined by:

Tax(1) = % D X)Xt , x € G, te[o,1],

iel,
1
Anx == > ¥ (Xi,x), x€G.
n
iel,
Let (Z 7)j=1 (resp. (vj);=1) be the sequence of eigenvalues of I, (resp. associated eigenfunctions).

We assume that the process {Zi(.) = (X;, .)&i, i € Z9} is spatially mixing (see Tran (1990)). That is

a(o(Zizi€ Ki),0(Zj3i € Ky)) = sup {IP(A N B) -P(A)P(B)[}
A€o (ZjieK)),Be o (Z;ieks)

< f(Card(Ky), Card(K>))a1,e(p (K1, K2)), 4
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where Card(K;) denotes the cardinality of K, p stands for the distance defined, for any subsets K
and K, of R, by p(K{, K>) = min{||i — j||,i € K1, j € K2} with ||i — j|| = max|<s<g |is — js| for any
iand jin Z9. In addition, we assume the polynomial mixing condition

a10(u) =0 %), &> 4d,
and that f satisfies either
f(n,m) <min{n,m} or f(n,m)<Cn+m+ I)E,

for some k > 1 and some C > 0. The results given in the following may be easily extended to
exponential rate (i.e .. (1) = O(e~¢")). Note that if the processes {X;(.),i € Z?} and {&;,i € Z¢}
are a-mixing, then it is also the case for {Z;,i € Z¢}. Many spatial stochastic processes including
time series satisfy strong mixing properties, for more details see for instance Guyon (1995).

We consider the test statistics given by

1 )

D, = gHnl/Z‘Aan o (5)
1 1 ~ |12

- A—”AI/ZAB —dnl, 6

n \/q_n (0_2 n nDn Hs dn ( )

where

an -1/2
=24 ( > hy(lli= (i~ en)) (7)) 95,
j=1 iee Iy

gn < M, gy — +00 as n — +oo, functions /; and ¢ are defined in Assumptions 1 2 below, and o
is a consistent estimator of ¢ such that n'/ 2(0’ — 0?) is bounded in probability. Such an estimator
exists; an example is given in Section 3. Note that in the independent sample case withd = 1, Dy, and
Sh become both test statistics studied in Cardot et al. (2003) with B, ()= Zq" /l_l/ 2 <v s > v and
01 = 1. From Theorem 1, When n is large enough, the )( distribution with gy degrees of freedom is
approximatively the one of D,.

2.2 Assumptions

For establishing asymptotic results on both test statistics, we impose dependency conditions, in
particular the mixing and the decay of the cross covariances of the involved processes.

Assumption 1. The random functional process {X;j(.),i € Z?} is strictly stationary, || Xi|lc < M a.s
with M > 0 and for all i, £ € Z4,

E ((Xi, v;){Xe, Vi) 7

otherwise,

)= {Ajhj(ni—en) ifj =k,
0

where /1 : [0, +00[—> [0, +oo[ with /2;(x) | 0, as x —> +o0, h;(0) = 1, 3,75 td'Zjl/lh(t)<

oo and ;’Z /l;./4 < +00,
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Assumption 2. (&;);cz« 1S a stationary isotropic zero-mean random field such that
Var(si) = o2, Cov(ei, &) =0 p(|li-jll) for i#je I, (8)
e(0) = 1, o(=x) = p(x), le(x)| < 1, Vx,

where ¢(x) | 0, as x — +o0. In addition, there exists two positive real numbers a, b such that
B [exp (aleil”) | < oo. ©

Assumption 3. ;1\1 > ;l} > > jq.. > 0 a.s.

The condition || X||c < M a.s. in Assumption 1 has been used in Mas and Pumo (2009); it
is used to simplify the proofs and may be relaxed by assuming that sup;c 7 ||Xillc < Mn as.,
where limp_,;00 My = +00 and limy 40 (M,% logn) /ﬁl/ 3 = 0. In addition, if we consider a Fourier
expansion of Xj in the orthonormal basis {v;} of G, that is X;(¢) = Z;’i‘j (Xi,v;)v;(1), then if the
random fields {; = {(Xi,v;),i € 74} are a-mixing strictly stationary, Condition (7), weaker than
mixing, is shown in Gneiting et al. (2010). Assumption 1 may be satisfied by spatial functional
autoregressive processes. Condition (8) in Assumption 2 is satisfied by stationary Gaussian random
fields (see, for instance, Francisco-Fernandez and Opsomer, 2005), whereas Condition (9) has been
used in Biau and Cadre (2004). Assumption 3 is basic in functional data analysis. Assumption 3 has
been used in Cardot et al. (2003).

2.3 Main asymptotic results
We give here the main asymptotic normality results of n'/2A,,.

Theorem 1. Under Assumptions 1 and 2, we have under Hy
726, 2 N (o, 0'2A2) ,

D . L .
where — stands for the convergence in distribution and

+00

.1 . .

A= @..1520(5 2. hj(lll—ﬂll)so(lll—ﬂll)) (v ) vy
j=1 i,lel,

The result below gives the asymptotic normality of the test statistic defined in (6).

Theorem 2. Assume that Assumptions 1-3 hold and that there exists a sequence (qy) such that

nA2
—q"z — 400
( ;Z:]ﬂl) logﬁ
as n — +oo, where
[2V2/ (0 - ) ifj=1,
! 2\/5/(min(/lj_1 =, = A4) 0 j=2.

Then, under Hy, Sq £> N(0,2).
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The following result states the consistency of the testing proposed procedure.

Theorem 3. Assume that Assumptions 1-3 hold with A; = O(r7), 0 < r < 1, j > 1, then the testing
procedure based on Sy, is consistent.

2.4 Case of the regression model with derivatives

This section generalises the previous results in the case of model (1). Let I'y, and A, be the non-
parametric empirical estimators of the operators A and I defined by I, = n~! 3¢ 7, Xi®H Xi, Apx =
n! Yier, Yi{Xi,x)y, x € H. We denote by (I j)j=1 the sequence of eigenvalues of I', associated
to sequence of eigenfunctions (V;);»>i. Assumptions and results in this section are obtained by
replacing the inner product (-, -) in Sections 2.2 and 2.3 by (-, -)y. The following theorem extends
the previous results to the case of model (1).

Theorem 4.

(i) Under Hy and Assumptions 1 and 2, we have

1124, =5 N (0,02A2) .

D
(ii) Under Hy and the hypotheses of Theorem 2 with appropriate space and inner product, S, —
N(0,2).

(iii) Under Hy and the hypotheses of Theorem 3 with appropriate space and inner product, the
testing procedure is consistent.

3. A simulation study

In this section, we illustrate our testing procedure by simulations. We computed empirical levels
and powers of test from simulated spatial data in Z?. Using the lexico-graphic order, we simulated a
sample {(Xj,, Yi,)}1<¢<n2 as follows: we consider the 15-th first elements By, .. ., Bjs of the Fourier
basis. For k = 1,-- -, 15, we simulated a pseudo-random vector (&;, , - . - ,§inz,k)T in R” from the
multivariate uniform distribution with null mean and covariance matrix £', where X! is the n% x n?

matrix with general term Zl.lj =exp(—|li; —ij||2). For£ =1,... ,n?, we take

5
X, (1) = Z Eiok Bi(1).
=1

The interval [0; 1] is discretised by 366 equispaced points. We have then simulated ¥;, by approxi-
mating integrals in equations (1) and (3) using the rectangular method. &j, are i.i.d Gaussian random

variables with zero mean and variance equals to o2. Two cases are considered in which, under Hy,
02 =0.01.

Case A : Model (3) without the derivative. Under H, 8 = 0, and under H;, 8(¢) = [sin(27%)]3,
if r € [0;0.6] and B(¢) = 0, if r € ]0.6; 1]. The interval [0;0.6] (resp. ]0.6; 1]) is discretised by 7
(resp. 359) equispaced points. Under Hy, o is controlled by the signal-to-noise ratio (snr) defined



TESTING FOR NO EFFECT IN SPATIAL LINEAR MODEL 7

Table 1. Cases A and B (with 8 = 0 and y = 0). Empirical levels (as
percentage) of the test, based on 800 replications; n”> = 225.

Dy Sn
a (@) gn=5 ¢gu=10 ¢,=20 dn=5 ¢qgn=10 ¢, =20
20 33.6 29.6 7.5 15.1 16.8 33.8
10 19.0 16.0 23 95 8.5 14.6
5 11.6 8.6 0.8 6.6 45 5.0
1 2.6 1.5 0.1 2.8 1.8 0.1

by snrl = E[(B, X)*]/(E[(B, X)?*] + 0%). We consider the estimator 5> of o> defined by
1 s
~2 > 2
o= — § Y, — (B, X; 10
tr(I-S) 621( e = (. %)) {10

where I is the n2 x n? identity matrix, S is the hat matrix, ¢r(x) stands for the trace of the matrix x,
and S is an estimator of § computed by using the function “fregre.basis” of the R package fda.

Case B : Model (1) with the derivative. Under Hy, 8 = v = 0, and under H,, 8(¢) = [sin(2713)]? if
t € [0;0.6] and B(r) = 0if r €]0.6; 1], and y(¢) = (0.6—1)?ift € [0;0.6] and y(r) = 0if r €]0.6; 1].
The interval [0;0.6] (resp. ]0.6; 1]) is discretised by 7 (resp. 359) equispaced points. Under H,, o>
is controlled by the signal-to-noise ratio (snr) defined by

_ BB X + (X))
E(((B. Xi) gy + (7. X[ )?) + 0%

snr2

where X/ is computed by using the function “fdata.deriv” of the R package fda. We consider the
estimator 5> of o2 defined in (10) and in which we replace (,E X;i) by l’I\’(Xi) = (,E+ D*,E’ +D*y, X;).
The eigenelements of the covariance operator are estimated by means of a quadrature rule. We
assess performance of our testing procedure through empirical levels and powers of test, based on
800 replications with n> = 225.

In Table 1, we remark that for larger value of ¢, (i.e g, = 20), the empirical levels based on
Sn overestimate nominal levels @ = 20%, 10%, 5%, and it is contrary for those based on Dy.
Whereas for g,, = 5, 10, the empirical levels computed from Sy, tend to underestimate nominal levels
a = 20%, 10%, 5%, and it is contrary for those computed from D,,. However, for g,, = 10, compared
to the test statistic Dy, the empirical levels obtained from Sy, lead to better approximations of the true
nominal levels @ = 20%, 10%, 5%. So, we analyse the empirical power whose values are given in
the following Tables 2 and 3.

In Tables 2 and 3, we remark that empirical powers increase as the signal-to-noise ratio increases
and decrease as g, increases. So, the both proposed test statistic computed with g, = 5, is more
power to reject the null hypothesis Hy when it is false. Thus, a trade off between these two risks is
needed to choose a value of g, before deciding to accept or to reject the null hypothesis. In this case
of this simulation study, we can choose g, = 10.
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Table 2. Case A. The empirical powers (as percentage) of the test, based on 800
replications; n> = 225.

Dn Sn
snrl(%) a (%) gn=5 ¢qn=10 ¢q,=20 gn=5 q,=10 ¢, =20
5 1 64.1 46.5 15.3 64.5 47.1 15.1
5 82.5 70.4 32.9 74.8 61.6 27.5
10 90.1 80.9 44.0 79.5 68.4 334
10 1 96.1 89.1 58.9 96.1 89.5 58.6
5 99.0 96.0 78.8 97.8 93.5 71.9
10 99.8 98.5 86.1 98.9 95.6 78.6

Table 3. Case B. The empirical powers (as percentage) of the test, based on 800
replications; n> = 225.

Dy, Sn
snr2(%) a (%) gn=5 qn=10 ¢q,=20 gn=5 q,=10 ¢, =20
5 1 56.5 44.6 15.5 57.3 454 15.3
5 77.8 66.5 34.5 69.0 58.0 25.8
10 87.6 78.6 46.3 74.1 65.1 33.6
10 1 93.6 87.3 60.6 93.8 87.6 60.5
5 98.9 96.1 79.0 96.6 93.5 72.0
10 99.8 98.6 87.4 98.0 95.4 78.4

4. Conclusion

In this work, we propose to test whether or not the functional linear relationship suggested by model
(1) and its particular case (3) hold. The originality of the proposed method is to consider spatially
dependent data and to take into account a first derivative effect on the functional linear model. The
difficulty involved in handling the spatial dependency is in the proof of the asymptotic normality
of the empirical cross-covariance operator. We propose two statistics which take into account the
proximity between sites. Then, we established their asymptotic distribution. The simulation study
showed that the testing procedure based on both statistics Sy, and D, give good results. Notice that,
from Proposition 1, the case B with derivatives can be rewritten as case A without derivatives of
functional data. So, the proposed methodology can, therefore, be seen as a good alternative to Cardot
et al. (2003) when available data are spatially dependent with or without a derivative effect in the
functional linear model.

5. Proofs

For proving Theorem 1, we need the following lemmas on the asymptotic variance and characteristic

function of <ﬁl/2An, x),HS.
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Lemma 1. Under Hy and Assumptions 1 and 2, for all x in G and as n — +oo, we have

+00

~ 1 2

1/2 2 . .

var ((8%anx) | — o 2 j Jim ﬁ.; hi(li= eDeli - el | (vy.x)*
= 75

Proof. Since {Xj} is strictly stationary, then from Assumptions 1 and 2, we have

+00 Al/z

Ap: = Var(<ﬁ1/2An,x> ) Z Z(X,,vj)(x V)&

iel,

= %Z(x, vj)2 Z E [(Xi,vj)(Xg,vj)] Cov (&j, &p)
j=1

i,lel,

+2 D ) D B [y )] Cov (et e0)

Jik=1 i,lel,
J#k
+o0 1 2
2 . .
= o2 ) (5 D, hili= el | {v;x)”.
j=1 i,lel,
However, forall j = 1,2,-- -, we have
1
Ajn = H,Z hj(lli = £1)e(li - £l)
i,lel,
15 : :
< =30 3T - eheli- €l)
n k=0 i,e€ln
k<|i-e] <k+1

IA

Z Z h-(rw)sird*‘hj(n«p(r).
t=1

k<||1H t<k+l

Then, from Assumptions 1 and 2, we have
+00 +00 ) iy ey
An < azz/lj th”hj(z)go(t) (vj,x)* < |xll% Zf“ Z/ljhj(t) < 0.
j=1 =1 =1 j=1

So, there exists some positive constant E such that limp_,. Ay = E < oo.

Let us consider Ejx = Z;(x)/n, where Z;(x) = (X, x) 45 &i- Then, under Hy, we have

(Ans X) g5 = Z =X = Z 4 (X)

iel, iel,

Let us use the Bernstein’s spatial blocks technique (Tran, 1990) to introduce the test statistics.
Assume, without loss of generality, that there exist integers u;, i = 1,--- ,d, p; and p; in N* such
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that n; = u;(p1 +p2), T =uy X+ Xug, andn =1(py + p2)¢. Forl = (11, ..., 1), l; € {0, ..., u; —

i=1,---,dlet
L (p1+p2)+p1
U(l,nlLx) = Eix,
i =l (p1+P2)+1
=1,..., d
I (p1+p2)+p1 (la+1)(p1+p2)
Uui2,nlx) = Zix,
ik:ik<P1+gi);l ia=la(p1+p2)+pi+l
L (p1+p2)+pi (la-1+1) (p1+p2) la(p1+p2)+pi
U@B,nlx) = Hix,
'/7:2111(1’1*52_);‘ ig-1=la-1 (p1+p2)+p1+1 ig=la(p1+p2)+1
L (p1+p2)+p1 (la-1+1) (p1+p2) (la+1) (p1+p2)
Ul4,nlLx) = gix,

il;:’li(f’ﬁgz)“ id-1=la-1(p1+p2)+p1+l ig=la(p1+p2)+1

and so on, until the last two terms

(+1)(p1+p2)  la(p1+p2)+pi
UQ¥='+1,n,1,x)

—
=X,

ik=lk<P1+clld)+Pll+1 ia=la(p1+p2)+1

.....

(lk+1) (P1+p2)

U24,n,1,x)

—_
=X

ik:lk(p1+p2)+p1+l

seees

Setting 7 = {0, ...,u; — 1} X --- X {0, ...,ug — 1}, let for each integer i = 1, 24,

T(n,i,x)= Z U(i,n,j,x).

jeT
Then, under Hy, (An, X) 415 may be rewritten as

2:1

(An, X) g5 = Z T(n,i,x).
i=1

We have the following:
Lemma 2. Under Hy and Assumptions 1 and 2, as n — +co we have:

i) Forallx e W,
Q1 =E [exp (i ﬁl/zT(n, 1,x))] —IerE [exp (i ﬁl/zU(l, n, l,x))] — 0,
where i = —1;

i) 02 = nE [(z?ﬁ’zT(n, i,x))Z] — 0

1},
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iii) 03 = 1 Nier B [(U(Ln,x))?| — 2 52 4E; (v, x)’, where

E) =,}E‘;(% > hj(lli—fll)w(lli—fll));

i,lel,

v) Q4= HZIe‘TE [(U(L n, l’x))21{|U(1,n,l,x)|>‘rﬁ*]/2}:| — O,fOI’ allt > 0.
Proof. Let p; = p1(n) and py = po(n), p; = [nV/CD |, p; =0 (n'/*4)), then

2 C

p1 - nl/2a) —0,

p2 < p1, asymptotically.

Proof of (i). Sort the random variables U(1,n,1,x) and refer to them as 171,...,[7;. Recall that
Card(T) =1 =1n(p; + p2) ¢ < ﬁpl‘d. Denote by I(1,n,1) = {i : lx(p1+p2)+1 < ip <
Ix(p1+ p2) + p1}, the set of sites involved with U(1,n,1,x) and I; the set of sites involved with U;.
Lemma 3.1 of Tran (1990) gives

0l < Z Z E(exp(iﬁl/zﬁk)—1)(exp(iﬁ1/2ﬁj)—1) l_[ exp(in'/?Uy)
k=1 j=k+1

s=j+1

T
—E(exp(in'/?Ty) - 1)E(exp(in'/2T;) - 1) ]_] exp(in'/2U;)
s=j+1

-1

~)

Z Q-

1 j=k+1

=
1l

In addition, by Lemma 2.1 ii) of Tran (1990) Q; < cal,w(p(}}, ﬁ))p‘f. Since & > 4d, then

t—1 T 400
01 < cpf Y, X arelp(Tpl)) S e ) j4 e (ipa)
k=1 j=k+1 =1
< on-EHD/Gd) .

Proof of (ii). 1t is equivalent to show that
nE [(T(n,i,x))*] — 0 foreach 2 <i <29
Sort the random variables U(2, n, 1, x) and refer to them as ﬁl,...,ﬁ; and let
E [(T(n,2,x))?] ZVar(U)+ZZZC0v(Ul,U) = Ay + As.

i=1 j=I
>j
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Under Assumptions 1 and 2, we have

Pi P2
Var(U;) = Var Z Zulax
ip=1 ig=1
k=1,---,d—-1
2 d-1 +00 P1
g py D2
< —5— ZMx Vi)’ +Zak Z th(lllll)w(lllllﬂx Vi)’
k=1 ..... d—l

(B[P Uzpd 'pa (%
—G 1 -7 Z/lk+2ld IZ/lkhk(l‘)
t=1

Then, we have

— _ _ 2
nA; < Cpf 1pz(pl + p2) d < C(p—) — 0.

p1
Let
I12,nl) = {i:L,(p1+p2+ ) <ipm<lp(p1+p2)+p,1<m<d-1,
la(pr+p2)+p1+1<ig < (la+1)(p1+p2)}.
then U(2,n, 1, x) is the sum of Zjx over all sites in 7(2,n,1). Since p; > p», if 1 and I’ belong to two

distinct sets 7(2,n,1) and 7(2,n,1’), then [,, # [/, for some 1 < m < d and ||l - V|| > p2, and by
Assumptions 1 and 2, we have

njA) < ch Z Z |Cov(Eix, Ex)|
m:”ln,,_l_, miyr,‘.%,d
li-1i>p2
< Co(p) Z ! Zakhm) — 0. (11)
t=pr+1 k=
Proof of (iii). We have
2d d
(An, X) s = ZT(n,l,x) =T(n,1,x)+ ZT(n i,x) =S, +S;.
i=1 i=2

From Lemma 1, we have

E(<ﬁl/2An,x> ) — gzZﬂ lim (: D h(,-(||i—£||)<,o(||i—£||)) ().
i,lel,
This combined with Lemma 2(ii), gives

RE|(5,)°] — o2 )4, Jim (% > hj(||i—£||)go(||i—£||)) (vj,x)?.
j=1

i,lel,
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In addition, we have

RE|(5,)°| =8 ). BIU(LnLx +3 ). Cov[U(1,nLx), U(Ln, 1, x)].

leT LVeT
1

However, by the same arguments as those used at the end of the proof of Q2 in (if), we have
n Z Cov[U(1,n,1,x),U(1,n,Y,x)] —> 0.
LV eT

12l

Thus

~ NI . ,
A ) EU(Ln L] -0 ) 4 lim | = 0 (- eDedli=€h | (vox)’. (12)

leT j=1 i,eel,

Proof of (iv). Since Xjs is almost surely bounded and &is is not bounded, we use the following
truncation argument: Z*(x) = (Xi, ¥)q1s &il| <z and Z}*(x) = (Xi, X)q(s &il||>L, Where L is

some positive constant such that L2 /ﬁl/ 3 5 0asn — +0. So, we have
Zx(x) cL
|El* | = l,\ < — as,
n n

where ¢ is a positive constant. With the choices py = |n'/G34) | then Va|U*(1,n,1x)| < cp‘llL/\/ﬁ <
cL/n'® — 0 a.s. Thus for all 1, 7 > 0 and for n large enough, we have

CiL? !

o4 < == > P(Ur(Lnlxl> AR =0,
n

where C; is some positive constant. Then Lemma 1 holds with

+00
. 1 . 2
V*(x) = ;Aj lim (ﬁi;j hj<||n—e||)Cov(si1|ei<L,8e1m<L>) (vjox)’.

and A} which is obtained by replacing &; into A, by £i1)4)<z.. Therefore
<ﬁl/2A,*l,x>WS 5 N(0, V*(x)) as n — +oo. (13)

Since A = A} + A}*, and putting

+00 . 1 .
V)= > 4 nlggo(ﬁ > hy(lli- €D Cov(eige) | (vy.x)?,
j=1 i,le 1,

we have
‘]E [exp (iu <ﬁ1/2A"’x>w3)] — exp (—MZV(x)/2)’
[exp (iu <ﬁl/2A;,x>(HS)] —exp (—uZV*(x)/2)|
)

[exp (iu <ﬁ1/2A;*,x> ] - 1| + |exp (—MZV*()C)/Z) —exp (—qu(x)/2)| .

IA
o3|

+
@

HS
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However, from the relation in (13), we have
|E [exp (z’u <ﬁ1/2A,’:,x>(HS)] —exp (—uZV*(x)/Z)’ — 0 as n — +oo,

and since from the dominated convergence theorem, V*(x) — V(x) as L — +oco, we have

exp (—MZV*(x)/Z) —exp (—uZV(x)/Z)’ — 0 as L — +oo.

Besides, by arguments of Lemma 1, we have

= 1 . 2
var ((@283x) ) A (ﬁ S i~ en)cOv(gam>L,ge1|gl|>L)) (v;.%)

i,lel,

1]
§ IV

A; (% Z h(|li - EII)E(8?1|si|>L)) (Vj,x>2

<
j=1 i,eel,
2 S d-1 o 12 1/2
< JlE e Y o [B ()| P (il > )
=1 j=1
12
. E [exp (al&il?)]

i

exp(aLb)
where C; is some positive constant, then (n'/?A}*, x) ws = Oas (exp(—aL?/2)). Therefore

‘E [exp (iu <ﬁ1/2A,’:*,x>(HS)] - 1’ — 0 as L — +oo. n

Proof of Theorem 1

Let (Vp, X) g = <ﬁ1/2An,x>(HS =1n'"?T(n, 1,x) + n'/? 21.2:2 T(n,i,x). From Lemma 2 ii), the
rightmost term converges in probability towards zero. Moreover, from Lemma 2 i), the random
variables (U(1,n,1,x),1 € 77) are asymptotically independent. Then, from Lemma 2 iii), iv) and
Slutsky’s Theorem, we obtain, for all x in W, E [exp (iu (Va, x)gs)| — E [exp (iu{Ca,x)3s)].
where i? = —1, and Ca ~ N'(0,0?A?). Next, we show that (Py,) is tight. Since Lemma 1 gives

+00
. 1 2
2 . .

Var((Va x)pis) = 0 )4 ,}ggo(iz il = el = 1) | (v, x)°,

j=1 i,lel,
then
400 ) +00 1
R’=E ;(Vn,vj) ) — az;@. "li‘r’g"(ﬁié hj(||i—£||)<p(||i—£||)) < +oo.

Given £ > 0, consider Ay = ;X Ax where Ay = {x € W : 3% (x,v;)* < M'}, with
1 =1 <1y < ...<lg M — +00ask — +o0 and Y15 MiR; < {. Then, from Tchebytchev’s

inequality, we have
+00 +00
1=Py, (A7) < D Py, (A5) < D MyRE < ¢
k=1 k=1

Thus (Py, ) is tight. Finally, applying Dudley-Skorokhod’s theorem (see (Bosq, 2000, Theorem 2.2,
Page 46)), yields the result of Theorem 1. [
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Proofs of Theorems 4, 2 and 3

The proofs of Theorems 4 (i), 2 and 3 are respectively very similar to those of Theorems 1, 4 (ii)
and 4 (iii). A brief outline of the proofs of the last two enumerations of Theorems 4 is given in
the following. The proof of Theorem 4 (ii) is based on Theorem 4 (i) of this paper and Lemma 3
below in addition to the same arguments as those used in the proof of Theorem 3 in Cardot et al.
(2003). Whereas the proof of Theorem 4 (iii) is obtained by the following Lemma 4 and Lemma 1,
in addition to same the arguments as those used in the proof of Theorem 4 in Cardot et al. (2003). m

Lemma 3. Under Assumptions 1 and 2, we have

log(n
||rn—r||m=oa.s(—gﬁ( )).

Proof. Recall that 'y =0~ Y7 X; ®p Xi and I' = E(X ®y X). For all T > 0, we have

Pl =Tl > 7)

P (sup [Tav: = Tvillyg > ‘r)
1

+00
< D P(Twv = Tvilly > 7)
I=1
1 +00
2
< ;;E(urnw—rwny).

However, setting

Lij = ((Xi,vi) g Xi = BUX, v g X), (X5, vi) y X —E(X, v g X)), »

we have
2
) 1
E[ITwvi - Tvill}] = B[z D ((Xivids Xi - ECX, vi)g X))
n iel, H
1 1
= = D B vy X~ B v X)) + =5 DB (Ly)
i€l i#j
= A+B.
Since Xj are strictly stationary with the same law as X, one has
1
A = = 3 B v)n X~ E(X. vy Xl
iel,
2
< = 30 (B (v Il ) + B (X v X1 ))
i€l
4M2
S — )
n

1 1
B = = > B(Ly) + = > E(Ly) =B+ By,
0<[li=jll<C li-3T>Ca
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where 0 < C,, < nand C, — oo as n — oo. However,

+00

E(Ly) = Z Cov ((Xi, vi)u{Xi, ve ) (X v (X, Vs )H )

and E ((X, vl)?q) < M’E ((X vl)H) M?2;. Then from Cauchy Schwartz inequality, we have

Cqn
ﬁlz 3 z (v (v
k=1

|Bi| <
i,jeln =
k<|li-jll= t<k+l
12 1/2
< = Z Z Z Z [ ((Xi,w)il)] [E ((Xi,vsﬁq)]
k<|\1—J\| z<k+1 5=l
Mz/l]/z Cn
< 2 L Z*‘“
k=0 k<]l e
M2/11/2 Cy +00 Mz/ll/sz +oo
< th 12/11/2 Zﬁyz-
s=1
Taking Cp = | (log(m))'/¢] (where | x] stands for the integer part of x), we obtain
1/2 =~
c24," " log(m)
|B1] < IT,

where ¢, is some positive constant. Besides, applying Lemma 2.1(i) of Tran (1990), we have

)
[E(Lij)| < C X, vi)u (X v lla (X5 v (X5, vedr |, [@r,e0 (i = )] 2
Since a1, (t) = O(¢t~%) with & > 4d, then

CM3 1/4 o0 1/4 12
Bl < = Y% Zﬁ ()]
k=Cp+1 i.jeIn s=1
k<||l—J|| =t<k+1
CM3 1/4 o
L M Z Z 211/4 7000)]1/2
Cort k<||1H e
CM3/11/4 +00 0o
S —_—

ﬁ 1 Z/li/“ztd—l [al,oo(t)] 1/2

s=1 t=1

CM3 1/4 o0 c3 /l/

< —Z 1/4th 1-£/2 o

s=1
where c3 is some positive constant. Therefore
14y =
c4d;"" log(m)
 (ITws = Twilly) < —=——. (14)
where ¢4 is some positive constant. Hence P (||Ty, — ', > 7) = O(log(m)/n). ]
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A rate of convergence of I', with respect to norm ||.|| ;2 (4s) appears in the following corollary.

Lemma 4. Under Assumptions 1 and 2, we have

ITn = Cll 245y = O

—~

n

log(n) )

Proof. By definition, we have

I = Pllz2cs) = {2 [0 = TBes]}

Since (v;);>1 is an orthonormal basis of H, from the inequality in (14) we have

+00 1 —~, +00
E (I~ Tlgs] = D B [ITav) - Tl ] < S0 N gt .
i=1

i=1
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