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We consider a functional linear regression model with a real-valued response and
a functional random variable with its derivative as covariates. We are interested in
testing the null hypothesis of no covariates effect using a spatially dependent sample.
We propose two test statistics which take into account the proximity between sites
and we establish the asymptotic normality of cross covariance operator between
both interest variables. From this result, we derive asymptotic distributions of these
both statistics. Then, we illustrate our test procedure by means of a simulation study.
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1. Introduction
Since the last decade, big data with dynamic components in time and space are becoming more and
more popular in a number of disciplines such as environmental sciences, neuroimaging and genomics,
epidemiology, and hydrology. Functional data analysis (FDA) is well suited to deal with such data
and the linear regression model remains a fundamental tool for modelling relationships between a
real-valued response variable and an explanatory variable which is of functional nature. Since the
seminal paper of Hastie and Mallows (1993) on functional linear models with a scalar response,
several types of functional linear models for independent or time-series data have been developed
for different purposes (see, e.g. Cardot et al., 2003; Liu et al., 2017; Mas and Pumo, 2009; Aue
et al., 2015). Compared to independent data, functional linear regression with spatially dependent
high-dimensional data is still an open research problem (see, e.g., Menafoglio and Secchi (2017),
Giraldo et al. (2018)). Functional spatial linear prediction using kriging methods have been tackled
by Bohorquez et al. (2017), Giraldo et al. (2018). While the one based on spatial autoregressive
functional models have been considered by Ruiz-Medina (2011, 2012). An extension of the functional
linear regression model with a functional variable and its first derivative as covariates, studied in
Mas and Pumo (2009), to the case of spatially dependent data has been introduced in Bouka et al.
(2018). Such models may be used in many applications; for instance in environmental domain for
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forecasting of ozone pollution (see Bouka et al. (2023)). In this paper, we consider the model, as in
Bouka et al. (2018), defined by

𝑌i = ⟨𝛽, 𝑋i⟩𝐻 + 〈
𝛾, 𝑋 ′

i
〉 + 𝜀i, i ∈ 𝐸 ⊂ Z𝑑 , 𝑑 ≥ 2, (1)

where {𝑌i ∈ R, i ∈ 𝐸 ⊂ Z𝑑} is a real-valued spatial process, {𝑋i (.), i ∈ 𝐸 ⊂ Z𝑑} is a spatial
functional process with its first derivative {𝑋 ′

i (.), i ∈ 𝐸 ⊂ Z𝑑}, {𝜀i, i ∈ 𝐸 ⊂ Z𝑑} is a noise
independent of {𝑋i (.), i ∈ 𝐸 ⊂ Z𝑑} and {𝑋 ′

i (.), i ∈ 𝐸 ⊂ Z𝑑}. All the random variables of the
previous processes are assumed centered, the bivariate process {(𝑋i, 𝑌i)}i∈𝐸⊂Z𝑑 is strictly stationary
and defined on a probability space (Ω,A, P), valued into 𝐻 × R with the same distribution as a
random vector (𝑋 , 𝑌 ). Here 𝐻 is the Sobolev space, defined by 𝐻 = {𝑥 ∈ 𝐺, 𝑥′ ∈ 𝐺} where
𝐺 := 𝐿2 [0, 1] is the Hilbert space of squared integrable functions, 𝑥′ stands for the first derivative of
𝑥 ∈ 𝐻. Let ⟨., .⟩𝐻 and ⟨., .⟩ be the inner products in 𝐻 and 𝐺 respectively defined by

⟨ 𝑓 , 𝑔⟩𝐻 =
∫ 1

0
𝑓 (𝑡)𝑔(𝑡)𝑑𝑡 +

∫ 1

0
𝑓 ′ (𝑡)𝑔′ (𝑡)𝑑𝑡, ⟨ 𝑓 , 𝑔⟩ =

∫ 1

0
𝑓 (𝑡)𝑔(𝑡)𝑑𝑡;

the associated norms are denoted by ∥.∥𝐻 and ∥.∥𝐺 respectively. We are interested in testing for the
nullity of the pair (𝛽, 𝛾) in (1). That is testing whether there is not a linear connection between the
functional variables (𝑋i, 𝑋 ′

i ) and the real variable 𝑌i according to relation (1). For that, we consider
the following test:

𝐻0 : 𝛽 = 0 and 𝛾 = 0 vs. 𝐻1 : 𝛽 ≠ 0 or 𝛾 ≠ 0. (2)

Despite the potential applications of such no regression effect for spatially dependent data, this
problem has not been addressed in the literature to the best of our knowledge. For the basic functional
linear model 𝑌 = ⟨𝛽, 𝑋⟩ + 𝜀, Cardot et al. (2003) proposed to test the hypothesis 𝐻0 : 𝛽 = 0, against
𝐻1 : 𝛽 ≠ 0 for independent data.

Cardot et al. (2004) extended the previous work by considering an additive functional linear
regression model and a test for partial nullity of the involved coefficients. Hilgert et al. (2013)
considered the basic functional linear model and proposed a test statistic that does not depend on the
number of principal components compared to Cardot et al. (2003). Kong et al. (2016) considered
the case where the functional covariate is contaminated by measurement error and may be observed
densely.

In this paper, we first extend the work of Cardot et al. (2003) to the spatial context and then add
an effect of the first derivative of the functional covariate in the model. The rest of the paper is
organised as follows. Section 2 is devoted to the proposed tests for no effect in the model (2). The
test statistics are defined and asymptotic results are given under some mild conditions. Section 3
presents a simulation study. The conclusion is given in Section 4. The proofs of the main results are
postponed to Section 5.

2. Testing for no effect
In this section, we consider the spatial functional linear regression model with derivatives defined in
(1). As mentioned previously, we aim to test the hypothesis 𝐻0 against 𝐻1 as given in (2). For that, let
us consider the covariance and cross-covariance operators Γ = E[𝑋 ⊗𝐻 𝑋] (where ⊗𝐻 stands for the
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tensor product defined by (𝑢 ⊗𝐻 𝑣)ℎ =< 𝑢, ℎ >𝐻 𝑣) and Δ such that Δ𝑥 = E(𝑌 ⟨𝑋, 𝑥⟩𝐻 ). We denote
by (𝜆 𝑗 ) 𝑗≥1 the sequence of eigenvalues of Γ and (𝑣 𝑗 ) 𝑗≥1 the sequence of associated eigenfunctions.
We assume that 𝜆 𝑗 , 𝑗 = 1, 2, ... are strictly positive and verify

∑+∞
𝑗=1 𝜆 𝑗 < +∞. Recall that (𝑣 𝑗 ) 𝑗≥1

is an orthonormal basis of Hilbert space 𝐻. Let ⟨., .⟩H𝑆 be the inner product of the space H𝑆 of
Hilbert-Schmidt operators, defined by ⟨𝑇, 𝑆⟩H𝑆 =

∑+∞
𝑗=1⟨𝑇𝑣 𝑗 , 𝑆𝑣 𝑗⟩ and let ∥.∥H𝑆 be its associated

norm. Before giving the test statistic, let us state a relationship between the operators Δ and Γ. This
relationship is obtained by a direct calculation.

Proposition 1. Let 𝛹 be the continuous linear operator from 𝐻 to R defined by 𝛹 (.) = ⟨𝛽, .⟩𝐻 +
⟨𝐷∗𝛾, .⟩ where 𝐷∗ stands for the adjoint of the differential operator 𝐷. Then we have Δ =𝛹Γ.

Under 𝐻0, we have Δ =𝛹Γ = 0, that is Γ𝛹 ∗ = 0, where𝛹 ∗ is the adjoint operator of𝛹 . Since the
eigenvalues of Γ are strictly positive, we deduce that𝛹 ∗ = 0. Since 𝑌i =𝛹 (𝑋i) + 𝜀i, testing for𝛹 = 0
is equivalent to testing for Δ = 0. Let us first study the particular case of functional linear model
without derivative; model (1) without the term

〈
𝛽′, 𝑋 ′

i
〉 + 〈

𝛾, 𝑋 ′
i
〉
, that is

𝑌i = ⟨𝛽, 𝑋i⟩ + 𝜀i. (3)

2.1 Case of the regression model without the derivative
We investigate here the particular test for the hypotheses

𝐻0 : 𝛽 = 0 against 𝐻1 : 𝛽 ≠ 0,

corresponding to model (3). We then consider the same problem as in Cardot et al. (2003). The
difference comes from the fact that the used sample is spatially dependent compared to the i.i.d
case considered in Cardot et al. (2003). As in Cardot et al. (2003), let us decompose the space 𝐺
as 𝐺 = 𝑁 ⊕ 𝑊 , with 𝑁 = 𝐾𝑒𝑟 (Γ) = {𝑥 ∈ 𝐺 : Γ𝑥 = 0} and 𝑊 = 𝐼𝑚(Γ) where 𝐼𝑚(Γ) = {𝑧 ∈
𝐺, 𝑧 = Γ𝑥, 𝑥 ∈ 𝐺} and 𝐼𝑚(Γ) is the closure in 𝐺 of 𝐼𝑚(Γ). Since 𝑌i = 𝛹 (𝑋i) + 𝜀i, the property
𝛹 =𝛹1 +𝛹2 = 0 with (𝛹1,𝛹2) ∈ 𝑁 ×𝑊 is equivalent to𝛹2 = 0. Then testing for 𝛽 = 0 is equivalent
to test for Δ = 0. For giving the proposed test statistics, we consider a spatial sample (𝑋i, 𝑌i)i∈In with

In = {1, 2, · · · , 𝑛1} × · · · × {1, 2, · · · , 𝑛𝑑} ,
where n = (𝑛1, · · · , 𝑛𝑑) ∈ (N∗)𝑑 , n̂ = 𝑛1 × · · · × 𝑛𝑑 , n → +∞ means that min𝑖=1, · · · ,𝑑{𝑛𝑖} −→ +∞
and |𝑛𝑖/𝑛 𝑗 | < 𝐶 for a constant 𝐶 such that 0 < 𝐶 < ∞ for all 𝑖, 𝑗 such that 1 ≤ 𝑖, 𝑗 ≤ 𝑑. We consider
the empirical operators Γn and Δn defined by:

Γn𝑥(𝑡) = 1
n̂

∑︁
i∈In

⟨𝑋i, 𝑥⟩𝑋i (𝑡) , 𝑥 ∈ 𝐺, 𝑡 ∈ [0, 1],

Δn𝑥 =
1
n̂

∑︁
i∈In

𝑌i ⟨𝑋i, 𝑥⟩ , 𝑥 ∈ 𝐺.

Let (𝜆 𝑗 ) 𝑗≥1 (resp. (𝑣̂ 𝑗 ) 𝑗≥1) be the sequence of eigenvalues of Γn (resp. associated eigenfunctions).
We assume that the process {𝑍i (.) = ⟨𝑋i, .⟩𝜀i, i ∈ Z𝑑} is spatially mixing (see Tran (1990)). That is

𝛼(𝜎(𝑍i; i ∈ 𝐾1), 𝜎(𝑍j; i ∈ 𝐾2)) = sup
𝐴∈𝜎 (𝑍i;i∈𝐾1 ) ,𝐵∈𝜎 (𝑍i;i∈𝐾2 )

{|P(𝐴 ∩ 𝐵) − P(𝐴)P(𝐵) |}

≤ 𝑓 (𝐶𝑎𝑟𝑑 (𝐾1), 𝐶𝑎𝑟𝑑 (𝐾2))𝛼1,∞ (𝜌(𝐾1, 𝐾2)), (4)
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where 𝐶𝑎𝑟𝑑 (𝐾1) denotes the cardinality of 𝐾1, 𝜌 stands for the distance defined, for any subsets 𝐾1
and 𝐾2 of R𝑑 , by 𝜌(𝐾1, 𝐾2) = min{∥i − j∥, i ∈ 𝐾1, j ∈ 𝐾2} with ∥i − j∥ = max1≤𝑠≤𝑑 |𝑖𝑠 − 𝑗𝑠 | for any
i and j in Z𝑑 . In addition, we assume the polynomial mixing condition

𝛼1,∞ (𝑢) = 𝑂 (𝑢−𝜉 ), 𝜉 > 4𝑑,

and that 𝑓 satisfies either

𝑓 (𝑛, 𝑚) ≤ min{𝑛, 𝑚} or 𝑓 (𝑛, 𝑚) ≤ 𝐶 (𝑛 + 𝑚 + 1) 𝑘̃ ,

for some 𝑘̃ > 1 and some 𝐶 > 0. The results given in the following may be easily extended to
exponential rate (i.e 𝛼1,∞ (𝑢) = 𝑂 (𝑒−𝜉𝑢)). Note that if the processes {𝑋i (.), i ∈ Z𝑑} and {𝜀i, i ∈ Z𝑑}
are 𝛼-mixing, then it is also the case for {𝑍i, i ∈ Z𝑑}. Many spatial stochastic processes including
time series satisfy strong mixing properties, for more details see for instance Guyon (1995).

We consider the test statistics given by

𝐷n =
1
𝜎̂2




n̂1/2Δn𝐵n



2

H𝑆
, (5)

𝑆n =
1√
𝑞n

(
1
𝜎̂2




n̂1/2Δn𝐵n



2

H𝑆
− 𝑞n

)
, (6)

where

𝐵n (.) =
𝑞n∑︁
𝑗=1
𝜆−1/2
𝑗

(
1
n̂

∑︁
i,ℓ∈In

ℎ 𝑗 (∥i − ℓ∥)𝜑(∥i − ℓ∥)
)−1/2 〈

𝑣̂ 𝑗 , ·
〉
𝑣̂ 𝑗 ,

𝑞n < n̂, 𝑞n → +∞ as n → +∞, functions ℎ 𝑗 and 𝜑 are defined in Assumptions 1 2 below, and 𝜎̂
is a consistent estimator of 𝜎 such that n̂1/2 (𝜎̂2 − 𝜎2) is bounded in probability. Such an estimator
exists; an example is given in Section 3. Note that in the independent sample case with 𝑑 = 1, 𝐷n and
𝑆n become both test statistics studied in Cardot et al. (2003) with 𝐵𝑛 (.) =

∑𝑞𝑛
𝑗=1 𝜆

−1/2
𝑗

〈
𝑣̂ 𝑗 , ·

〉
𝑣̂ 𝑗 and

𝛿1 = 1. From Theorem 1, When n is large enough, the 𝜒2 distribution with 𝑞n degrees of freedom is
approximatively the one of 𝐷n.

2.2 Assumptions
For establishing asymptotic results on both test statistics, we impose dependency conditions, in
particular the mixing and the decay of the cross covariances of the involved processes.

Assumption 1. The random functional process {𝑋i (.), i ∈ Z𝑑} is strictly stationary, ∥𝑋i∥𝐺 < 𝑀 a.s
with 𝑀 > 0 and for all i, ℓ ∈ Z𝑑 ,

E
(⟨𝑋i, 𝑣 𝑗⟩⟨𝑋ℓ, 𝑣𝑘⟩

)
=

{
𝜆 𝑗ℎ 𝑗 (∥i − ℓ∥) if 𝑗 = 𝑘,
0 otherwise,

(7)

where ℎ 𝑗 : [0, +∞[−→ [0, +∞[ with ℎ 𝑗 (𝑥) ↓ 0, as 𝑥 −→ +∞, ℎ 𝑗 (0) = 1,
∑+∞
𝑡=1 𝑡

𝑑−1 ∑∞
𝑗=1 𝜆 𝑗ℎ 𝑗 (𝑡) <

∞ and
∑+∞
𝑗=1 𝜆

1/4
𝑗 < +∞.
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Assumption 2. (𝜀i)i∈Z𝑑 is a stationary isotropic zero-mean random field such that

𝑉𝑎𝑟 (𝜀i) = 𝜎2, 𝐶𝑜𝑣(𝜀i, 𝜀j) = 𝜎2𝜑(∥i − j∥) for i ≠ j ∈ In, (8)
𝜑(0) = 1, 𝜑(−𝑥) = 𝜑(𝑥), |𝜑(𝑥) | ≤ 1, ∀𝑥,

where 𝜑(𝑥) ↓ 0, as 𝑥 −→ +∞. In addition, there exists two positive real numbers 𝑎, 𝑏 such that

E
[
exp

(
𝑎 |𝜀i |𝑏

)]
< ∞. (9)

Assumption 3. 𝜆1 > 𝜆2 > · · · > 𝜆𝑞n > 0 a.s.

The condition ∥𝑋 ∥𝐺 < 𝑀 a.s. in Assumption 1 has been used in Mas and Pumo (2009); it
is used to simplify the proofs and may be relaxed by assuming that supi∈In ∥𝑋i∥𝐺 < 𝑀n a.s.,
where limn→+∞ 𝑀n = +∞ and limn→+∞ (𝑀2

n log n̂)/n̂1/3 = 0. In addition, if we consider a Fourier
expansion of 𝑋i in the orthonormal basis {𝑣 𝑗 } of 𝐺, that is 𝑋i (𝑡) =

∑+∞
𝑗=1⟨𝑋i, 𝑣 𝑗⟩𝑣 𝑗 (𝑡), then if the

random fields 𝜁 𝑗 = {⟨𝑋i, 𝑣 𝑗⟩, i ∈ Z𝑑} are 𝛼-mixing strictly stationary, Condition (7), weaker than
mixing, is shown in Gneiting et al. (2010). Assumption 1 may be satisfied by spatial functional
autoregressive processes. Condition (8) in Assumption 2 is satisfied by stationary Gaussian random
fields (see, for instance, Francisco-Fernandez and Opsomer, 2005), whereas Condition (9) has been
used in Biau and Cadre (2004). Assumption 3 is basic in functional data analysis. Assumption 3 has
been used in Cardot et al. (2003).

2.3 Main asymptotic results
We give here the main asymptotic normality results of n̂1/2Δn.

Theorem 1. Under Assumptions 1 and 2, we have under 𝐻0

n̂1/2Δn
D−→ N

(
0, 𝜎2Λ2

)
,

where D−→ stands for the convergence in distribution and

Λ2 =
+∞∑︁
𝑗=1
𝜆 𝑗 lim

n→∞

(
1
n̂

∑︁
i,ℓ∈In

ℎ 𝑗 (∥i − ℓ∥)𝜑(∥i − ℓ∥)
) 〈
𝑣 𝑗 , ·

〉
𝑣 𝑗 .

The result below gives the asymptotic normality of the test statistic defined in (6).

Theorem 2. Assume that Assumptions 1–3 hold and that there exists a sequence (𝑞n) such that

n̂𝜆2
𝑞n(∑𝑞n

𝑗=1 𝛽 𝑗

)2
log n̂

−→ +∞

as n → +∞, where

𝛽 𝑗 =

{
2
√

2/(𝜆1 − 𝜆2) if 𝑗 = 1,
2
√

2/(min(𝜆 𝑗−1 − 𝜆 𝑗 , 𝜆 𝑗 − 𝜆 𝑗+1)) if 𝑗 ≥ 2.

Then, under 𝐻0, 𝑆n
D−→ N(0, 2).
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The following result states the consistency of the testing proposed procedure.

Theorem 3. Assume that Assumptions 1–3 hold with 𝜆 𝑗 = 𝑂 (𝑟 𝑗 ), 0 < 𝑟 < 1, 𝑗 ≥ 1, then the testing
procedure based on 𝑆n is consistent.

2.4 Case of the regression model with derivatives
This section generalises the previous results in the case of model (1). Let Γn and Δn be the non-
parametric empirical estimators of the operators Δ and Γ defined by Γn = n̂−1 ∑

i∈In 𝑋i ⊗𝐻 𝑋i , Δn𝑥 =
n̂−1 ∑

i∈In 𝑌i ⟨𝑋i, 𝑥⟩𝐻 , 𝑥 ∈ 𝐻. We denote by (𝜆 𝑗 ) 𝑗≥1 the sequence of eigenvalues of Γn associated
to sequence of eigenfunctions (𝑣̂ 𝑗 ) 𝑗≥1. Assumptions and results in this section are obtained by
replacing the inner product ⟨·, ·⟩ in Sections 2.2 and 2.3 by ⟨·, ·⟩𝐻 . The following theorem extends
the previous results to the case of model (1).

Theorem 4.

(i) Under 𝐻0 and Assumptions 1 and 2, we have

n̂1/2Δn
D−→ N (

0, 𝜎2Λ2) .
(ii) Under 𝐻0 and the hypotheses of Theorem 2 with appropriate space and inner product, 𝑆n

D−→
N(0, 2).

(iii) Under 𝐻1 and the hypotheses of Theorem 3 with appropriate space and inner product, the
testing procedure is consistent.

3. A simulation study
In this section, we illustrate our testing procedure by simulations. We computed empirical levels
and powers of test from simulated spatial data in Z2. Using the lexico-graphic order, we simulated a
sample {(𝑋iℓ , 𝑌iℓ )}1≤ℓ≤𝑛2 as follows: we consider the 15-th first elements 𝐵1, . . . , 𝐵15 of the Fourier
basis. For 𝑘 = 1, · · · , 15, we simulated a pseudo-random vector (𝜉i1 ,𝑘 , . . . , 𝜉i𝑛2 ,𝑘)𝑇 in R𝑛2 from the
multivariate uniform distribution with null mean and covariance matrix Σ1, where Σ1 is the 𝑛2 × 𝑛2

matrix with general term Σ1
𝑖 𝑗 = exp(−∥i𝑖 − i 𝑗 ∥2). For ℓ = 1, . . . , 𝑛2, we take

𝑋iℓ (𝑡) =
15∑︁
𝑘=1

𝜉iℓ ,𝑘 𝐵𝑘 (𝑡).

The interval [0; 1] is discretised by 366 equispaced points. We have then simulated 𝑌iℓ by approxi-
mating integrals in equations (1) and (3) using the rectangular method. 𝜀iℓ are i.i.d Gaussian random
variables with zero mean and variance equals to 𝜎2. Two cases are considered in which, under 𝐻0,
𝜎2 = 0.01.

Case A : Model (3) without the derivative. Under 𝐻0, 𝛽 = 0, and under 𝐻1, 𝛽(𝑡) = [sin(2𝜋𝑡3)]3,
if 𝑡 ∈ [0; 0.6] and 𝛽(𝑡) = 0, if 𝑡 ∈ ]0.6; 1]. The interval [0; 0.6] (resp. ]0.6; 1]) is discretised by 7
(resp. 359) equispaced points. Under 𝐻1, 𝜎2 is controlled by the signal-to-noise ratio (snr) defined
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Table 1. Cases A and B (with 𝛽 = 0 and 𝛾 = 0). Empirical levels (as
percentage) of the test, based on 800 replications; 𝑛2 = 225.

𝐷n 𝑆n

𝛼 (%) 𝑞𝑛 = 5 𝑞𝑛 = 10 𝑞𝑛 = 20 𝑞𝑛 = 5 𝑞𝑛 = 10 𝑞𝑛 = 20

20 33.6 29.6 7.5 15.1 16.8 33.8
10 19.0 16.0 2.3 9.5 8.5 14.6
5 11.6 8.6 0.8 6.6 4.5 5.0
1 2.6 1.5 0.1 2.8 1.8 0.1

by 𝑠𝑛𝑟1 = E[⟨𝛽, 𝑋⟩2]/(E[⟨𝛽, 𝑋⟩2] + 𝜎2). We consider the estimator 𝜎̂2 of 𝜎2 defined by

𝜎̂2 =
1

𝑡𝑟 (𝐼 − 𝑆)
𝑛2∑︁
ℓ=1

(𝑌iℓ − ⟨𝛽, 𝑋iℓ ⟩)2, (10)

where 𝐼 is the 𝑛2 × 𝑛2 identity matrix, 𝑆 is the hat matrix, 𝑡𝑟 (𝑥) stands for the trace of the matrix 𝑥,
and 𝛽 is an estimator of 𝛽 computed by using the function “fregre.basis” of the R package fda.

Case B : Model (1) with the derivative. Under 𝐻0, 𝛽 = 𝛾 = 0, and under 𝐻1, 𝛽(𝑡) = [sin(2𝜋𝑡3)]3 if
𝑡 ∈ [0; 0.6] and 𝛽(𝑡) = 0 if 𝑡 ∈]0.6; 1], and 𝛾(𝑡) = (0.6− 𝑡)2 if 𝑡 ∈ [0; 0.6] and 𝛾(𝑡) = 0 if 𝑡 ∈]0.6; 1].
The interval [0; 0.6] (resp. ]0.6; 1]) is discretised by 7 (resp. 359) equispaced points. Under 𝐻1, 𝜎2

is controlled by the signal-to-noise ratio (snr) defined by

𝑠𝑛𝑟2 =
E((⟨𝛽, 𝑋i⟩𝐻 + 〈

𝛾, 𝑋 ′
i
〉)2)

E((⟨𝛽, 𝑋i⟩𝐻 + 〈
𝛾, 𝑋 ′

i
〉)2) + 𝜎2

,

where 𝑋 ′
i is computed by using the function “fdata.deriv” of the R package fda. We consider the

estimator 𝜎̂2 of 𝜎2 defined in (10) and in which we replace ⟨𝛽, 𝑋i⟩ by Ψ̂(𝑋i) = ⟨𝛽+𝐷∗𝛽′ +𝐷∗𝛾̂, 𝑋i⟩.
The eigenelements of the covariance operator are estimated by means of a quadrature rule. We
assess performance of our testing procedure through empirical levels and powers of test, based on
800 replications with 𝑛2 = 225.

In Table 1, we remark that for larger value of 𝑞𝑛 (i.e 𝑞𝑛 = 20), the empirical levels based on
𝑆n overestimate nominal levels 𝛼 = 20%, 10%, 5%, and it is contrary for those based on 𝐷n.
Whereas for 𝑞𝑛 = 5, 10, the empirical levels computed from 𝑆n tend to underestimate nominal levels
𝛼 = 20%, 10%, 5%, and it is contrary for those computed from 𝐷n. However, for 𝑞𝑛 = 10, compared
to the test statistic 𝐷n, the empirical levels obtained from 𝑆n lead to better approximations of the true
nominal levels 𝛼 = 20%, 10%, 5%. So, we analyse the empirical power whose values are given in
the following Tables 2 and 3.

In Tables 2 and 3, we remark that empirical powers increase as the signal-to-noise ratio increases
and decrease as 𝑞𝑛 increases. So, the both proposed test statistic computed with 𝑞𝑛 = 5, is more
power to reject the null hypothesis 𝐻0 when it is false. Thus, a trade off between these two risks is
needed to choose a value of 𝑞𝑛 before deciding to accept or to reject the null hypothesis. In this case
of this simulation study, we can choose 𝑞𝑛 = 10.
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Table 2. Case A. The empirical powers (as percentage) of the test, based on 800
replications; 𝑛2 = 225.

𝐷n 𝑆n

𝑠𝑛𝑟1(%) 𝛼 (%) 𝑞𝑛 = 5 𝑞𝑛 = 10 𝑞𝑛 = 20 𝑞𝑛 = 5 𝑞𝑛 = 10 𝑞𝑛 = 20

5 1 64.1 46.5 15.3 64.5 47.1 15.1
5 82.5 70.4 32.9 74.8 61.6 27.5
10 90.1 80.9 44.0 79.5 68.4 33.4

10 1 96.1 89.1 58.9 96.1 89.5 58.6
5 99.0 96.0 78.8 97.8 93.5 71.9
10 99.8 98.5 86.1 98.9 95.6 78.6

Table 3. Case B. The empirical powers (as percentage) of the test, based on 800
replications; 𝑛2 = 225.

𝐷n 𝑆n

𝑠𝑛𝑟2(%) 𝛼 (%) 𝑞𝑛 = 5 𝑞𝑛 = 10 𝑞𝑛 = 20 𝑞𝑛 = 5 𝑞𝑛 = 10 𝑞𝑛 = 20

5 1 56.5 44.6 15.5 57.3 45.4 15.3
5 77.8 66.5 34.5 69.0 58.0 25.8
10 87.6 78.6 46.3 74.1 65.1 33.6

10 1 93.6 87.3 60.6 93.8 87.6 60.5
5 98.9 96.1 79.0 96.6 93.5 72.0
10 99.8 98.6 87..4 98.0 95.4 78.4

4. Conclusion
In this work, we propose to test whether or not the functional linear relationship suggested by model
(1) and its particular case (3) hold. The originality of the proposed method is to consider spatially
dependent data and to take into account a first derivative effect on the functional linear model. The
difficulty involved in handling the spatial dependency is in the proof of the asymptotic normality
of the empirical cross-covariance operator. We propose two statistics which take into account the
proximity between sites. Then, we established their asymptotic distribution. The simulation study
showed that the testing procedure based on both statistics 𝑆n and 𝐷n give good results. Notice that,
from Proposition 1, the case B with derivatives can be rewritten as case A without derivatives of
functional data. So, the proposed methodology can, therefore, be seen as a good alternative to Cardot
et al. (2003) when available data are spatially dependent with or without a derivative effect in the
functional linear model.

5. Proofs
For proving Theorem 1, we need the following lemmas on the asymptotic variance and characteristic
function of

〈
n̂1/2Δn, 𝑥

〉
HS .
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Lemma 1. Under 𝐻0 and Assumptions 1 and 2, for all 𝑥 in 𝐺 and as n → +∞, we have

𝑉𝑎𝑟
(〈

n̂1/2Δn, 𝑥
〉
HS

)
−→ 𝜎2

+∞∑︁
𝑗=1
𝜆 𝑗 lim

n→∞

(
1
n̂

∑︁
i,ℓ∈In

ℎ 𝑗 (∥i − ℓ∥)𝜑(∥i − ℓ∥)
) 〈
𝑣 𝑗 , 𝑥

〉2
.

Proof. Since {𝑋i} is strictly stationary, then from Assumptions 1 and 2, we have

𝐴n : = 𝑉𝑎𝑟
(〈

n̂1/2Δn, 𝑥
〉
HS

)
= E




+∞∑︁
𝑗=1

n̂1/2

n̂
∑︁
i∈In

⟨𝑋i, 𝑣 𝑗⟩⟨𝑥, 𝑣 𝑗⟩𝜀i


2


=
1
n̂

+∞∑︁
𝑗=1

⟨𝑥, 𝑣 𝑗⟩2
∑︁

i,ℓ∈In

E
[⟨𝑋i, 𝑣 𝑗⟩⟨𝑋ℓ, 𝑣 𝑗⟩

]
𝐶𝑜𝑣 (𝜀i, 𝜀ℓ)

+1
n̂

+∞∑︁
𝑗,𝑘=1
𝑗≠𝑘

⟨𝑥, 𝑣 𝑗⟩⟨𝑥, 𝑣𝑘⟩
∑︁

i,ℓ∈In

E
[⟨𝑋i, 𝑣 𝑗⟩⟨𝑋ℓ, 𝑣𝑘⟩

]
𝐶𝑜𝑣 (𝜀i, 𝜀ℓ)

= 𝜎2
+∞∑︁
𝑗=1
𝜆 𝑗

(
1
n̂

∑︁
i,ℓ∈In

ℎ 𝑗 (∥i − ℓ∥)𝜑(∥i − ℓ∥)
) 〈
𝑣 𝑗 , 𝑥

〉2
.

However, for all 𝑗 = 1, 2, · · · , we have

𝐴 𝑗n :=
1
n̂

∑︁
i,ℓ∈In

ℎ 𝑗 (∥i − ℓ∥)𝜑(∥i − ℓ∥)

≤ 1
n̂

+∞∑︁
𝑘=0

∑︁
i,ℓ∈In

𝑘≤∥i−ℓ∥<𝑘+1

ℎ 𝑗 (∥i − ℓ∥)𝜑(∥i − ℓ∥)

≤
+∞∑︁
𝑘=0

∑︁
i∈In

𝑘≤∥i∥=𝑡<𝑘+1

ℎ 𝑗 (𝑡)𝜑(𝑡) ≤
+∞∑︁
𝑡=1

𝑡𝑑−1ℎ 𝑗 (𝑡)𝜑(𝑡).

Then, from Assumptions 1 and 2, we have

𝐴n ≤ 𝜎2
+∞∑︁
𝑗=1
𝜆 𝑗

+∞∑︁
𝑡=1

𝑡𝑑−1ℎ 𝑗 (𝑡)𝜑(𝑡)
〈
𝑣 𝑗 , 𝑥

〉2 ≤ 𝜎2∥𝑥∥2
𝐺

+∞∑︁
𝑡=1

𝑡𝑑−1
+∞∑︁
𝑗=1
𝜆 𝑗ℎ 𝑗 (𝑡) < ∞.

So, there exists some positive constant 𝐸 such that limn→∞ 𝐴n = 𝐸 < ∞. ■

Let us consider Ξi𝑥 = 𝑍i (𝑥)/n̂, where 𝑍i (𝑥) = ⟨𝑋i, 𝑥⟩HS 𝜀i. Then, under 𝐻0, we have

⟨Δn, 𝑥⟩HS =
∑︁
i∈In

Ξi𝑥 =
∑︁
i∈In

𝑍i (𝑥)
n̂ .

Let us use the Bernstein’s spatial blocks technique (Tran, 1990) to introduce the test statistics.
Assume, without loss of generality, that there exist integers 𝑢𝑖 , 𝑖 = 1, · · · , 𝑑, 𝑝1 and 𝑝2 in N∗ such

TESTING FOR NO EFFECT IN SPATIAL LINEAR MODEL 9



that 𝑛𝑖 = 𝑢𝑖 (𝑝1 + 𝑝2), 𝑡̂ = 𝑢1 × · · · × 𝑢𝑑 , and n̂ = 𝑡̂ (𝑝1 + 𝑝2)𝑑 . For l = (𝑙1, ..., 𝑙𝑑), 𝑙𝑖 ∈ {0, ..., 𝑢𝑖 − 1},
𝑖 = 1, · · · , 𝑑 let

𝑈 (1, n, l, 𝑥) =
𝑙𝑘 (𝑝1+𝑝2 )+𝑝1∑︁
𝑖𝑘=𝑙𝑘 (𝑝1+𝑝2 )+1
𝑘=1,...,𝑑

Ξi𝑥,

𝑈 (2, n, l, 𝑥) =
𝑙𝑘 (𝑝1+𝑝2 )+𝑝1∑︁
𝑖𝑘=𝑙𝑘 (𝑝1+𝑝2 )+1
𝑘=1,...,𝑑−1

(𝑙𝑑+1) (𝑝1+𝑝2 )∑︁
𝑖𝑑=𝑙𝑑 (𝑝1+𝑝2 )+𝑝1+1

Ξi𝑥,

𝑈 (3, n, l, 𝑥) =
𝑙𝑘 (𝑝1+𝑝2 )+𝑝1∑︁
𝑖𝑘=𝑙𝑘 (𝑝1+𝑝2 )+1
𝑘=1,...,𝑑−2

(𝑙𝑑−1+1) (𝑝1+𝑝2 )∑︁
𝑖𝑑−1=𝑙𝑑−1 (𝑝1+𝑝2 )+𝑝1+1

𝑙𝑑 (𝑝1+𝑝2 )+𝑝1∑︁
𝑖𝑑=𝑙𝑑 (𝑝1+𝑝2 )+1

Ξi𝑥,

𝑈 (4, n, l, 𝑥) =
𝑙𝑘 (𝑝1+𝑝2 )+𝑝1∑︁
𝑖𝑘=𝑙𝑘 (𝑝1+𝑝2 )+1
𝑘=1,...,𝑑−2

(𝑙𝑑−1+1) (𝑝1+𝑝2 )∑︁
𝑖𝑑−1=𝑙𝑑−1 (𝑝1+𝑝2 )+𝑝1+1

(𝑙𝑑+1) (𝑝1+𝑝2 )∑︁
𝑖𝑑=𝑙𝑑 (𝑝1+𝑝2 )+1

Ξi𝑥,

and so on, until the last two terms

𝑈 (2𝑑−1 + 1, n, l, 𝑥) =
(𝑙𝑘+1) (𝑝1+𝑝2 )∑︁

𝑖𝑘=𝑙𝑘 (𝑝1+𝑞1 )+𝑝1+1
𝑘=1,...,𝑑−1

𝑙𝑑 (𝑝1+𝑝2 )+𝑝1∑︁
𝑖𝑑=𝑙𝑑 (𝑝1+𝑝2 )+1

Ξi𝑥,

𝑈 (2𝑑 , n, l, 𝑥) =
(𝑙𝑘+1) (𝑝1+𝑝2 )∑︁

𝑖𝑘=𝑙𝑘 (𝑝1+𝑝2 )+𝑝1+1
𝑘=1,...,𝑑

Ξi𝑥.

Setting T = {0, ..., 𝑢1 − 1} × · · · × {0, ..., 𝑢𝑑 − 1}, let for each integer 𝑖 = 1, ..., 2𝑑 ,

𝑇 (n, 𝑖, 𝑥) =
∑︁
j∈T

𝑈 (𝑖, n, j, 𝑥).

Then, under 𝐻0, ⟨Δn, 𝑥⟩HS may be rewritten as

⟨Δn, 𝑥⟩HS =
2𝑑∑︁
𝑖=1
𝑇 (n, 𝑖, 𝑥).

We have the following:

Lemma 2. Under 𝐻0 and Assumptions 1 and 2, as n −→ +∞ we have:

i) For all 𝑥 ∈ 𝑊 ,

𝑄1 = E
[
exp

(
𝑖 n̂1/2𝑇 (n, 1, 𝑥)

)]
− Πl∈TE

[
exp

(
𝑖 n̂1/2𝑈 (1, n, l, 𝑥)

)]
−→ 0,

where 𝑖2 = −1;

ii) 𝑄2 = n̂E
[(∑2𝑑

𝑖=2 𝑇 (n, 𝑖, 𝑥)
)2

]
−→ 0;
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iii) 𝑄3 = n̂ ∑
l∈T E

[(𝑈 (1, n, l, 𝑥))2] −→ 𝜎2 ∑+∞
𝑗=1 𝜆 𝑗𝐸 𝑗

〈
𝑣 𝑗 , 𝑥

〉2, where

𝐸 𝑗 = lim
n→∞

(
1
n̂

∑︁
i,ℓ∈In

ℎ 𝑗 (∥i − ℓ∥)𝜑(∥i − ℓ∥)
)

;

iv) 𝑄4 = n̂ ∑
l∈T E

[
(𝑈 (1, n, l, 𝑥))2 1{ |𝑈 (1,n,l,𝑥 ) |>𝜏n̂−1/2}

]
−→ 0, for all 𝜏 > 0.

Proof. Let 𝑝1 = 𝑝1 (n) and 𝑝2 = 𝑝2 (n), 𝑝1 =
⌊
n̂1/(3𝑑) ⌋ , 𝑝2 = 𝑜

(
n̂1/(4𝑑) ) , then

𝑝2
𝑝1

≤ 𝐶

n̂1/(12𝑑) −→ 0,

𝑝2 < 𝑝1, asymptotically.

Proof of (i). Sort the random variables 𝑈 (1, n, l, 𝑥) and refer to them as 𝑈1,...,𝑈𝑡̂ . Recall that
𝐶𝑎𝑟𝑑 (T ) := 𝑡̂ = n̂(𝑝1 + 𝑝2)−𝑑 ≤ n̂𝑝−𝑑1 . Denote by 𝐼 (1, n, l) = {i : 𝑙𝑘 (𝑝1 + 𝑝2) + 1 ≤ 𝑖𝑘 ≤
𝑙𝑘 (𝑝1 + 𝑝2) + 𝑝1}, the set of sites involved with𝑈 (1, n, l, 𝑥) and 𝐼̃ 𝑗 the set of sites involved with𝑈 𝑗 .
Lemma 3.1 of Tran (1990) gives

𝑄1 ≤
𝑡̂−1∑︁
𝑘=1

𝑡̂∑︁
𝑗=𝑘+1

������E(exp(𝑖n̂1/2𝑈𝑘) − 1) (exp(𝑖n̂1/2𝑈 𝑗 ) − 1)
𝑡̂∏

𝑠= 𝑗+1
exp(𝑖n̂1/2𝑈𝑠)

−E(exp(𝑖n̂1/2𝑈𝑘) − 1)E(exp(𝑖n̂1/2𝑈 𝑗 ) − 1)
𝑡̂∏

𝑠= 𝑗+1
exp(𝑖n̂1/2𝑈𝑠)

������
:=

𝑡̂−1∑︁
𝑘=1

𝑡̂∑︁
𝑗=𝑘+1

𝑄𝑘 𝑗 .

In addition, by Lemma 2.1 ii) of Tran (1990) 𝑄𝑘 𝑗 ≤ 𝑐𝛼1,∞ (𝜌( 𝐼̃ 𝑗 , 𝐼̃𝑘))𝑝𝑑1 . Since 𝜉 > 4𝑑, then

𝑄1 ≤ 𝑐𝑝𝑑1

𝑡̂−1∑︁
𝑘=1

𝑡̂∑︁
𝑗=𝑘+1

𝛼1,∞ (𝜌( 𝐼̃ 𝑗 , 𝐼̃𝑘)) ≤ 𝑐n̂
+∞∑︁
𝑗=1

𝑗𝑑−1𝛼1,∞ ( 𝑗 𝑝2)

≤ 𝑐1n̂−( 𝜉−4𝑑)/(4𝑑) −→ 0.

Proof of (ii). It is equivalent to show that

n̂E
[(𝑇 (n, 𝑖, 𝑥))2] −→ 0 for each 2 ≤ 𝑖 ≤ 2𝑑 .

Sort the random variables𝑈 (2, n, l, 𝑥) and refer to them as𝑈1,...,𝑈𝑡̂ and let

E
[(𝑇 (n, 2, 𝑥))2] =

𝑡̂∑︁
𝑗=1
𝑉𝑎𝑟 (𝑈𝑖) + 2

𝑡̂∑︁
𝑖=1

𝑡̂∑︁
𝑗=1
𝑖> 𝑗

𝐶𝑜𝑣(𝑈𝑖 ,𝑈 𝑗 ) := 𝐴1 + 𝐴2.
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Under Assumptions 1 and 2, we have

𝑉𝑎𝑟 (𝑈𝑖) = 𝑉𝑎𝑟
©­­­«

𝑝1∑︁
𝑖𝑘=1

𝑘=1, · · · ,𝑑−1

𝑝2∑︁
𝑖𝑑=1

Ξiδ𝑥
ª®®®¬

≤ 𝜎2𝑝𝑑−1
1 𝑝2

n̂2

©­­­«
+∞∑︁
𝑘=1

𝜆𝑘 ⟨𝑥, 𝑣𝑘⟩2 +
+∞∑︁
𝑘=1

𝜆𝑘

𝑝1∑︁
𝑙𝑘=1

𝑘=1,...,𝑑−1

𝑝2∑︁
𝑙𝑑=1

ℎ𝑘 (∥l∥)𝜑(∥l∥) ⟨𝑥, 𝑣𝑘⟩2
ª®®®¬

≤ ∥𝑥∥2
𝐺𝜎

2𝑝𝑑−1
1 𝑝2

n̂2

( +∞∑︁
𝑘=1

𝜆𝑘 +
+∞∑︁
𝑡=1

𝑡𝑑−1
+∞∑︁
𝑘=1

𝜆𝑘ℎ𝑘 (𝑡)
)
≤ 𝐶𝑝𝑑−1

1 𝑝2

n̂2 .

Then, we have

n̂𝐴1 ≤ 𝐶𝑝𝑑−1
1 𝑝2 (𝑝1 + 𝑝2)−𝑑 ≤ 𝐶

(
𝑝2
𝑝1

)
−→ 0.

Let

𝐼 (2, n, l) = {i : 𝑙𝑚 (𝑝1 + 𝑝2 + 1) ≤ 𝑖𝑚 ≤ 𝑙𝑚 (𝑝1 + 𝑝2) + 𝑝1, 1 ≤ 𝑚 ≤ 𝑑 − 1,
𝑙𝑑 (𝑝1 + 𝑝2) + 𝑝1 + 1 ≤ 𝑖𝑑 ≤ (𝑙𝑑 + 1) (𝑝1 + 𝑝2)} ,

then𝑈 (2, n, l, 𝑥) is the sum of Ξi𝑥 over all sites in 𝐼 (2, n, l). Since 𝑝1 > 𝑝2, if l and l′ belong to two
distinct sets 𝐼 (2, n, l) and 𝐼 (2, n, l′), then 𝑙𝑚 ≠ 𝑙′𝑚 for some 1 ≤ 𝑚 ≤ 𝑑 and ∥l − l′∥ > 𝑝2, and by
Assumptions 1 and 2, we have

n̂|𝐴2 | ≤ 𝑐n̂
𝑛𝑚∑︁
𝑖𝑚=1

𝑚=1,...,𝑑

𝑛𝑚∑︁
𝑙𝑚=1

𝑚=1,...,𝑑
∥i−l∥>𝑝2

|𝐶𝑜𝑣(Ξi𝑥,Ξl𝑥) |

≤ 𝐶𝜑(𝑝2)
+∞∑︁

𝑡=𝑝2+1
𝑡𝑑−1

+∞∑︁
𝑘=1

𝜆𝑘ℎ𝑘 (𝑡) −→ 0. (11)

Proof of (iii). We have

⟨Δn, 𝑥⟩HS =
2𝑑∑︁
𝑖=1
𝑇 (n, 𝑖, 𝑥) = 𝑇 (n, 1, 𝑥) +

2𝑑∑︁
𝑖=2
𝑇 (n, 𝑖, 𝑥) = 𝑆′n + 𝑆′′n .

From Lemma 1, we have

E

(〈
n̂1/2Δn, 𝑥

〉2

HS

)
−→ 𝜎2

+∞∑︁
𝑗=1
𝜆 𝑗 lim

n→∞

(
1
n̂

∑︁
i,ℓ∈In

ℎ 𝑗 (∥i − ℓ∥)𝜑(∥i − ℓ∥)
) 〈
𝑣 𝑗 , 𝑥

〉2
.

This combined with Lemma 2(ii), gives

n̂E
[ (
𝑆′n

)2
]
−→ 𝜎2

+∞∑︁
𝑗=1
𝜆 𝑗 lim

n→∞

(
1
n̂

∑︁
i,ℓ∈In

ℎ 𝑗 (∥i − ℓ∥)𝜑(∥i − ℓ∥)
) 〈
𝑣 𝑗 , 𝑥

〉2
.
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In addition, we have

n̂E
[ (
𝑆′n

)2
]
= n̂

∑︁
l∈T
E[𝑈 (1, n, l, 𝑥)2] + n̂

∑︁
l,l′ ∈T
l≠l′

𝐶𝑜𝑣 [𝑈 (1, n, l, 𝑥),𝑈 (1, n, l′, 𝑥)] .

However, by the same arguments as those used at the end of the proof of 𝑄2 in (𝑖𝑖), we have

n̂
∑︁
l,l′ ∈T
l≠l′

𝐶𝑜𝑣 [𝑈 (1, n, l, 𝑥),𝑈 (1, n, l′, 𝑥)] −→ 0.

Thus

n̂
∑︁
l∈T
E[𝑈 (1, n, l, 𝑥)2] → 𝜎2

+∞∑︁
𝑗=1
𝜆 𝑗 lim

n→∞

(
1
n̂

∑︁
i,ℓ∈In

ℎ 𝑗 (∥i − ℓ∥)𝜑(∥i − ℓ∥)
) 〈
𝑣 𝑗 , 𝑥

〉2
. (12)

Proof of (iv). Since 𝑋iδ is almost surely bounded and 𝜀iδ is not bounded, we use the following
truncation argument: 𝑍★i (𝑥) = ⟨𝑋i, 𝑥⟩HS 𝜀i1 | 𝜀i | ≤𝐿 and 𝑍★★i (𝑥) = ⟨𝑋i, 𝑥⟩HS 𝜀i1 | 𝜀i |>𝐿 , where 𝐿 is
some positive constant such that 𝐿2/n̂1/3 → 0 as n → +∞. So, we have

|Ξ★i 𝑥 | =
𝑍★i (𝑥)

n̂ ≤ 𝑐𝐿

n̂ a.s.,

where 𝑐 is a positive constant. With the choices 𝑝1 =
⌊
n̂1/(3𝑑) ⌋ then

√
n̂ |𝑈★(1, n, l, 𝑥) | ≤ 𝑐𝑝𝑑1 𝐿/

√
n̂ ≤

𝑐𝐿/n̂1/6 −→ 0 a.s. Thus for all l, 𝜏 > 0 and for n large enough, we have

𝑄4★ ≤ 𝐶1𝐿
2

n̂1/3

𝑢𝑘−1∑︁
𝑙𝑘=1

𝑘=1,...,𝑑

P
(
|𝑈★(1, n, l, 𝑥) | > 𝜏2n̂−1/2

)
= 0,

where 𝐶1 is some positive constant. Then Lemma 1 holds with

𝑉★(𝑥) =
+∞∑︁
𝑗=1
𝜆 𝑗 lim

n→∞

(
1
n̂

∑︁
i,ℓ∈In

ℎ 𝑗 (∥i − ℓ∥)𝐶𝑜𝑣(𝜀i1 | 𝜀i | ≤𝐿 , 𝜀ℓ1 | 𝜀ℓ | ≤𝐿)
) 〈
𝑣 𝑗 , 𝑥

〉2
,

and Δ★n which is obtained by replacing 𝜀i into Δn by 𝜀i1 | 𝜀i | ≤𝐿 . Therefore〈
n̂1/2Δ★n , 𝑥

〉
HS

→ N(0, 𝑉★(𝑥)) as n → +∞. (13)

Since Δn = Δ★n + Δ★★n , and putting

𝑉 (𝑥) =
+∞∑︁
𝑗=1
𝜆 𝑗 lim

n→∞

(
1
n̂

∑︁
i,ℓ∈In

ℎ 𝑗 (∥i − ℓ∥)𝐶𝑜𝑣(𝜀i, 𝜀ℓ)
) 〈
𝑣 𝑗 , 𝑥

〉2
,

we have ���E [
exp

(
𝑖𝑢

〈
n̂1/2Δn, 𝑥

〉
HS

)]
− exp

(
−𝑢2𝑉 (𝑥)/2

)���
≤

���E [
exp

(
𝑖𝑢

〈
n̂1/2Δ★n , 𝑥

〉
HS

)]
− exp

(
−𝑢2𝑉★(𝑥)/2

)���
+

���E [
exp

(
𝑖𝑢

〈
n̂1/2Δ★★n , 𝑥

〉
HS

)]
− 1

��� + ���exp
(
−𝑢2𝑉★(𝑥)/2

)
− exp

(
−𝑢2𝑉 (𝑥)/2

)��� .
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However, from the relation in (13), we have���E [
exp

(
𝑖𝑢

〈
n̂1/2Δ★n , 𝑥

〉
HS

)]
− exp

(
−𝑢2𝑉★(𝑥)/2

)��� −→ 0 as n → +∞,

and since from the dominated convergence theorem, 𝑉★(𝑥) → 𝑉 (𝑥) as 𝐿 → +∞, we have���exp
(
−𝑢2𝑉★(𝑥)/2

)
− exp

(
−𝑢2𝑉 (𝑥)/2

)��� −→ 0 as 𝐿 → +∞.
Besides, by arguments of Lemma 1, we have

𝑉𝑎𝑟
(〈

n̂1/2Δ★★n , 𝑥
〉
HS

)
=

+∞∑︁
𝑗=1
𝜆 𝑗

(
1
n̂

∑︁
i,ℓ∈In

ℎ 𝑗 (∥i − ℓ∥)𝐶𝑜𝑣(𝜀i1 | 𝜀i |>𝐿 , 𝜀ℓ1 | 𝜀ℓ |>𝐿)
) 〈
𝑣 𝑗 , 𝑥

〉2

≤
+∞∑︁
𝑗=1
𝜆 𝑗

(
1
n̂

∑︁
i,ℓ∈In

ℎ 𝑗 (∥i − ℓ∥)E(𝜀2
i 1 | 𝜀i |>𝐿)

) 〈
𝑣 𝑗 , 𝑥

〉2

≤ ∥𝑥∥2
𝐺

+∞∑︁
𝑡=1

𝑡𝑑−1
+∞∑︁
𝑗=1
𝜆 𝑗ℎ 𝑗 (𝑡)

[
E

(
𝜀4

i

)]1/2
[P ( |𝜀i | > 𝐿)]1/2

≤ 𝐶2

[
E

[
exp

(
𝑎 |𝜀i |𝑏

) ]
exp(𝑎𝐿𝑏)

]1/2
,

where 𝐶2 is some positive constant, then
〈
n̂1/2Δ★★n , 𝑥

〉
HS = 𝑂𝑎.𝑠

(
exp(−𝑎𝐿𝑏/2)) . Therefore���E [

exp
(
𝑖𝑢

〈
n̂1/2Δ★★n , 𝑥

〉
HS

)]
− 1

��� −→ 0 as 𝐿 → +∞. ■

Proof of Theorem 1
Let ⟨𝑉n, 𝑥⟩HS :=

〈
n̂1/2Δn, 𝑥

〉
HS = n̂1/2𝑇 (n, 1, 𝑥) + n̂1/2 ∑2𝑑

𝑖=2 𝑇 (n, 𝑖, 𝑥). From Lemma 2 ii), the
rightmost term converges in probability towards zero. Moreover, from Lemma 2 i), the random
variables (𝑈 (1, n, l, 𝑥), l ∈ T ) are asymptotically independent. Then, from Lemma 2 iii), iv) and
Slutsky’s Theorem, we obtain, for all 𝑥 in 𝑊 , E

[
exp

(
𝑖𝑢 ⟨𝑉n, 𝑥⟩HS

) ] −→ E [exp (𝑖𝑢⟨𝐶Δ, 𝑥⟩HS)],
where 𝑖2 = −1, and 𝐶Δ ∼ N(0, 𝜎2Λ2). Next, we show that

(
P𝑉n

)
is tight. Since Lemma 1 gives

𝑉𝑎𝑟 (⟨𝑉n, 𝑥⟩HS) → 𝜎2
+∞∑︁
𝑗=1
𝜆 𝑗 lim

n→∞

(
1
n̂

∑︁
i,ℓ∈In

ℎ 𝑗 (∥i − ℓ∥)𝜑(∥i − ℓ∥)
) 〈
𝑣 𝑗 , 𝑥

〉2
,

then

𝑅2
𝑡 = E

( +∞∑︁
𝑗=𝑡

〈
𝑉n, 𝑣 𝑗

〉2
)
−→ 𝜎2

+∞∑︁
𝑗=𝑡

𝜆 𝑗 lim
n→∞

(
1
n̂

∑︁
i,ℓ∈In

ℎ 𝑗 (∥i − ℓ∥)𝜑(∥i − ℓ∥)
)
< +∞.

Given 𝜁 > 0, consider Λ𝜁 =
⋂+∞
𝑘=1 𝐴𝑘 where 𝐴𝑘 = {𝑥 ∈ 𝑊 :

∑+∞
𝑗=𝑡𝑘

〈
𝑥, 𝑣 𝑗

〉2 ≤ 𝑀−1
𝑘 }, with

1 = 𝑡1 < 𝑡2 < ... < 𝑡𝑘 ..., 𝑀𝑘 → +∞ as 𝑘 → +∞ and
∑+∞
𝑘=1 𝑀𝑘𝑅

2
𝑡𝑘
< 𝜁 . Then, from Tchebytchev’s

inequality, we have

1 − P𝑉n

(
Λ𝜁

) ≤ +∞∑︁
𝑘=1
P𝑉n

(
𝐴𝑐𝑘

) ≤ +∞∑︁
𝑘=1

𝑀𝑘𝑅
2
𝑡𝑘 < 𝜁.

Thus
(
P𝑉n

)
is tight. Finally, applying Dudley-Skorokhod’s theorem (see (Bosq, 2000, Theorem 2.2,

Page 46)), yields the result of Theorem 1. ■
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Proofs of Theorems 4, 2 and 3
The proofs of Theorems 4 (i), 2 and 3 are respectively very similar to those of Theorems 1, 4 (ii)
and 4 (iii). A brief outline of the proofs of the last two enumerations of Theorems 4 is given in
the following. The proof of Theorem 4 (ii) is based on Theorem 4 (i) of this paper and Lemma 3
below in addition to the same arguments as those used in the proof of Theorem 3 in Cardot et al.
(2003). Whereas the proof of Theorem 4 (iii) is obtained by the following Lemma 4 and Lemma 1,
in addition to same the arguments as those used in the proof of Theorem 4 in Cardot et al. (2003). ■

Lemma 3. Under Assumptions 1 and 2, we have

∥Γn − Γ∥∞ = 𝑂𝑎.𝑠

(
log(n̂)

n̂

)
.

Proof. Recall that Γn = n̂−1 ∑
i∈In 𝑋i ⊗𝐻 𝑋i and Γ = E(𝑋 ⊗𝐻 𝑋). For all 𝜏 > 0, we have

P (∥Γn − Γ∥∞ > 𝜏) = P

(
sup
𝑙

∥Γn𝑣𝑙 − Γ𝑣𝑙 ∥𝐻 > 𝜏

)

≤
+∞∑︁
𝑙=1
P (∥Γn𝑣𝑙 − Γ𝑣𝑙 ∥𝐻 > 𝜏)

≤ 1
𝜏2

+∞∑︁
𝑙=1
E

(
∥Γn𝑣𝑙 − Γ𝑣𝑙 ∥2

𝐻

)
.

However, setting

𝐿ij =
〈⟨𝑋i, 𝑣𝑙⟩𝐻 𝑋i − E(⟨𝑋, 𝑣𝑙⟩𝐻 𝑋),

〈
𝑋j, 𝑣𝑙

〉
𝐻
𝑋j − E(⟨𝑋, 𝑣𝑙⟩𝐻 𝑋)

〉
𝐻
,

we have

E
[∥Γn𝑣𝑙 − Γ𝑣𝑙 ∥2

𝐻

]
= E







1
n̂

∑︁
i∈In

(⟨𝑋i, 𝑣𝑙⟩𝐻 𝑋i − E(⟨𝑋, 𝑣𝑙⟩𝐻 𝑋))







2

𝐻


=

1
n̂2

∑︁
i∈In

E
[∥⟨𝑋i, 𝑣𝑙⟩𝐻 𝑋i − E(⟨𝑋, 𝑣𝑙⟩𝐻 𝑋)∥2

𝐻

] + 1
n̂2

∑︁
i≠j
E

(
𝐿ij

)
=: 𝐴 + 𝐵.

Since 𝑋i are strictly stationary with the same law as 𝑋 , one has

𝐴 =
1
n̂2

∑︁
i∈In

E
[∥⟨𝑋i, 𝑣𝑙⟩𝐻 𝑋i − E(⟨𝑋, 𝑣𝑙⟩𝐻 𝑋)∥2

𝐻

]

≤ 2
n̂2

∑︁
i∈In

(
E

(
⟨𝑋i, 𝑣𝑙⟩2

𝐻 ∥𝑋i∥2
𝐻

)
+ E

(
⟨𝑋, 𝑣𝑙⟩2

𝐻 ∥𝑋 ∥2
𝐻

))

≤ 4𝑀2𝜆𝑙
n̂ ,

𝐵 =
1
n̂2

∑︁
0<∥i−j∥≤𝐶n

E(𝐿ij) + 1
n̂2

∑︁
∥i−j∥>𝐶n

E(𝐿ij) := 𝐵1 + 𝐵2,
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where 0 < 𝐶n < n̂ and 𝐶n → ∞ as n → ∞. However,

E(𝐿ij) =
+∞∑︁
𝑠=1

𝐶𝑜𝑣
(⟨𝑋i, 𝑣𝑙⟩𝐻 ⟨𝑋i, 𝑣𝑠⟩𝐻 , ⟨𝑋j, 𝑣𝑙⟩𝐻 ⟨𝑋j, 𝑣𝑠⟩𝐻

)

and E
(
⟨𝑋, 𝑣𝑙⟩4

𝐻

)
≤ 𝑀2E

(
⟨𝑋, 𝑣𝑙⟩2

𝐻

)
= 𝑀2𝜆𝑙 . Then from Cauchy Schwartz inequality, we have

|𝐵1 | ≤ 1
n̂2

𝐶n∑︁
𝑘=1

∑︁
i,j∈In

𝑘≤∥i−j∥=𝑡<𝑘+1

+∞∑︁
𝑠=1
E

(
⟨𝑋i, 𝑣𝑙⟩2

𝐻 ⟨𝑋i, 𝑣𝑠⟩2
𝐻

)

≤ 1
n̂2

𝐶n∑︁
𝑘=1

∑︁
j∈In

∑︁
i∈In

𝑘≤∥i−j∥=𝑡<𝑘+1

+∞∑︁
𝑠=1

[
E

(
⟨𝑋i, 𝑣𝑙⟩4

𝐻

)]1/2 [
E

(
⟨𝑋i, 𝑣𝑠⟩4

𝐻

)]1/2

≤ 𝑀2𝜆1/2
𝑙

n̂

𝐶n∑︁
𝑘=0

∑︁
i∈In

𝑘≤∥i∥=𝑡<𝑘+1

+∞∑︁
𝑠=1

𝜆1/2
𝑠

≤ 𝑀2𝜆1/2
𝑙

n̂

𝐶n∑︁
𝑡=1

𝑡𝑑−1
+∞∑︁
𝑠=1

𝜆1/2
𝑠 ≤ 𝑀2𝜆1/2

𝑙 𝐶𝑑n
n̂

+∞∑︁
𝑠=1

𝜆1/2
𝑠 .

Taking 𝐶n = ⌊(log(n̂))1/𝑑⌋ (where ⌊𝑥⌋ stands for the integer part of 𝑥), we obtain

|𝐵1 | ≤
𝑐2𝜆

1/2
𝑙 log(n̂)

n̂ ,

where 𝑐2 is some positive constant. Besides, applying Lemma 2.1(i) of Tran (1990), we have

|E(𝐿𝑖 𝑗 ) | ≤ 𝐶 ∥⟨𝑋i, 𝑣𝑙⟩𝐻 ⟨𝑋i, 𝑣𝑠⟩𝐻 ∥4


⟨𝑋j, 𝑣𝑙⟩𝐻 ⟨𝑋j, 𝑣𝑠⟩𝐻




4
[
𝛼1,∞ ( |i − j|)]1/2

.

Since 𝛼1,∞ (𝑡) = 𝑂 (𝑡−𝜉 ) with 𝜉 > 4𝑑, then

|𝐵2 | ≤ 𝐶𝑀3𝜆1/4
𝑙

n̂2

∞∑︁
𝑘=𝐶n+1

∑︁
i,j∈In

𝑘≤∥i−j∥=𝑡<𝑘+1

+∞∑︁
𝑠=1

𝜆1/4
𝑠

[
𝛼1,∞ (𝑡)]1/2

≤ 𝐶𝑀3𝜆1/4
𝑙

n̂

∞∑︁
𝑘=𝐶n+1

∑︁
i∈In

𝑘≤∥i∥=𝑡<𝑘+1

+∞∑︁
𝑠=1

𝜆1/4
𝑠

[
𝛼1,∞ (𝑡)]1/2

≤ 𝐶𝑀3𝜆1/4
𝑙

n̂

+∞∑︁
𝑠=1

𝜆1/4
𝑠

∞∑︁
𝑡=1

𝑡𝑑−1 [
𝛼1,∞ (𝑡)]1/2

≤ 𝐶𝑀3𝜆1/4
𝑙

n̂

+∞∑︁
𝑠=1

𝜆1/4
𝑠

∞∑︁
𝑡=1

𝑡𝑑−1−𝜉/2 ≤ 𝑐3𝜆
1/4
𝑙

n̂ .

where 𝑐3 is some positive constant. Therefore

E
(
∥Γn𝑣𝑙 − Γ𝑣𝑙 ∥2

𝐻

)
≤ 𝑐4𝜆

1/4
𝑙 log(n̂)

n̂ , (14)

where 𝑐4 is some positive constant. Hence P (∥Γn − Γ∥∞ > 𝜏) = 𝑂 (log(n̂)/n̂). ■
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A rate of convergence of Γn with respect to norm ∥.∥𝐿2 (H𝑆) appears in the following corollary.

Lemma 4. Under Assumptions 1 and 2, we have

∥Γn − Γ∥𝐿2 (H𝑆) = 𝑂

(√︂
log(n̂)

n̂

)
.

Proof. By definition, we have

∥Γn − Γ∥𝐿2 (HS) =
{
E

[∥Γn − Γ∥2
HS

]}1/2
.

Since (𝑣 𝑗 ) 𝑗≥1 is an orthonormal basis of 𝐻, from the inequality in (14) we have

E
[∥Γn − Γ∥2

HS
]
=

+∞∑︁
𝑖=1
E

[∥Γn (𝑣𝑖) − Γ(𝑣𝑖)∥2
𝐻

] ≤ 𝑐4 log(n̂)
n̂

+∞∑︁
𝑖=1

𝜆1/4
𝑖 . ■
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