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In this paper, we investigate the almost sure convergence, in supremum norm,
of the rank-based linear wavelet estimator for the multivariate copula density over
Besov classes. Using empirical process tools, we establish a uniform limit law
for the deviation of an oracle estimator (which assumes known margins) from its
expectation. This enables us to derive strong convergence rates for the rank-based
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1. Introduction
A copula is a multivariate distribution function 𝐶 defined on [0, 1]𝑑 , 𝑑 ≥ 2, with uniform margins.
Unlike the linear correlation coefficient, it gives a full characterisation of the dependence between
random variables, be it linear or nonlinear. Given a vector (𝑋1, . . . , 𝑋𝑑) of continuous random
variables with marginal distribution functions 𝐹1, . . . , 𝐹𝑑 , the copula 𝐶 may be defined as the joint
cumulative distribution function of the random vector (𝐹1 (𝑋1), . . . , 𝐹𝑑 (𝑋𝑑)) . If it exists, the copula
density is defined as the derivative, 𝑐, of the copula distribution function 𝐶 with respect to the
Lebesgue measure:

𝑐(𝑢1 . . . , 𝑢𝑑) = 𝜕𝑑

𝜕𝑢1 · · · 𝜕𝑢𝑑𝐶 (𝑢1, . . . , 𝑢𝑑), ∀ (𝑢1, . . . , 𝑢𝑑) ∈ (0, 1)𝑑 .

Nonparametric estimation of a copula density is an active reseach domain that has been investigated
by many authors. For instance, Gĳbels and Mielniczuk (1990) and Fermanian and Scaillet (2003)
used convolution kernel methods to construct consistent estimators for the copula density, while
Sancetta and Satchell (2004) employed techniques based on Bernstein polynomials. A drawback
of kernel methods is the existence of boundary effects due to the compact support of the copula
function. To overcome this difficulty, some approaches have been proposed. For example Gĳbels
and Mielniczuk (1990) used a mirror-reflexion technique, while Chen and Huang (2007) employed
a local linear kernel procedure. In the same vein, Omelka et al. (2009) proposed improved copula
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kernel estimators to mitigate the boundary bias problem. Recently, Geenens et al. (2017) introduced
kernel-type estimators for the copula density, based on a probit transformation method that can take
care of the boundary effects.

In this paper, we deal more neatly with the boundary bias problem by using wavelet methods, which
are very convenient to describe features of functions at the edges and corners of the unit cube, because
of their good localisation properties. Indeed, wavelet bases automatically handle the boundary effects
by locally adapting to the properties of the curve being estimated. The use of wavelet methods in
density and regression estimation problems is surveyed in Härdle et al. (1998), where approximation
properties of wavelets are discussed at length. For more details on wavelet theory we refer to Meyer
(1992), Daubechies (1992), Mallat (2009), and Vidakovic (1999) and references therein.

Wavelet methods have been already used in nonparametric copula density estimation. For instance,
Genest et al. (2009) dealt with a rank-based linear wavelet estimator of the bivariate copula density
and established, under certain conditions, its optimality in the minimax sense on Besov-balls for the
𝐿2-norm loss, as well as on Hölder-balls for the pointwise-norm loss. Autin et al. (2010) extended
these results to the nonlinear thresholded estimators of multivariate copula densities. These nonlinear
estimates are near optimal (up to a logarithmic factor) for the 𝐿2-norm loss, and have the advantage
of being adaptive to the regularity of the copula density function. In a similar vein, Gannoun and
Hosseinioun (2012) established an upper bound on 𝐿𝑝-losses, 2 ≤ 𝑝 < ∞, for linear wavelet-based
estimators of the bivariate copula density, when this latter is bounded.

Our goal in this paper, is to establish almost sure convergence rates, in supremum norm loss, for
the linear wavelet estimator of the multivariate copula density. Our methodology of proof is inspired
by Giné and Nickl (2009), who provided almost sure convergence rates, in supremum norm loss, for
the linear wavelet estimator of a univariate density function on R. Here, we want to extend this result
to a multivariate copula density on (0, 1)𝑑 . In fact, we prove that under the condition of sufficient
regularity of the multivariate copula density c (i.e., 𝑐 belongs to the Besov space of regularity 𝑡,
denoted as 𝐵𝑡∞,∞ ((0, 1)𝑑) and corresponding to the Hölder space of order 𝑡) and the resolution
level, say 𝑗𝑛, satisfies: 2 𝑗𝑛 ≃ (𝑛/log 𝑛)1/(2𝑡+𝑑) , then the rank-based linear wavelet estimator of 𝑐
converges almost surely, in supremum norm, with a rate of the order𝑂 ((log 𝑛/𝑛) [2(𝑡−1)−𝑑 ]/[2(2𝑡+𝑑) ]).
Moreover, we show that, in contrast, the oracle estimator (obtained for known margins) attains the
optimal convergence rate which is 𝑂 ((log 𝑛/𝑛)𝑡/(2𝑡+𝑑) ).

The rest of the paper is organised as follows. In Section 2, we recall some facts on wavelet theory
and define the rank-based linear wavelet estimator of the multivariate copula density as in Autin et al.
(2010). Section 3 presents the main theoretical results along with some comments. In Appendix
A, we recall some useful facts on empirical process theory. Appendix B contains the proof of the
uniform limit law given in Proposition 1.

2. Wavelet theory and Estimation procedure
Let 𝜙 be a father wavelet and 𝜓 its associated mother wavelet, which are both assumed compactly
supported. Cohen et al. (1993) proposed orthonormal wavelet bases for 𝐿2 ( [0, 1]), the space of all
measurable and square integrable functions on [0, 1]. Precisely, for all fixed 𝑗0 ∈ N, the family
{𝜙 𝑗0 ,𝑙 : 𝑙 = 1, . . . , 2 𝑗0 }⋃{𝜓 𝑗 ,𝑙 : 𝑗 ≥ 𝑗0, 𝑙 = 1, . . . , 2 𝑗 } is an orthonormal basis for 𝐿2 ( [0, 1]),
where 𝜙 𝑗 ,𝑙 (𝑢) = 2 𝑗/2𝜙(2 𝑗𝑢 − 𝑙) and 𝜓 𝑗 ,𝑙 (𝑢) = 2 𝑗/2𝜓(2 𝑗𝑢 − 𝑙), ∀ 𝑗 , 𝑙 ∈ Z, 𝑢 ∈ [0, 1] . Using
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the tensorial product, one can construct a multivariate wavelet basis for 𝐿2 ( [0, 1]𝑑), 𝑑 ≥ 2. For
k = (𝑘1, . . . , 𝑘𝑑) ∈ Z𝑑 , define the following functions of u = (𝑢1, . . . , 𝑢𝑑) ∈ [0, 1]𝑑:

𝜙 𝑗0 ,k (𝑢1, . . . , 𝑢𝑑) =
𝑑∏
𝑚=1

𝜙 𝑗0 ,𝑘𝑚 (𝑢𝑚), (1)

𝜓 𝜖𝑗,k (𝑢1, . . . , 𝑢𝑑) =
𝑑∏
𝑚=1

𝜙1−𝜖𝑚
𝑗 ,𝑘𝑚

(𝑢𝑚)𝜓 𝜖𝑚𝑗 ,𝑘𝑚 (𝑢𝑚),

where 𝜖 = (𝜖1, . . . , 𝜖𝑑) ∈ S𝑑 = {0, 1}𝑑 \ {(0, . . . , 0)}. Then the family {𝜙 𝑗0 ,k, 𝜓 𝜖𝑗,h : 𝑗 ≥ 𝑗0, k ∈
{1, . . . , 2 𝑗0 }𝑑 , h ∈ {1, . . . , 2 𝑗 }𝑑 , 𝜖 ∈ S𝑑} is an orthonormal basis for 𝐿2 ( [0, 1]𝑑), for any fixed
𝑗0 ∈ N. Thus, assuming that the copula density 𝑐 belongs to 𝐿2 ( [0, 1]𝑑), we have the following
representation:

𝑐(u) =
∑︁

k∈{1,...,2 𝑗0 }𝑑
𝛼 𝑗0 ,k𝜙 𝑗0 ,k (u) +

∑︁
𝑗≥ 𝑗0

∑︁
k∈{1,...,2 𝑗 }𝑑

∑︁
𝜖 ∈S𝑑

𝛽𝜖𝑗,k𝜓
𝜖
𝑗,k (u), (2)

for all u ∈ [0, 1]𝑑 , where the scaling coefficients 𝛼 𝑗0 ,k and wavelet coefficients 𝛽𝜖𝑗,k are respectively
defined as

𝛼 𝑗0 ,k =
∫
[0,1]𝑑

𝑐(u)𝜙 𝑗0 ,k (u)𝑑u and 𝛽𝜖𝑗,k =
∫
[0,1]𝑑

𝑐(u)𝜓 𝜖𝑗,k (u)𝑑u.

Now, let (X1, . . . ,X𝑛) be an independent and identically distributed (i.i.d) sample of the ran-
dom vector X = (𝑋1, . . . , 𝑋𝑑), with continuous marginal distribution functions 𝐹1, . . . , 𝐹𝑑 , and
where X𝑖 = (𝑋𝑖1, . . . , 𝑋𝑖𝑑), 𝑖 = 1, . . . , 𝑛. The distribution function of the random vector
U𝑖 = (𝐹1 (𝑋𝑖1), . . . , 𝐹𝑑 (𝑋𝑖𝑑)) is the copula 𝐶 and its density, if it exists, is 𝑐. Denoting the ex-
pectation operator by E, the coefficients 𝛼 𝑗0 ,k and 𝛽𝜖𝑗,k can be rewritten as follows:

𝛼 𝑗0 ,k = E[𝜙 𝑗0 ,k (U𝑖)], 𝛽𝜖𝑗,k = E[𝜓 𝜖𝑗,k (U𝑖)] .

If the margins 𝐹1, . . . , 𝐹𝑑 were known, natural estimators for 𝛼 𝑗0 ,k and 𝛽𝜖𝑗,k would be given by

�̃� 𝑗0 ,k =
1
𝑛

𝑛∑︁
𝑖=1

𝜙 𝑗0 ,k (U𝑖), 𝛽𝜖𝑗,k =
1
𝑛

𝑛∑︁
𝑖=1

𝜓 𝜖𝑗,k (U𝑖).

But, usually the marginal distribution functions 𝐹1, . . . , 𝐹𝑑 are unknown; and it is customary to
replace them by their empirical counterparts 𝐹1𝑛, . . . , 𝐹𝑑𝑛 (or rescaled versions thereof), with

𝐹𝑗𝑛 (𝑥 𝑗 ) = 1
𝑛

𝑛∑︁
𝑖=1
I(𝑋𝑖 𝑗 ≤ 𝑥 𝑗 ), 𝑗 = 1, . . . , 𝑑, 𝑥 𝑗 ∈ R,

where I(·) denotes the indicator function. Then, putting Û𝑖 = (�̂�𝑖1, . . . , �̂�𝑖𝑑), where �̂�𝑖 𝑗 = 𝐹𝑗𝑛 (𝑋𝑖 𝑗 ),
𝑗 = 1, . . . , 𝑑; 𝑖 = 1, . . . , 𝑛, the modified empirical coefficients are

�̂� 𝑗0 ,k =
1
𝑛

𝑛∑︁
𝑖=1

𝜙 𝑗0 ,k (Û𝑖), 𝛽𝜖𝑗,k =
1
𝑛

𝑛∑︁
𝑖=1

𝜓 𝜖𝑗,k (Û𝑖).
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Now, choosing a suitable resolution level 𝑗𝑛 ≥ 𝑗0 and considering the orthogonal projection of
𝑐 onto the sub-space 𝑉 𝑗𝑛 of the underlying multiresolution analysis on 𝐿2 ( [0, 1]𝑑), we obtain the
rank-based linear wavelet estimator of 𝑐:

𝑐 𝑗𝑛 (u) =
∑︁

k∈{1,...,2 𝑗𝑛 }𝑑
�̂� 𝑗𝑛 ,k𝜙 𝑗𝑛 ,k (u), u ∈ (0, 1)𝑑 . (3)

As remarked in Genest et al. (2009), the estimator 𝑐 𝑗𝑛 is not necessarily a density, because it can
take negative values on parts of its domain and fails to integrate to 1. In practice, some truncations
and normalisations are necessary for its use.

To obtain the strong convergence rate of the linear estimator 𝑐 𝑗𝑛 , our methodology of proof follows
the empirical process approach developed in Einmahl and Mason (2000); see also Giné and Nickl
(2009), Giné and Guillou (2002). In fact, we can rewrite 𝑐 𝑗𝑛 in terms of the empirical measure. Let
us define the following kernel functions: for all (𝑥, 𝑦) ∈ R2,

𝐾 (𝑥, 𝑦) =
2 𝑗𝑛∑︁
𝑙=1

𝜙(𝑥 − 𝑙)𝜙(𝑦 − 𝑙), (4)

𝐾 𝑗𝑛 (𝑥, 𝑦) = 2 𝑗𝑛𝐾 (2 𝑗𝑛𝑥, 2 𝑗𝑛 𝑦).

For x = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑 , y = (𝑦1, . . . , 𝑦𝑑) ∈ R𝑑 ,

K(x, y) =
𝑑∏
𝑚=1

𝐾 (𝑥𝑚, 𝑦𝑚),

K 𝑗𝑛 (x, y) =
𝑑∏
𝑚=1

𝐾 𝑗𝑛 (𝑥𝑚, 𝑦𝑚).

Then, the linear wavelet estimator 𝑐 𝑗𝑛 can be rewritten as

𝑐 𝑗𝑛 (u) =
1
𝑛

𝑛∑︁
𝑖=1

K 𝑗𝑛 (Û𝑖 , u) =
2𝑑 𝑗𝑛
𝑛

𝑛∑︁
𝑖=1

K(2 𝑗𝑛Û𝑖 , 2 𝑗𝑛u). (5)

3. Asymptotic behaviour of the estimator
Let us introduce an auxillary estimator 𝑐 𝑗𝑛 corresponding to the case where the marginal distribution
functions 𝐹1, . . . , 𝐹𝑑 are known. In this situation, (𝑈𝑖1, . . . ,𝑈𝑖𝑑) = (𝐹1 (𝑋𝑖1), . . . , 𝐹𝑑 (𝑋𝑖𝑑)), 𝑖 =
1, . . . , 𝑛, are direct observations of the copula 𝐶, and 𝑐 𝑗𝑛 may be defined as

𝑐 𝑗𝑛 (u) =
∑︁

k∈{1,...,2 𝑗𝑛 }𝑑
�̃� 𝑗𝑛 ,k𝜙 𝑗𝑛 ,k (u), (6)

where

�̃� 𝑗𝑛 ,k =
1
𝑛

𝑛∑︁
𝑖=1

𝜙 𝑗𝑛 ,k (𝐹1 (𝑋𝑖1), . . . , 𝐹𝑑 (𝑋𝑖𝑑))

is an unbiased estimator of 𝛼 𝑗𝑛 ,k.
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For all u ∈ (0, 1)𝑑 , we can decompose the estimation error 𝑐 𝑗𝑛 − 𝑐 as

𝑐 𝑗𝑛 (u) − 𝑐(u) = [𝑐 𝑗𝑛 (u) − 𝑐 𝑗𝑛 (u)] + [𝑐 𝑗𝑛 (u) − E𝑐 𝑗𝑛 (u)] + [E𝑐 𝑗𝑛 (u) − 𝑐(u)]
=: 𝑅𝑛 (u) + 𝐷𝑛 (u) + 𝐵𝑛 (u). (7)

To obtain the almost sure convergence rate of 𝑐 𝑗𝑛 uniformly in u ∈ (0, 1)𝑑 , we have to investigate
the limiting behaviour of each of the three above terms. We need the following assumptions in the
sequel :

(H.1) The father wavelet 𝜙 ∈ 𝐿2 (R) is bounded, compactly supported and admits a bounded deriva-
tive 𝜙′.

(H.2) There exists a bounded and compactly supported function Φ : R→ R+ such that |𝐾 (𝑥, 𝑦) | ≤
Φ(𝑥 − 𝑦),∀𝑥, 𝑦 ∈ R and the function 𝜃𝜙 (·) =

∑2 𝑗𝑛

𝑘=1 |𝜙(· − 𝑘) | is bounded.

(H.3) The kernel 𝐾 satisfies, for all 𝑦 ∈ R,
∫ ∞
−∞ 𝐾 (𝑥, 𝑦)𝑑𝑥 = 1.

(H.4) As 𝑛→ ∞, the sequence ( 𝑗𝑛)𝑛≥0 satisfies

𝑗𝑛 ↗ ∞, 𝑛

𝑗𝑛22(𝑑+1) 𝑗𝑛 → ∞, 𝑗𝑛
log log 𝑛

→ ∞.

Remark 1. Assumptions (H.1), (H.2) and (H.3) are usual conditions that are satisfied by many
wavelets bases, for example the Daubechies wavelets and the Haar wavelet 𝜙(𝑢) = 1[0,1] (𝑢). The
conditions in Assumption (H.4) are analogous to some conditions imposed on the bandwidth param-
eter in convolution-kernel estimation methods.

The following proposition gives the asymptotic behaviour of the second term 𝐷𝑛 (u) in (7),
corresponding to the deviation of the auxillary estimator 𝑐 𝑗𝑛 from its expectation. In the sequel, we
denote 𝐼 = (0, 1), ∥𝑐∥∞ = supu∈𝐼𝑑 |𝑐(u) | and for any bounded real function 𝜑 defined on R𝑑 , 𝑑 ≥ 1,
∥𝜑∥∞ = supx∈R𝑑 |𝜑(x) |.

Proposition 1. Suppose that Assumptions (H.1–4) hold and that the father wavelet 𝜙 is uniformly
continuous with support [0, 𝐵], 𝐵 being a positive integer. If, moreover, the copula density 𝑐 is
continuous and bounded on 𝐼𝑑 , then we have almost surely (a.s.),

lim
𝑛→∞ 𝑟𝑛 sup

u∈𝐼𝑑
|𝑐 𝑗𝑛 (u) − E𝑐 𝑗𝑛 (u) |√︃∫
R𝑑

K2 (x, 2 𝑗𝑛u)𝑑x
=

√︁
∥𝑐∥∞, (8)

with
𝑟𝑛 =

√︂
𝑛

(2𝑑 log 2) 𝑗𝑛2𝑑 𝑗𝑛
. (9)

Proof. It is largely inspired by Giné and Nickl (2009) and is postponed to Appendix B. It will consist
of establishing a lower bound and an upper bound for the limit in (8), a methodology borrowed from
Einmahl and Mason (2000); see also Giné and Guillou (2002). ■

Remark 2. Proposition 1 gives the exact almost sure convergence rate, in supremum norm, of the
deviation 𝐷𝑛 to zero, which is of order 𝑂 (

√︁
𝑗𝑛2𝑑 𝑗𝑛/𝑛). In fact, by Assumptions (H.1), (H.2) and
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(H.3), the quantity
∫
R𝑑

K2 (x, 2 𝑗𝑛u)𝑑x can be bounded: there exist two positive constants 𝐷1 and 𝐷2
independent of u and 𝑛 such that

𝐷1 ≤
∫
R𝑑

K2 (x, 2 𝑗𝑛u)𝑑x ≤ 𝐷2. (10)

This readily implies

sup
u∈𝐼𝑑

|𝐷𝑛 (u) | = 𝑂𝑎.𝑠.
(√︂

𝑗𝑛2𝑑 𝑗𝑛
𝑛

)
. (11)

The following theorem constitutes our principal result. We need some notation before stating it.
Let 𝑁 be a positive integer and 𝑡 = 𝑁 + 𝛼, 0 < 𝛼 ≤ 1. For any bounded real function 𝑓 defined on
𝐼𝑑 and possessing derivatives up to order 𝑁 , set

∥ 𝑓 ∥𝑡 ,∞,∞ = ∥ 𝑓 ∥∞ +
𝑁∑︁
𝑘=0

sup
𝑢≠𝑣,𝑢,𝑣∈𝐼𝑑

| 𝑓 (𝑘 ) (𝑢) − 𝑓 (𝑘 ) (𝑣) |
|𝑢 − 𝑣 |𝛼 . (12)

We say that 𝑓 belongs to the Besov space of regularity 𝑡, 𝐵𝑡∞,∞ (𝐼𝑑), if and only if ∥ 𝑓 ∥𝑡 ,∞,∞ < ∞.
The following condition is also needed for the proof:

Condition 1(𝑁): the father wavelet 𝜙 admits weak derivatives up to order 𝑁 ∈ N, that are all in
L 𝑝 (R𝑑) for some 1 ≤ 𝑝 ≤ ∞.

Theorem 1. Suppose that the assumptions of Proposition 1 are fulfilled. If, moreover, 𝑐 belongs to
𝐵𝑡∞,∞ (𝐼𝑑) and 𝜙 satisfies Condition 1(𝑁), with (𝑑 + 2)/2 < 𝑡 < 𝑁 + 1, then, if 2 𝑗𝑛 ≃ (𝑛/log 𝑛) 1

2𝑡+𝑑 ,
we have as 𝑛→ ∞,

sup
u∈𝐼𝑑

|𝑐 𝑗𝑛 (u) − 𝑐(u) | = 𝑂𝑎.𝑠. (Rn), (13)

where Rn =
√︁

22(1+𝑑) 𝑗𝑛 (log log 𝑛)/𝑛.

Proof. In view of decomposition (7), it suffices to handle the first and the last term. The behaviour
of the second term 𝐷𝑛 (u) is given by the previous Proposition 1. Let us begin with the first term
𝑅𝑛 (u). We have, for k = (𝑘1, . . . , 𝑘𝑑) ∈ Z𝑑 ,

�̂� 𝑗𝑛 ,k − �̃� 𝑗𝑛 ,k =
1
𝑛

𝑛∑︁
𝑖=1

[
𝜙 𝑗𝑛 ,k (𝐹1𝑛 (𝑋𝑖1), . . . , 𝐹𝑑𝑛 (𝑋𝑖𝑑)) − 𝜙 𝑗𝑛 ,k (𝐹1 (𝑋𝑖1), . . . , 𝐹𝑑 (𝑋𝑖𝑑))

]

=:
1
𝑛

𝑛∑︁
𝑖=1

𝜉k (𝑋𝑖1, . . . , 𝑋𝑖𝑑),

where we set

𝜉k (𝑋𝑖1, . . . , 𝑋𝑖𝑑) = 𝜙 𝑗𝑛 ,k (𝐹1𝑛 (𝑋𝑖1), . . . , 𝐹𝑑𝑛 (𝑋𝑖𝑑)) − 𝜙 𝑗𝑛 ,k (𝐹1 (𝑋𝑖1), . . . , 𝐹𝑑 (𝑋𝑖𝑑)).

For 𝑑 = 2, by using the multiplicativity of 𝜙 𝑗𝑛 ,k (see (1)), one can prove that (see also Genest et al.,
2009) that, with 𝑘 = (𝑘1, 𝑘2):

𝜉𝑘 (𝑋𝑖1, 𝑋𝑖2) = 𝜉𝑘1 (𝑋𝑖1)𝜉𝑘2 (𝑋𝑖2) + 𝜉𝑘1 (𝑋𝑖1)𝜙 𝑗𝑛𝑘2 (𝐹2 (𝑋𝑖2)) + 𝜉𝑘2 (𝑋𝑖2)𝜙 𝑗𝑛𝑘1 (𝐹1 (𝑋𝑖1)), (14)
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where 𝜉𝑘𝑚 (𝑋𝑖𝑚) = 𝜙 𝑗𝑛𝑘𝑚 (𝐹𝑚𝑛 (𝑋𝑖𝑚)) − 𝜙 𝑗𝑛𝑘𝑚 (𝐹𝑚 (𝑋𝑖𝑚)), for 𝑚 = 1, 2.
By induction of (14), we obtain for all fixed 𝑑 ≥ 2 that

𝜉k (𝑋𝑖1, . . . , 𝑋𝑖𝑑) =
𝑑−1∑︁
𝑞=0

∑︁
𝜖1+...+𝜖𝑑=𝑞

𝑑∏
𝑚=1

[
𝜉𝑘𝑚 (𝑋𝑖𝑚)

]1−𝜖𝑚 [
𝜙 𝑗𝑛𝑘𝑚 (𝐹𝑚 (𝑋𝑖𝑚))

] 𝜖𝑚 , (15)

where (𝜖1, . . . 𝜖𝑑) ∈ {0, 1}𝑑 . Recall that 𝜙 𝑗𝑙 (𝑢) = 2 𝑗/2𝜙(2 𝑗𝑢− 𝑙),∀ 𝑗 , 𝑙 ∈ Z. By using the derivability
of 𝜙 by hypothesis, we can write, for all 𝑚 = 1, . . . , 𝑑,

𝜉𝑘𝑚 (𝑋𝑖𝑚) = 2
𝑗𝑛
2 𝜙(2 𝑗𝑛𝐹𝑚𝑛 (𝑋𝑖𝑚) − 𝑘𝑚) − 2

𝑗𝑛
2 𝜙(2 𝑗𝑛𝐹𝑚 (𝑋𝑖𝑚) − 𝑘𝑚)

= 2
3
2 𝑗𝑛 [𝐹𝑚𝑛 (𝑋𝑖𝑚) − 𝐹𝑚 (𝑋𝑖𝑚)] 𝜙′ (𝜁𝑖𝑚),

where 𝜁𝑖𝑚 lies between 𝐹𝑚𝑛 (𝑋𝑖𝑚) and 𝐹𝑚 (𝑋𝑖𝑚). Now, combining the Chung’s law of the iterated
logarithm (Chung, 1949) with the boundedness of 𝜙 and 𝜙′, we obtain, for all 𝑚 = 1, . . . , 𝑑,

|𝜉𝑘𝑚 (𝑋𝑖𝑚) | ≤ 2
3
2 𝑗𝑛

√︂
log log 𝑛

2𝑛
∥𝜙′∥∞, 𝑎.𝑠.

Thus, for 𝑑 = 2, the expression in (15) can be bounded above; that is

|𝜉𝑘 (𝑋𝑖1, 𝑋𝑖2) | ≤
(
2

3
2 𝑗𝑛

√︂
log log 𝑛

2𝑛
∥𝜙′∥∞

)2

+2×2
3
2 𝑗𝑛

√︂
log log 𝑛

2𝑛
∥𝜙′∥∞

(
2

𝑗𝑛
2 ∥𝜙∥∞

)2−1
, 𝑎.𝑠. (16)

Since
23 𝑗𝑛

(
log log 𝑛

2𝑛

)
22 𝑗𝑛

√︃
log log 𝑛

2𝑛

=
1√
2

(
𝑗𝑛22 𝑗𝑛

𝑛

)1/2 (
log log 𝑛

𝑗𝑛

)1/2
,

which, by (H.4), converges to 0 as 𝑛 → ∞, then 23 𝑗𝑛 (log log 𝑛)/(2𝑛) = 𝑜(22 𝑗𝑛
√︁
(log log 𝑛)/(2𝑛)).

That is, for 𝑑 = 2,

|𝜉𝑘 (𝑋𝑖1, 𝑋𝑖2) | = 𝑂𝑎.𝑠.
(
22 𝑗𝑛

√︂
log log 𝑛

𝑛

)
.

By induction of formula (16), we get for all 𝑑 ≥ 2, with 𝐶𝑟𝑑 the binomial coefficients,

|𝜉k (𝑋𝑖1, . . . , 𝑋𝑖𝑑) | ≤ 𝐶0
𝑑

(
2

3
2 𝑗𝑛

√︂
log log 𝑛

2𝑛
∥𝜙′∥∞

)𝑑
(17)

+ 𝐶1
𝑑

(
2

3
2 𝑗𝑛

√︂
log log 𝑛

2𝑛
∥𝜙′∥∞

)𝑑−1 (
2

𝑗𝑛
2 ∥𝜙∥∞

)

· · ·

+ 𝐶𝑑−1
𝑑

(
2

3
2 𝑗𝑛

√︂
log log 𝑛

2𝑛
∥𝜙′∥∞

) (
2

𝑗𝑛
2 ∥𝜙∥∞

)𝑑−1
.
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Note align the number of terms in the summation on the right-hand side of inequality (17) is equal
to 𝑑. Moreover, as we observe in the case 𝑑 = 2, all these terms are dominated (small-o’s) by the last
one, which is of order 𝑂𝑎.𝑠. (2 3

2 𝑗𝑛
√︁
(log log 𝑛)/𝑛 2 𝑑−1

2 𝑗𝑛 ). Then

|𝜉k (𝑋𝑖1, . . . , 𝑋𝑖𝑑) | = 𝑂𝑎.𝑠.
(
2

2+𝑑
2 𝑗𝑛

√︂
log log 𝑛

𝑛

)
.

and

|�̂� 𝑗𝑛 ,k − �̃� 𝑗𝑛 ,k | =
1
𝑛

𝑛∑︁
𝑖=1

|𝜉k (𝑋𝑖1, . . . , 𝑋𝑖𝑑) | = 𝑂𝑎.𝑠.
(
2

2+𝑑
2 𝑗𝑛

√︂
log log 𝑛

𝑛

)
.

Finally, by using the boundedness of the function 𝜃𝜙 (𝑥) =
∑2 𝑗𝑛

𝑙=1 |𝜙(𝑥 − 𝑙) |, we obtain

|𝑐 𝑗𝑛 ,k (u) − 𝑐 𝑗𝑛 ,k (u) | ≤
∑︁

k∈{1,...,2 𝑗𝑛 }𝑑
|�̂� 𝑗𝑛 ,k − �̃� 𝑗𝑛 ,k |2

𝑑
2 𝑗𝑛

𝑑∏
𝑚=1

𝜙(2 𝑗𝑛𝑢𝑚 − 𝑘𝑚)

= 𝑂𝑎.𝑠.

[
∥𝜃𝜙 ∥𝑑∞2

2+2𝑑
2 𝑗𝑛

√︂
log log 𝑛

𝑛

]

= 𝑂𝑎.𝑠.

[(
𝑗𝑛22(1+𝑑) 𝑗𝑛

𝑛

)1/2 (
log log 𝑛

𝑗𝑛

)1/2
]
=: 𝑂𝑎.𝑠. (Rn).

Hence,
sup
u∈𝐼𝑑

|𝑅𝑛 (u) | = 𝑂𝑎.𝑠. (Rn). (18)

To handle the last term 𝐵𝑛 (u) corresponding to the bias of 𝑐 𝑗𝑛 , we make use of approximation
properties in Besov spaces. Let 𝐾 𝑗𝑛 denote the orthogonal projection kernel onto the sub-space 𝑉 𝑗𝑛 .
That is

𝐾 𝑗𝑛 (𝑐) (u) =
∫
𝐼𝑑
𝐾 𝑗𝑛 (u, v)𝑐(v)𝑑v, u ∈ 𝐼𝑑 .

Then, we can write
𝐵𝑛 (u) = E𝑐 𝑗𝑛 (u) − 𝑐(u) = 𝐾 𝑗𝑛 (𝑐) (u) − 𝑐(u).

Since 𝜙 satisfies Condition 1(𝑁) and 𝑐 ∈ 𝐵𝑡∞,∞ (𝐼𝑑), (𝑑 + 2)/2 < 𝑡 < 𝑁 + 1, then Theorem 9.4 in
Härdle et al. (1998) gives:

∥𝐾 𝑗𝑛 (𝑐) − 𝑐∥∞ ≤ 𝐴2− 𝑗𝑛𝑡 ,

where 𝐴 is a positive constant depending on the Besov norm of 𝑐. Hence

sup
u∈𝐼𝑑

|𝐵𝑛 (u) | = 𝑂 (2− 𝑗𝑛𝑡 ). (19)

In view of (11), (18) and (19), we can write

sup
u∈𝐼𝑑

|𝑐 𝑗𝑛 (u) − 𝑐(u) | = 𝑂𝑎.𝑠.
(√︂

𝑗𝑛2𝑑 𝑗𝑛
𝑛

)
+𝑂 (2− 𝑗𝑛𝑡 ) +𝑂𝑎.𝑠. (Rn).
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Now, if 2 𝑗𝑛 ≃ (𝑛/log 𝑛) 1
2𝑡+𝑑 , the terms

√︁
𝑗𝑛2𝑑 𝑗𝑛/𝑛 and 2− 𝑗𝑛𝑡 are equivalent and are both less than Rn,

because
√︁
𝑗𝑛2𝑑 𝑗𝑛/𝑛/Rn → 0, as 𝑛→ ∞. Thus,

sup
u∈𝐼𝑑

|𝑐 𝑗𝑛 (u) − 𝑐(u) | = 𝑂𝑎.𝑠. (Rn),

which completes the proof of Theorem 1. ■

Remark 3. Note that 𝑅𝑛 =
√︁

22(1+𝑑) 𝑗𝑛 (log log 𝑛)/𝑛 ≤
√︁

22(1+𝑑) 𝑗𝑛 (log 𝑛)/𝑛. Therefore, we can write
𝑂𝑎.𝑠. (𝑅𝑛) = 𝑂𝑎.𝑠.

(√︁
22(1+𝑑) 𝑗𝑛 (log 𝑛)/𝑛

)
. Thus, Theorem 1 implies that if 2 𝑗𝑛 ≃ (𝑛/log 𝑛)1/(2𝑡+𝑑)

then the rank-based linear wavelet estimator 𝑐 𝑗𝑛 converges almost surely to 𝑐, in supremum norm,
with a convergence rate of the order of (log 𝑛/𝑛) (2(𝑡−1)−𝑑)/(2(2𝑡+𝑑) ) . One can note that this rate is
weaker than (log 𝑛/𝑛)𝑡/(2𝑡+𝑑) , which is the best attainable rate for this norm; see, e.g., Juditsky and
Lambert-Lacroix (2004). However, it is obtained for very standard conditions and covers a large
class of wavelet bases, such as Haar, Daubechies, and Meyer. In contrast, the oracle estimator 𝑐 𝑗𝑛
attains the optimal rate of convergence for the supremum norm. In fact, for all u ∈ 𝐼𝑑 , we have

𝑐 𝑗𝑛 (u) − 𝑐(u) = 𝑐 𝑗𝑛 (u) − E𝑐 𝑗𝑛 (u) + E𝑐 𝑗𝑛 (u) − 𝑐(u) = 𝐷𝑛 (u) + 𝐵𝑛 (u)

which implies

sup
u∈𝐼𝑑

|𝑐 𝑗𝑛 (u) − 𝑐(u) | = 𝑂𝑎.𝑠.
(√︂

𝑗𝑛2𝑑 𝑗𝑛
𝑛

+ 2− 𝑗𝑛𝑡
)
.

Thus, if 2 𝑗𝑛 ≃ (𝑛/log 𝑛)1(2𝑡+𝑑) , the terms
√︁
𝑗𝑛2𝑑 𝑗𝑛/𝑛 and 2− 𝑗𝑛𝑡 are equivalent and equal to

(log 𝑛/𝑛) 𝑡
2𝑡+𝑑 which is the optimal rate for the supremum norm over the Besov class 𝐵𝑡∞,∞ (𝐼𝑑).

Comment. We are currently working on a different estimator proposed by a reviewer. Under different
assumptions which are potentially satisfied by different classes of wavelets, this estimator achieves
an optimal uniform convergence rate.

Appendix A: Useful results on empirical process
Bernstein’s inequality (maximal version):
Let 𝑍1, . . . , 𝑍𝑛 be independent random variables with E(𝑍𝑖) = 0, 𝑖 = 1, . . . , 𝑛 and Var(∑𝑛

𝑖=1 𝑍𝑖) ≤ 𝜈.
Assume further that for some constant 𝑀 > 0, |𝑍𝑖 | < 𝑀 , 𝑖 = 1, ..., 𝑛. Then for all 𝑡 > 0

P

(
max
𝑞≤𝑛

�����
𝑞∑︁
𝑖=1

𝑍𝑖

����� > 𝑡
)
≤ 2 exp

{ −𝑡2
2𝜈 + (2/3)𝑀𝑡

}
. (20)

Lemma 1 (Lemma A.1, Einmahl and Mason, 2000). Let F and G be two classes of real-valued
measurable functions on X satisfying

| 𝑓 (𝑥) | ≤ 𝐹 (𝑥), 𝑓 ∈ F , 𝑥 ∈ X,

where 𝐹 is a finite valued measurable envelope function on X;

∥𝑔∥ ≤ 𝑀, 𝑔 ∈ G,
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where 𝑀 > 0 is a finite constant. Assume that for all probability measures 𝑄 with 0 < 𝑄(𝐹2) < ∞,

𝑁 (𝜀(𝑄(𝐹2))1/2, F , 𝑑𝑄) ≤ 𝐶1𝜀
−𝜈1 , 0 < 𝜀 < 1,

and
𝑁 (𝜀𝑀,G, 𝑑𝑄) ≤ 𝐶2𝜀

−𝜈2 , 0 < 𝜀 < 1

where 𝜈1, 𝜈1, 𝐶1, 𝐶2 ≥ 1 are suitable constants. Then we have for all probability measure 𝑄 with
0 < 𝑄(𝐹2) < ∞,

𝑁 (𝜀𝑀 (𝑄(𝐹2))1/2, FG, 𝑑𝑄) ≤ 𝐶3𝜀
−𝜈1−𝜈2 , 0 < 𝜀 < 1

for some finite constant 0 < 𝐶3 < ∞.

Proposition 2 (Einmahl and Mason, 2000). Let 𝑍, 𝑍1, 𝑍2, . . . , be a sequence of i.i.d. random vectors
taking values in R𝑚, 𝑚 ≥ 1. For each 𝑛 ≥ 1, consider the empirical distribution function based on
the first 𝑛 of these random vectors, defined by

𝐺𝑛 (𝑠) = 1
𝑛

𝑛∑︁
𝑖=1

1𝑍𝑖≤𝑠 , 𝑠 ∈ R𝑚,

where as usual 𝑧 ≤ 𝑠 means that each component of 𝑧 is less than or equal to the corresponding
component of 𝑠. For any measurable real valued function 𝑔 defined on R𝑚, set

𝐺𝑛 (𝑔) =
∫
R𝑚
𝑔(𝑠)𝑑𝐺𝑛 (𝑠), 𝜇(𝑔) = E𝑔(𝑍) and 𝜎(𝑔) = 𝑉𝑎𝑟 (𝑔(𝑍)).

Let 𝑎𝑛 : 𝑛 ≥ 1 denote a sequence of positive constants converging to zero. Consider a sequence
G𝑛 = {𝑔 (𝑛)𝑖 : 𝑖 = 1, ..., 𝑘𝑛} of sets of real-valued measurable functions on R2, satisfying, whenever
𝑔 (𝑛)𝑖 ∈ G𝑛:

P(𝑔 (𝑛)𝑖 (𝑍) = 0, 𝑔 (𝑛)𝑗 (𝑍)) = 0, 𝑖 ≠ 𝑗 and
𝑘𝑛∑︁
𝑖=1
P(𝑔 (𝑛)𝑖 (𝑍) ≠ 0) ≤ 1/2.

Further assume the following:

• For some 0 < 𝑟 < ∞, 𝑎𝑛𝑘𝑛 → 𝑟, as 𝑛→ ∞.
• For some −∞ < 𝜇1, 𝜇2 < ∞, uniformly in 𝑖 = 1, . . . , 𝑘𝑛, for all large 𝑛, 𝑎𝑛𝜇1 ≤ 𝜇(𝑔 (𝑛)𝑖 ) ≤
𝑎𝑛𝜇2.

• For some 0 < 𝜎1 < 𝜎2 < ∞, uniformly in 𝑖 = 1, . . . 𝑘𝑛, for all large 𝑛, 𝜎1
√
𝑛𝑎𝑛 ≤ �̄�(𝑔 (𝑛)𝑖 ) ≤

𝜎2
√
𝑛𝑎𝑛.

• For some 0 < 𝐵 < ∞, uniformly in 𝑖 = 1, . . . , 𝑘𝑛, for all large 𝑛, |𝑔 (𝑛)𝑖 | ≤ 𝐵.

Proposition 3. Under these assumptions, with probability one, for each 0 < 𝜀 < 1, there exists an
𝑁𝜀 such that for 𝑛 ≥ 𝑁𝜀 ,

max
1≤𝑖≤𝑘𝑛

√
𝑛{𝐺𝑛 (𝑔 (𝑛)𝑖 ) − 𝜇(𝑔 (𝑛)𝑖 )}
�̄�(𝑔 (𝑛)𝑖 )

√︁
2| log 𝑎𝑛 |

≥ 1 − 𝜀.
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Talagrand’s inequality:
Let 𝑋𝑖 , 𝑖 = 1, . . . , 𝑛, be an independent and identically distributed random sample of 𝑋 with proba-
bility law 𝑃 on R, and G a 𝑃-centered (i.e.,

∫
𝑔𝑑𝑃 = 0 for all 𝑔 ∈ G) countable class of real-valued

functions on R, uniformly bounded by the constant 𝑈. Let 𝜎 be any positive number such that
𝜎2 ≥ sup𝑔∈G E(𝑔2 (𝑋)). Then, Talagrand’s inequality (Talagrand, 1996) implies that there exists a
universal constant 𝐿 such that for all 𝑡 > 0,

P
©«
max
𝑞≤𝑛


𝑞∑︁
𝑖=1

𝑔(𝑋𝑖)

G
> 𝐸 + 𝑡ª®¬

≤ 𝐿 exp
{ −𝑡
𝐿𝑈

log
(
1 + 𝑡𝑈

𝑉

)}
, (21)

with

𝐸 = E


𝑛∑︁
𝑖=1

𝑔(𝑋𝑖)

G

and 𝑉 = E


𝑛∑︁
𝑖=1

(𝑔(𝑋𝑖))2


G
.

Further, if G is a VC(Vapnik–Červonenkis)-type class of functions, with characteristics 𝐴 and 𝑣, then
there exist a universal constant 𝐵 such that [see, e.g., Giné and Guillou, 2002]

𝐸 ≤ 𝐵

[
𝑣𝑈 log

𝐴𝑈

𝜎
+ √

𝑣
√︁
𝑛𝜎2 𝐴𝑈

𝜎

]
(22)

Next, if 𝜎 < 𝑈/2, the constant 𝐴 may be replaced by 1 at the price of changing the constant 𝐵, and
then if, moreover, 𝑛𝜎2 > 𝐶0 log (𝑈/𝜎), we have

𝐸 ≤ 𝐶1

√︄
𝑛𝜎2 log

(
𝑈

𝜎

)
and 𝑉 ≤ 𝐿′𝑛𝜎2, (23)

where 𝐶1, 𝐿
′ are constants depending only on 𝐴 ,𝑣 and 𝐶0. Finally, it follows from (36) and (23)

that, for all 𝑡 > 0 satisfying: 𝐶1
√︁
𝑛𝜎2 log (𝑈/𝜎) ≤ 𝑡 ≤ 𝐶2𝑛𝜎

2/𝑈 for all constants 𝐶2 ≥ 𝐶1,

P
©«

max
𝑛𝑘−1≤𝑛≤𝑛𝑘


𝑛∑︁
𝑖=1

𝑔(𝑋𝑖)

G
> 𝑡

ª®¬
≤ 𝑅 exp

{−1
𝐶3

𝑡2

𝑛𝜎2

}
, (24)

where 𝐶3 = log(1 + 𝐶2/𝐿′)/𝑅𝐶2 and 𝑅 a constant depending only on 𝐴 and 𝑣.

Appendix B: Proof of Proposition 1
Upper bound
Lemma 2. Under the assumptions of Proposition 1, one has almost surely

lim sup
𝑛→∞

𝑟𝑛 sup
u∈𝐼𝑑

|𝐷𝑛 (u) |√︃∫
R𝑑
𝐾2 (x, 2 𝑗𝑛u)𝑑x

≤
√︁
∥𝑐∥∞. (25)

Proof. Given 𝜆 > 1, define 𝑛𝑘 = [𝜆𝑘], 𝑘 ∈ N, where [𝑎] denotes the integer part of a real 𝑎. Let
𝛿𝑚 = 1/𝑚, 𝑚 ≥ 1 integer, then we can cover the set 𝐼𝑑 by a number 𝑙𝑘 of small cubes 𝑆𝑘,𝑟 , each of
side length 𝛿𝑚2− 𝑗𝑛𝑘 , with

𝑙𝑘 ≤
(

1
𝛿𝑚2− 𝑗𝑛𝑘

+ 1
)𝑑

≤
(

2
𝛿𝑚2− 𝑗𝑛𝑘

)𝑑
, (26)
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for 𝑘 large enough. Let us choose points u𝑘,𝑟 ∈ 𝑆𝑘,𝑟 ∩ 𝐼𝑑 , 𝑟 = 1, . . . , 𝑙𝑘 . We want to prove Lemma
2 over the discrete grid of points {u𝑘,𝑟 : 𝑟 = 1, . . . , 𝑙𝑘}. For all 𝜂 ∈ (0, 1) we claim that

lim sup
𝑘→∞

√︄
𝑛𝑘

(2𝑑 log 2) 𝑗𝑛𝑘2𝑑 𝑗𝑛𝑘
max

1≤𝑟≤𝑙𝑘
max

𝑛𝑘−1≤𝑛≤𝑛𝑘
|𝐷𝑛 (u𝑘,𝑟 ) | ≤ (1 + 𝜂)

√︁
∥𝑐∥∞ [𝐾2], (27)

where we note
[𝐾2] =

∫
R𝑑

K2 (x, 2 𝑗𝑛u)𝑑x.

To prove (27), we apply the maximal version of Bernstein inequality (see, Appendix A above). Given
u ∈ 𝐼𝑑 and 𝑘 ∈ N, for all 𝑛 satisfying : 𝑛𝑘−1 ≤ 𝑛 ≤ 𝑛𝑘 let

𝑍𝑖 (u) = K(2 𝑗𝑛U𝑖 , 2 𝑗𝑛u) − EK(2 𝑗𝑛U𝑖 , 2 𝑗𝑛u), 𝑖 = 1, . . . , 𝑛.

Observe that for each 𝑛, the 𝑍𝑖 (u) are independent and identically distributed zero-mean random
variables, and for all u ∈ 𝐼𝑑 ,

𝐷𝑛 (u) = 2𝑑 𝑗𝑛
𝑛

𝑛∑︁
𝑖=1

𝑍𝑖 (u). (28)

By hypothesis (H.2), we have

��K(2 𝑗𝑛U𝑖 , 2 𝑗𝑛u)
�� = 𝑑∏

𝑚=1

���̃� (2 𝑗𝑛𝑈𝑖𝑚, 2 𝑗𝑛𝑢𝑚)
�� ≤ 𝑑∏

𝑚=1
Φ(2 𝑗𝑛 (𝑈𝑖𝑚 − 𝑢𝑚)) ≤ ∥Φ∥𝑑∞,

where ∥Φ∥∞ = sup𝑥∈R |Φ(𝑥) |. This implies
��EK[(2 𝑗𝑛U𝑖 , 2 𝑗𝑛u)]

�� ≤ E∥Φ∥2
∞ = ∥Φ∥𝑑∞.

Thus, for all u ∈ 𝐼𝑑 ,
|𝑍𝑖 (u) | ≤ 2∥Φ∥𝑑∞ := 𝑀.

Since the 𝑍𝑖 (u), 𝑖 = 1, . . . , 𝑛 are independent and centered, we can write for 𝑛 = 𝑛𝑘

𝑉𝑎𝑟

(
𝑛𝑘∑︁
𝑖=1

𝑍𝑖 (u)
)
= 𝑛𝑘𝑉𝑎𝑟 (𝑍1 (u)) = 𝑛𝑘E(𝑍2

1 (u)).

Then using the change of variables s = 2− 𝑗𝑛𝑘 x, s = (𝑠1, . . . , 𝑠𝑑), x = (𝑥1, . . . , 𝑥𝑑), we obtain

E(𝑍2
1 (u)) ≤ EK2 [(2 𝑗𝑛𝑘 U1, 2 𝑗𝑛𝑘 u)

≤
∫
𝐼𝑑

K2 (2 𝑗𝑛𝑘 s, 2 𝑗𝑛𝑘 u)𝑐(s)𝑑s

≤ 2−𝑑 𝑗𝑛𝑘 ∥𝑐∥∞
∫
[0,2 𝑗𝑛𝑘 ]𝑑

K2 (x, 2 𝑗𝑛𝑘 u)𝑑x,

which yields

𝑉𝑎𝑟

(
𝑛𝑘∑︁
𝑖=1

𝑍𝑖 (u)
)
≤ 𝑛𝑘2−𝑑 𝑗𝑛𝑘 ∥𝑐∥∞

∫
R𝑑

K2 (x, 2 𝑗𝑛u)𝑑x := 𝜎2
𝑘 .
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Now, applying the maximal version Bernstein’s inequality, for each point u𝑘,𝑟 , we obtain for all
𝑡 > 0,

P

(
max

𝑛𝑘−1≤𝑛≤𝑛𝑘

�����
𝑛∑︁
𝑖=1

𝑍𝑖 (u𝑘,𝑟 )
����� > 𝑡

)
≤ 2 exp

{
−𝑡2

2𝜎2
𝑘 + (2/3)𝑀𝑡

}
, (29)

which yields

P

(
max

1≤𝑟≤𝑙𝑘
max

𝑛𝑘−1≤𝑛≤𝑛𝑘

�����
𝑛∑︁
𝑖=1

𝑍𝑖 (u𝑘,𝑟 )
����� > 𝑡

)
= P

(
𝑙𝑘⋃
𝑟=1

{
max

𝑛𝑘−1≤𝑛≤𝑛𝑘

�����
𝑛∑︁
𝑖=1

𝑍𝑖 (u𝑘,𝑟 )
����� > 𝑡

})

≤
𝑙𝑘∑︁
𝑟=1
P

(
max

𝑛𝑘−1≤𝑛≤𝑛𝑘

�����
𝑛∑︁
𝑖=1

𝑍𝑖 (u𝑘,𝑟 )
����� > 𝑡

)

≤ 𝑙𝑘2 exp

{
−𝑡2

2𝜎2
𝑘 + (2/3)𝑀𝑡

}
.

Let 𝑡 =
√︃

2(1 + 𝜂)𝑛𝑘2−𝑑 𝑗𝑛𝑘 log 2𝑑 𝑗𝑛𝑘 ∥𝑐∥∞ [𝐾2]. Then, for 𝑘 large enough, 𝑡 → ∞. Combining this
with (26), we obtain after some little algebra,

P
©«

max
1≤𝑟≤𝑙𝑘

max𝑛𝑘−1≤𝑛≤𝑛𝑘
��∑𝑛
𝑖=1 𝑍𝑖 (u𝑘,𝑟 )

��√︃
2𝑛𝑘2−𝑑 𝑗𝑛𝑘 log 2𝑑 𝑗𝑛𝑘 ∥𝑐∥∞ [𝐾2]

>
√︁

1 + 𝜂
ª®®¬

≤ 2𝑙𝑘 exp



−𝑡2
𝑡2

(1+𝜂) log 2𝑑 𝑗𝑛
+ 4

3 ∥Φ∥2𝑡




≤ 2𝑙𝑘 exp
{−(1 + 𝜂) log 2𝑑 𝑗𝑛𝑘

}
≤ 2𝑑𝛿−𝑑𝑚 2−𝑑𝜂 𝑗𝑛𝑘 .

Since the series
∑
𝑘≥0 2−𝑑𝜂 𝑗𝑛𝑘 < ∞, the Borel–Cantelli lemma yields

P
©«

max
1≤𝑟≤𝑙𝑘

max𝑛𝑘−1≤𝑛≤𝑛𝑘
��∑𝑛
𝑖=1 𝑍𝑖 (u𝑘,𝑟 )

��√︃
(2𝑑 log 2)𝑛𝑘 𝑗𝑛𝑘2−𝑑 𝑗𝑛𝑘 ∥𝑐∥∞ [𝐾2]

>
√︁

1 + 𝜂
ª®®¬
= 𝑜(1). (30)

That is

lim sup
𝑘→∞

max
1≤𝑟≤𝑙𝑘

max𝑛𝑘−1≤𝑛≤𝑛𝑘
��∑𝑛
𝑖=1 𝑍𝑖 (u𝑘,𝑟 )

��√︃
(2𝑑 log 2)𝑛𝑘 𝑗𝑛𝑘2−𝑑 𝑗𝑛𝑘 ∥𝑐∥∞ [𝐾2]

≤
√︁

1 + 𝜂, 𝑎.𝑠. (31)

Since the function 𝑥 ↦→ 𝑥2−2𝑥 is decreasing for 𝑥 > 2 log 2, we have for 𝑛𝑘−1 ≤ 𝑛 ≤ 𝑛𝑘 , and 𝑘 large
enough, √︄

𝑛𝑘 𝑗𝑛𝑘2−𝑑 𝑗𝑛𝑘

𝑛 𝑗𝑛2−𝑑 𝑗𝑛 ≤
√︂
𝑛𝑘
𝑛

≤
√︂

𝑛𝑘
𝑛𝑘−1

≤
√
𝜆. (32)

In view of inequality (32), Statement (31) yields

lim sup
𝑘→∞

max
1≤𝑟≤𝑙𝑘

max𝑛𝑘−1≤𝑛≤𝑛𝑘
��∑𝑛
𝑖=1 𝑍𝑖 (u𝑘,𝑟 )

��√︁
(2𝑑 log 2)𝑛 𝑗𝑛2−𝑑 𝑗𝑛 ∥𝑐∥∞ [𝐾2]

≤
√︁
𝜆(1 + 𝜂), 𝑎.𝑠. (33)
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Now, multiplying the numerator and the denominator of the fraction in (33) by the factor 2𝑑 𝑗𝑛/𝑛, and
recalling the expression of 𝐷𝑛 (u) in (28), we finally get for all 𝜂 ∈ (0, 1),

lim sup
𝑘→∞

max
1≤𝑟≤𝑙𝑘

max𝑛𝑘−1≤𝑛≤𝑛𝑘
√
𝑛
��𝐷𝑛 (u𝑘,𝑟 )��√︁

(2𝑑 log 2) 𝑗𝑛2𝑑 𝑗𝑛
≤

√︃
𝜆(1 + 𝜂)∥𝑐∥∞ [𝐾2], (34)

which proves Lemma 2 over the discrete grid.
Next, to prove Lemma 2 between the grid points, we shall make use of Talagrand’s (1996) inequality

in (21). Let us introduce the sequence of functions defined as follows: for all 𝑛 ≥ 1, 𝑘 ≥ 1, 1 ≤ 𝑟 ≤ 𝑙𝑘
and any fixed u ∈ 𝑆𝑘,𝑟 , define

𝑔 (𝑛)𝑘,𝑟 (s, u) = K(2 𝑗𝑛𝑘 s, 2 𝑗𝑛𝑘 u𝑘,𝑟 ) − K(2 𝑗𝑛s, 2 𝑗𝑛u), s ∈ 𝐼𝑑 . (35)

and set, for all 𝜆 > 1,

G𝑘,𝑟 (𝜆) =
{
𝑔 : s ↦→ 𝑔 (𝑛)𝑘,𝑟 (s, u) : u ∈ 𝑆𝑘,𝑟 ∩ 𝐼𝑑 , 𝑛𝑘−1 ≤ 𝑛 ≤ 𝑛𝑘

}
.

Let S = (𝑆1, . . . , 𝑆𝑑) be a vector of [0, 1] uniform random variables, now we have to check the
following conditions in order to apply Talagrand’s inequality:

i) The classes G𝑘,𝑟 (𝜆), 1 ≤ 𝑟 ≤ 𝑙𝑘 , are of VC-type with characteristics 𝐴 and 𝑣;

ii) ∀𝑔 ∈ G𝑘,𝑟 (𝜆), ∥𝑔∥∞ ≤ U;

iii) ∀𝑔 ∈ G𝑘,𝑟 (𝜆), Var[𝑔(S)] ≤ 𝜎2
𝑘 ;

iv) 𝜎𝑘 < 𝑈/2 and 𝑛𝑘𝜎2
𝑘 > 𝐶0 log (𝑈/𝜎𝑘), 𝐶0 > 0.

These conditions will be checked below.
Recall that U𝑖 = (𝐹1𝑖 (𝑋𝑖1), . . . , 𝐹𝑑𝑖 (𝑋𝑖𝑑)), 𝑖 = 1, . . . , 𝑛, is a sequence of independent and identi-

cally distributed vectors of [0, 1] uniform components. We have shown (see below) that each class
G𝑘,𝑟 (𝜆) satisfies all the conditions i), ii), iii) and iv) for U = 2∥Φ∥𝑑∞ and𝜎2

𝑘 = 𝐷02−𝑑 𝑗𝑛𝑘 ∥𝑐∥∞𝜔2
𝜙 (𝛿𝑚),

where 𝜔𝜙 is the modulus of continuity of 𝜙 defined below in (43) and 𝐷0 is a positive constant de-
pending on ∥Φ∥∞ and 𝑑. Then, Talagrand’s inequality gives, for all 𝑡 > 0,

P
©«

max
𝑛𝑘−1≤𝑛≤𝑛𝑘


𝑛∑︁
𝑖=1

(𝑔(U𝑖) − E𝑔(U𝑖))

G𝑘,𝑟 (𝜆)

> 𝑡
ª®¬
≤ 𝑅 exp

{
−1
𝐶3

𝑡2

𝑛𝑘𝜎
2
𝑘

}
, (36)

which yields, by taking the maximum over 𝑟 and 𝑡 = 𝐶1

√︂
𝑛𝑘𝜎

2
𝑘 log

(
U
𝜎𝑘

)
,

P
©«

max
1≤𝑟≤𝑙𝑘

max
𝑛𝑘−1≤𝑛≤𝑛𝑘


𝑛∑︁
𝑖=1

(𝑔(U𝑖) − E𝑔(U𝑖))

G𝑘,𝑟 (𝜆)

> 𝑡
ª®¬
≤ 𝑅𝑙𝑘 exp

{
−𝐶2

1
𝐶3

log
(

U
𝜎𝑘

)}
. (37)

Whenever 𝑚 → ∞, 𝜔𝜙 (𝛿𝑚) → 0. Hence, for any 𝜀 > 0, there exists 𝑚0 ∈ N such that 𝜔𝜙 (𝛿𝑚) < 𝜀
for 𝑚 ≥ 𝑚0. Using this fact, we can replace 𝜎2

𝑘 by 4𝐷2−𝑑 𝑗𝑛𝑘 𝜀∥𝑐∥∞, for 𝑚 large enough. We also
have, for 𝑘 large enough,

log
(

U
𝜎𝑘

)
= log

(
U

4𝐷𝜀∥𝑐∥∞

)
+ 𝑗𝑛𝑘 log 2 ∼ 𝑗𝑛𝑘 log 2,
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and thus, for 𝑘, 𝑚 large enough,

𝑡 = 𝐶1

√︄
𝑛𝑘𝜎

2
𝑘 log

(
U
𝜎𝑘

)
∼

√︃
4𝐷𝐶2

1𝑛𝑘2−𝑑 𝑗𝑛𝑘 𝑑 𝑗𝑛𝑘 log 2 𝜀∥𝑐∥∞.

By combining these facts with (26) we obtain, with 𝐴0 =
√

2𝐷𝐶1,

P
©«

max
1≤𝑟≤𝑙𝑘

max𝑛𝑘−1≤𝑛≤𝑛𝑘
∑𝑛

𝑖=1 (𝑔(U𝑖) − E𝑔(U𝑖))

G𝑘,𝑟 (𝜆)√︃

(2𝑑 log 2)𝑛𝑘 𝑗𝑛𝑘2−𝑑 𝑗𝑛𝑘
> 𝐴0

√︁
𝜀∥𝑐∥∞

ª®®¬
≤ 4𝑅𝛿−22−[𝐶2

1 /2𝐶3−1]2 𝑗𝑛𝑘 .

(38)
Now, we can choose the constant 𝐶1 in such a way that 𝐶2

1/2𝐶3 − 1 > 0; in which case the series∑
𝑘≥0 2−[𝐶2

1 /2𝐶3−1]2 𝑗𝑛𝑘 converges. Thus, the Borel-Cantelli’s lemma implies

P
©«

max
1≤𝑟≤𝑙𝑘

max𝑛𝑘−1≤𝑛≤𝑛𝑘
∑𝑛

𝑖=1 (𝑔(U𝑖) − E𝑔(U𝑖))

G𝑘,𝑟 (𝜆)√︃

(2𝑑 log 2)𝑛𝑘 𝑗𝑛𝑘2−𝑑 𝑗𝑛𝑘
> 𝐴0

√︁
𝜀∥𝑐∥∞

ª®®¬
= 𝑜(1), (39)

that is

lim sup
𝑘→∞

max
1≤𝑟≤𝑙𝑘

max𝑛𝑘−1≤𝑛≤𝑛𝑘
∑𝑛

𝑖=1 (𝑔(U𝑖) − E𝑔(U𝑖))

G𝑘,𝑟 (𝜆)√︃

(2𝑑 log 2)𝑛𝑘 𝑗𝑛𝑘2−𝑑 𝑗𝑛𝑘
≤ 𝐴0

√︁
𝜀∥𝑐∥∞, 𝑎.𝑠. (40)

Arguing as in the discrete case, with Statement (32) in view, we conclude that

lim sup
𝑘→∞

max
1≤𝑟≤𝑙𝑘

max𝑛𝑘−1≤𝑛≤𝑛𝑘
√
𝑛
𝐷𝑛 (u𝑘,𝑟 ) − 𝐷𝑛 (u)G𝑘,𝑟 (𝜆)√︁

(2𝑑 log 2) 𝑗𝑛2𝑑 𝑗𝑛
≤ 𝐴0

√︁
𝜆𝜀∥𝑐∥∞, 𝑎.𝑠., (41)

which completes the proof of Lemma 2 between the grid-points.

Now recapitulating, we can infer from (34) and (41) that

lim sup
𝑘→∞

max
1≤𝑟≤𝑙𝑘

max𝑛𝑘−1≤𝑛≤𝑛𝑘
√
𝑛 |𝐷𝑛 (u) |√︁

(4 log 2) 𝑗𝑛2−2 𝑗𝑛
≤

√︃
𝜆(1 + 𝜂)∥𝑐∥∞ [𝐾2] + 𝐴0

√︁
𝜆𝜀∥𝑐∥∞, 𝑎.𝑠. (42)

Since 𝜂 and 𝜀 are arbitrary, letting 𝜆 → 1 completes the proof of Lemma 2. ■

Checking conditions i), ii), iii), iv)
Checking i): Observe that the elements of the class G𝑘,𝑟 (𝜆) may be rewritten as

𝑔 (𝑛)𝑘,𝑟 (s, u) =
𝑑∏
𝑚=1

𝐾 (2 𝑗𝑛𝑘 𝑠𝑚, 2 𝑗𝑛𝑘 𝑢𝑘,𝑟 ,𝑚) −
𝑑∏
𝑚=1

𝐾 (2 𝑗𝑛 𝑠𝑚, 2 𝑗𝑛𝑢𝑚),

where 𝐾 (𝑥, 𝑦) =
∑2 𝑗𝑛

𝑙=1 𝜙(𝑥 − 𝑙)𝜙(𝑦 − 𝑙), with 𝜙 compactly supported and of bounded variation.
For 𝑚 = 1, . . . , 𝑑, define the classes of functions: F𝑚 = {𝑣 ↦→ ∑

𝑙∈Z 𝜙(2 𝑗𝑤 − 𝑙)𝜙(2 𝑗𝑣 − 𝑙) :
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𝑤 ∈ [0, 1], 𝑗 ∈ N}. By Lemma 2 in Giné and Nickl (2009), F1, . . . , F𝑚 are VC-type classes of
functions. Moreover, F1, . . . , F𝑚 are uniformly bounded. Indeed, for all 𝑤 ∈ [0, 1], 𝑗 ∈ N, we have���∑2 𝑗𝑛

𝑙=1 𝜙(2 𝑗𝑤 − 𝑙)𝜙(2 𝑗 · −𝑙)
��� ≤ ∥𝜙∥∞∥𝜃𝜙 ∥∞, as the function 𝜃𝜙 (𝑥) =

∑2 𝑗𝑛

𝑙=1 |𝜙(𝑥 − 𝑙) | is bounded.
By Lemma A.1 in Einmahl and Mason (2000), this implies that the product F1 · · · F𝑚 is also a
VC-type class of functions. Now, using properties (iv) and (v) of Lemma 2.6.18 in van der Vaart
and Wellner (1996), we can infer that the classes of functions G𝑘,𝑟 (𝜆) are of VC-type for all 𝑘, 𝑟 fixed.

Checking ii): For all 𝑘 ≥ 1, 0 ≤ 𝑟 ≤ 𝑙𝑘 , 𝑛𝑘−1 ≤ 𝑛 ≤ 𝑛𝑘 , using hypothesis (H.2), we can write���𝑔 (𝑛)𝑘,𝑟 (·, u)
��� ≤

��K(2 𝑗𝑛𝑘 ·, 2 𝑗𝑛𝑘 u𝑘,𝑟 )
�� + ��K(2 𝑗𝑛 ·, 2 𝑗𝑛u)

��
≤

𝑑∏
𝑚=1

𝐾 (2 𝑗𝑛𝑘 ·, 2 𝑗𝑛𝑘 𝑢𝑘,𝑟 ,𝑚) +
𝑑∏
𝑚=1

𝐾 (2 𝑗𝑛 ·, 2 𝑗𝑛𝑢𝑚) ≤ 2∥Φ∥𝑑∞

and ii) holds with U = 2∥Φ∥𝑑∞.

Checking iii): For all 𝑘 ≥ 1, 0 ≤ 𝑟 ≤ 𝑙𝑘 , 𝑛𝑘−1 ≤ 𝑛 ≤ 𝑛𝑘 . As in Giné and Nickl (2009) we choose
𝜆 ∈ (0, 1), such that 𝑗𝑛𝑘 = 𝑗𝑛. By a change of variable s = u + 2− 𝑗𝑛𝑘 x, s = (𝑠1, . . . , 𝑠𝑑), x =
(𝑥1, . . . , 𝑥𝑑), u = (𝑢1, . . . , 𝑢𝑑), we have

E

[(
𝑔 (𝑛)𝑘,𝑟 (S, u)

)2
]

= E
[ (

K(2 𝑗𝑛𝑘 S, 2 𝑗𝑛𝑘 u𝑘,𝑟 ) − K(2 𝑗𝑛𝑘 S, 2 𝑗𝑛𝑘 u))2
]

=
∫
𝐼𝑑

(
K(2 𝑗𝑛𝑘 s, 2 𝑗𝑛𝑘 u𝑘,𝑟 ) − K(2 𝑗𝑛𝑘 s, 2 𝑗𝑛𝑘 u))2

𝑐(s)𝑑s

≤ ∥𝑐∥∞
2−𝑑 𝑗𝑛𝑘

∫
[−2 𝑗𝑛𝑘 ,2 𝑗𝑛𝑘 ]𝑑

(
K(2 𝑗𝑛𝑘 u + x, 2 𝑗𝑛𝑘 u𝑘,𝑟 ) − K(2 𝑗𝑛𝑘 u + x, 2 𝑗𝑛𝑘 u))2

𝑑x

≤ 2−𝑑 𝑗𝑛𝑘 ∥𝑐∥∞
∫
R𝑑

(
K(2 𝑗𝑛𝑘 u + x, 2 𝑗𝑛𝑘 u𝑘,𝑟 ) − K(2 𝑗𝑛𝑘 u + x, 2 𝑗𝑛𝑘 u))2

𝑑x.

To simplify, let us take w = 2 𝑗𝑛𝑘 u + x, then 𝑑x = 𝑑w, 𝑤 = (𝑤1, . . . , 𝑤𝑑) ∈ R𝑑 .
Put 𝐴(w) = K(w, 2 𝑗𝑛𝑘 u𝑘,𝑟 ) −K(w, 2 𝑗𝑛𝑘 u); using the multiplicativity of the kernel K, we can rewrite
𝐴(w) as

𝐴(w) =
𝑑∏
𝑙=1

𝐾 (𝑤𝑙 , 2 𝑗𝑛𝑘 𝑢𝑘,𝑟 ,𝑙) −
𝑑∏
𝑙=1

𝐾 (𝑤𝑙 , 2 𝑗𝑛𝑘 𝑢𝑘,𝑟 ,𝑙)

=
𝑑∑︁
𝑙=1

[
𝐾 (𝑤𝑙 , 2 𝑗𝑛𝑘 𝑢𝑘,𝑟 ,𝑙) − 𝐾 (𝑤𝑙 , 2 𝑗𝑛𝑘 𝑢𝑙)

] 𝑑∏
𝑝=1, 𝑝≠𝑙

𝐾 (𝑤𝑝 , 2 𝑗𝑛𝑘 𝑢𝑘,𝑟 , 𝑝).

For any 𝛿 > 0, the modulus of continuity of 𝜙 is defined as

𝜔𝜙 (𝛿) = {sup |𝜙(𝑥) − 𝜙(𝑦) | : |𝑥 − 𝑦 | ≤ 𝛿}. (43)

Recall that 𝐾 (𝑥, 𝑦) = ∑2 𝑗𝑛

ℎ=1 𝜙(𝑥 − ℎ)𝜙(𝑦 − ℎ). Combining these facts with the inequality (𝑎1 + · · · +
𝑎𝑑)2 ≤ 𝑑 (𝑎2

1 + · · · + 𝑎2
𝑑), and Fubini’s Theorem, we get

∫
R𝑑

|𝐴(w) |2𝑑w ≤ 𝑑

∫
R𝑑

𝑑∑︁
𝑙=1

[
𝐾 (𝑤𝑙 , 2 𝑗𝑛𝑘 𝑢𝑘,𝑟 ,𝑙) − 𝐾 (𝑤𝑙 , 2 𝑗𝑛𝑘 𝑢𝑙)

]2 𝑑∏
𝑝=1, 𝑝≠𝑙

𝐾2 (𝑤𝑙 , 2 𝑗𝑛𝑘 𝑢𝑘,𝑟 , 𝑝)𝑑w.
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Then

∫
R𝑑

|𝐴(w) |2𝑑w ≤ 𝑑
𝑑∑︁
𝑙=1

∫
R𝑑


2 𝑗𝑛∑︁
ℎ=1

𝜙(2 𝑗𝑛𝑘𝑤𝑙 − ℎ) [𝜙(2 𝑗𝑛𝑘 𝑢𝑘,𝑟 ,𝑙 − ℎ) − 𝜙(2 𝑗𝑛𝑘 𝑢𝑙 − ℎ)]


2

×
𝑑∏

𝑝=1, 𝑝≠𝑙
𝐾2 (𝑤𝑝 , 2 𝑗𝑛𝑘 𝑢𝑘,𝑟 , 𝑝)𝑑w

≤ 𝑑𝜔2
𝜙 (𝛿𝑚)

𝑑∑︁
𝑙=1

∫
R𝑑


2 𝑗𝑛∑︁
ℎ

𝜙(2 𝑗𝑛𝑘𝑤𝑙 − ℎ)


2
𝑑∏

𝑝=1, 𝑝≠𝑙
𝐾2 (𝑤𝑝 , 2 𝑗𝑛𝑘 𝑢𝑘,𝑟 , 𝑝)𝑑w

≤ 𝑑𝜔2
𝜙 (𝛿𝑚)

𝑑∑︁
𝑙=1

∫
R


2 𝑗𝑛∑︁
ℎ=1

𝜙(2 𝑗𝑛𝑘𝑤𝑙 − ℎ)


2

𝑑𝑤𝑙

𝑑∏
𝑝=1, 𝑝≠𝑙

∫
R
𝐾2 (𝑤𝑝 , 2 𝑗𝑛𝑘 𝑢𝑘,𝑟 , 𝑝)𝑑𝑤𝑝 .

Now, since the family {𝜙(· − ℎ) : ℎ = 1, . . . , 2 𝑗𝑛 } is an orthonormal basis, the quantity∫
R

(∑2 𝑗𝑛

ℎ=1 𝜙(𝑤𝑙 − ℎ)
)2
𝑑𝑤𝑙 can be bounded by a constant 𝑀0; thus

∫
R𝑑

|𝐴(w) |2𝑑w ≤ 𝑀0𝑑𝜔
2
𝜙 (𝛿𝑚)

𝑑∑︁
𝑙=1

𝑑∏
𝑝=1, 𝑝≠𝑙

∫
R
𝐾2 (𝑤𝑝 , 2 𝑗𝑛𝑘 𝑢𝑘,𝑟 , 𝑝)𝑑𝑤𝑝

≤ 𝑀0𝑑
2𝜔2

𝜙 (𝛿𝑚)𝐷,

where we use Hypothesis (H.2) for the last inequality, with 𝐷 a positive constant depending on ∥Φ∥∞.
Finally, we obtain

E

[(
𝑔 (𝑛)𝑘,𝑟 (S, u)

)2
]
≤ 𝑀0𝑑

2𝐷2−𝑑 𝑗𝑛𝑘 ∥𝑐∥∞𝜔2
𝜙 (𝛿𝑚), (44)

and iii) holds with
𝜎2
𝑘 = 𝐷02−𝑑 𝑗𝑛𝑘 ∥𝑐∥∞𝜔2

𝜙 (𝛿𝑚), 𝐷0 = 𝑀0𝑑
2𝐷. (45)

Checking iv): For 𝑚 > 0 fixed, we have

𝜎𝑘
U

=
𝐷1/2

0 2− 𝑑
2 𝑗𝑛𝑘 ∥𝑐∥1/2

∞ 𝜔𝜙 (𝛿𝑚)
2∥Φ∥𝑑∞

→ 0, 𝑘 → ∞,

which implies that 𝜎𝑘/𝑈 < 𝜀, for all 𝜀 > 0 and 𝑘 large enough. Hence, for 𝜀 = 1/2, we have
𝜎𝑘 < 𝑈/2. We also have, for all large 𝑘 ,

𝑛𝑘𝜎
2
𝑘

log
(
𝑈
𝜎𝑘

) =
𝐷0𝑛𝑘 ∥𝑐∥∞𝜔2

𝜙 (𝛿𝑚)
𝑗𝑛𝑘2𝑑 𝑗𝑛𝑘 log 2

−→ ∞,

by Hypothesis (H.4). This readily implies that, for any constant 𝐶0 > 0, 𝑛𝑘𝜎2
𝑘 > 𝐶0 log (𝑈/𝜎𝑘) for

all large 𝑘 , and iv) holds.
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Lower bound
Lemma 3. Under the assumptions of Proposition 1, one has almost surely

lim inf
𝑛→∞ 𝑟𝑛 sup

u∈𝐼𝑑
|𝐷𝑛 (u) |√︃∫

R𝑑
𝐾2 [(x, 2 𝑗𝑛u)]𝑑x

≥
√︁
∥𝑐∥∞. (46)

Proof. It is an adaptation of the proof of Proposition 2 in Giné and Nickl (2009), which is, itself,
inspired by Proposition 2 in Einmahl and Mason (2000). According to this latter proposition,
(46) holds if and only if for all 𝜏 > 0, and all large 𝑛, there exists 𝑘𝑛 =: 𝑘𝑛 (𝜏) points z𝑖,𝑛 =
(𝑧1,𝑖,𝑛, . . . , 𝑧𝑑,𝑖,𝑛) ∈ 𝐼𝑑 , 𝑖 = 1, . . . , 𝑘𝑛 such that, for functions 𝑔 (𝑛)𝑖 (s) = K(2 𝑗𝑛s, 2 𝑗𝑛z𝑖,𝑛), s ∈ 𝐼𝑑 ,
and for U = (𝑈1, . . . ,𝑈𝑑) a random vector with joint density 𝑐, the following conditions hold :

C.1) P(𝑔 (𝑛)𝑖 (U) ≠ 0, 𝑔 (𝑛)𝑖′ (U) ≠ 0) = 0, ∀𝑖 ≠ 𝑖′;

C.2)
∑𝑘𝑛
𝑖=1 P(𝑔

(𝑛)
𝑖 (U) ≠ 0) ≤ 1/2;

C.3) 2− 𝑗𝑛 𝑘𝑛 −→ 𝑟 ∈]0,∞[;

C.4) ∃ 𝜇1, 𝜇2 ∈ R : 2−𝑑 𝑗𝑛𝜇1 ≤ E𝑔 (𝑛)𝑖 (U) ≤ 2−𝑑 𝑗𝑛𝜇2, ∀𝑖 = 1, . . . , 𝑘𝑛;

C.5) ∃ 𝜎1, 𝜎2 > 0 : 2−𝑑 𝑗𝑛𝜎2
1 ≤ Var[𝑔 (𝑛)𝑖 (U)] ≤ 2−𝑑 𝑗𝑛𝜎2

2 , ∀𝑖 = 1, . . . , 𝑘𝑛;

C.6) ∥𝑔 (𝑛)𝑖 ∥∞ < ∞, ∀𝑖 = 1, . . . , 𝑘𝑛, ∀𝑛 ≥ 1;

Now, we have to check these conditions. By hypothesis the copula density 𝑐 is continuous and
bounded on 𝐼𝑑 , then there exists some orthrotope 𝐷 ⊂ 𝐼𝑑 such that maxs∈𝐷 𝑐(s) = ∥𝑐∥∞. Thus, for
all 𝜏 > 0 there exists s0 ∈ 𝐷 such that 𝑐(s0) ≥ (1 − 𝜏)∥𝑐∥∞. Let

𝐷𝜏 = {s ∈ 𝐷 : 𝑐(s) ≥ (1 − 𝜏)∥𝑐∥∞}, (47)

and choose a subset 𝐷0 ⊂ 𝐷𝜏 such that P(U ∈ 𝐷0) ≤ 1
2 . Suppose that 𝐷0 =

∏𝑑
𝑗=1 [𝑎 𝑗 , 𝑏 𝑗 ], with

0 ≤ 𝑎 𝑗 < 𝑏 𝑗 ≤ 1 and 𝑏 𝑗 − 𝑎 𝑗 = ℓ, ∀ 𝑗 = 1, . . . , 𝑑.
Set 𝛿 = 3𝐵 and define

𝑧 𝑗 ,𝑖,𝑛 = 𝑎 + 𝑖𝛿2− 𝑗𝑛 , 𝑖 = 1, . . . ,
[
𝑏 − 𝑎
𝛿2− 𝑗𝑛

]
− 1 := 𝑘𝑛, 𝑗 = 1, . . . , 𝑑,

where [𝑥] denotes the integer part of a real 𝑥.

Checking C.1): Recall that 𝜙 is supported on [0, 𝐵], then

𝑔 (𝑛)𝑖 (U) ≠ 0 ⇐⇒ ∀𝑘, 𝑙 ∈ Z
{

0 ≤ 2 𝑗𝑛𝑈 𝑗 − 𝑙 ≤ 𝐵, 𝑗 = 1, . . . , 𝑑, (1)
0 ≤ 2 𝑗𝑛 𝑧 𝑗 ,𝑖,𝑛 − 𝑙 ≤ 𝐵, 𝑗 = 1, . . . , 𝑑, (2)

and

𝑔 (𝑛)𝑖′ (U) ≠ 0 ⇐⇒ ∀𝑘, 𝑙 ∈ Z
{

0 ≤ 2 𝑗𝑛𝑈 𝑗 − 𝑙 ≤ 𝐵, 𝑗 = 1, . . . , 𝑑, (1)′
0 ≤ 2 𝑗𝑛 𝑧 𝑗 ,𝑖′ ,𝑛 − 𝑙 ≤ 𝐵, 𝑗 = 1, . . . , 𝑑. (2)′
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Combining (2) and (2)′ gives, for every 𝑗 = 1, . . . , 𝑑,

|𝑧 𝑗 ,𝑖,𝑛 − 𝑧 𝑗 ,𝑖′ ,𝑛 | ≤ 2− 𝑗𝑛𝐵. (3)

But, by definition, for all 𝑖 ≠ 𝑖′, |𝑧 𝑗 ,𝑖,𝑛 − 𝑧 𝑗 ,𝑖′ ,𝑛 | > 𝛿2− 𝑗𝑛 = 3𝐵2− 𝑗𝑛 , which contradicts (3). Hence,
the event {𝑔 (𝑛)𝑖 (U) ≠ 0, 𝑔 (𝑛)𝑖′ (U) ≠ 0} is empty for 𝑖 ≠ 𝑖′ and condition C.1) holds.

Checking C.2): For all 𝑛 ≥ 1, the sets {𝑔 (𝑛)𝑖 (U) ≠ 0}, 𝑖 = 1, . . . , 𝑘𝑛 are disjoint in view of Condition
C.1). Then, we have

𝑘𝑛∑︁
𝑖=1
P({𝑔 (𝑛)𝑖 (U) ≠ 0}) = P

(
𝑘𝑛⋃
𝑖=1

{𝑔 (𝑛)𝑖 (U) ≠ 0}
)
.

Now, it suffices to show that
⋃𝑘𝑛
𝑖=1{𝑔

(𝑛)
𝑖 (U) ≠ 0} ⊂ {U ∈ 𝐷0}. From statements (1) and (3) above,

we can write, for all 𝑗 = 1, . . . , 𝑑,

−𝐵 ≤ 2 𝑗𝑛 (𝑈 𝑗 − 𝑢 𝑗 ,𝑖,𝑛) ≤ 𝐵

𝑢 𝑗 ,𝑖,𝑛 − 2− 𝑗𝑛𝐵 ≤ 𝑈 𝑗 ≤ 𝑢 𝑗 ,𝑖,𝑛 + 2− 𝑗𝑛𝐵

𝑎 𝑗 ≤ 𝑎 𝑗 + (3𝑖 − 1)2− 𝑗𝑛𝐵 ≤ 𝑈 𝑗 ≤ 𝑎 𝑗 + (3𝑖 + 1)2− 𝑗𝑛𝐵 ≤ 𝑏 𝑗 .

That is𝑈 𝑗 ∈ [𝑎 𝑗 , 𝑏 𝑗 ], and hence U = (𝑈1, . . . ,𝑈𝑑) ∈
∏𝑑
𝑗=1 [𝑎 𝑗 , 𝑏 𝑗 ] = 𝐷0. It follows that,

∀ 𝑖 = 1, . . . , 𝑘𝑛, {𝑔 (𝑛)𝑖 (U) ≠ 0} ⊂ {U ∈ 𝐷0}⋃𝑘𝑛
𝑖=1{𝑔

(𝑛)
𝑖 (U) ≠ 0} ⊂ {U ∈ 𝐷0}

P
(⋃𝑘𝑛

𝑖=1{𝑔
(𝑛)
𝑖 (U) ≠ 0}

)
≤ P({U ∈ 𝐷0}) ≤ 1

2 .

Hence, C.2) is fulfilled.

Checking C.3): It is immediate, since

2− 𝑗𝑛 𝑘𝑛 = 2− 𝑗𝑛
( [
𝑏 − 𝑎
𝛿2− 𝑗𝑛

]
− 1

)
=

[
𝑏 − 𝑎
𝛿

]
− 2− 𝑗𝑛 →

[
𝑏 − 𝑎
𝛿

]
=: 𝑟 > 0, 𝑛→ ∞.

Checking C.4) : Using a change of variables s = 2− 𝑗𝑛x, s = (𝑠1, . . . , 𝑠𝑑), x = (𝑥1, . . . , 𝑥𝑑), we have

|E𝑔 (𝑛)𝑖 (U) | ≤
∫
𝐼𝑑𝜖

��K(2 𝑗𝑛s, 2 𝑗𝑛z𝑖,𝑛)
�� 𝑐(s)𝑑s

≤ 2−𝑑 𝑗𝑛 ∥𝑐∥∞
∫
R𝑑

��K(x, 2 𝑗𝑛z𝑖,𝑛)
�� 𝑑x

≤ 2−𝑑 𝑗𝑛 ∥𝑐∥∞
∫
R𝑑

|
𝑑∏
𝑗=1

𝐾 (𝑥 𝑗 , 2 𝑗𝑛𝑢 𝑗 ,𝑖,𝑛) |𝑑𝑥 𝑗

≤ 2−𝑑 𝑗𝑛 ∥𝑐∥∞
∫
R𝑑

𝑑∏
𝑗=1

Φ(𝑥 𝑗 − 2 𝑗𝑛𝑢 𝑗 ,𝑖,𝑛)𝑑𝑥 𝑗

≤ 2−2 𝑗𝑛𝜇,
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where 𝜇 = ∥𝑐∥∞
∫
R𝑑

∏𝑑
𝑗=1 Φ(𝑥 𝑗 − 2 𝑗𝑛𝑢 𝑗 ,𝑖,𝑛)𝑑𝑥 𝑗 exists, because the function Φ is integrable by

hypothesis (H.2). The last inequality is equivalent to

−2−2 𝑗𝑛𝜇 ≤ E𝑔 (𝑛)𝑖 (𝑈,𝑉) ≤ 2−2 𝑗𝑛𝜇, ∀𝑖 = 1, · · · , 𝑘𝑛.
That is C.4) holds.

Checking C.5) : For 𝑛 ≥ 1, 𝑖 = 1, . . . , 𝑘𝑛, using a change of variables s = 2− 𝑗𝑛x + z𝑖,𝑛, s =
(𝑠1, . . . , 𝑠𝑑), x = (𝑥1, . . . , 𝑥𝑑), z𝑖,𝑛 = (𝑧1,𝑖,𝑛, . . . , 𝑧𝑑,𝑖,𝑛), we can write

Var[𝑔 (𝑛)𝑖 (U)] ≤ E

[(
𝑔 (𝑛)𝑖 (U)

)2
]

≤
∫
𝐼𝑑

K2 (2 𝑗𝑛s, 2 𝑗𝑛z𝑖,𝑛)𝑐(s)𝑑s

≤ 2−𝑑 𝑗𝑛 ∥𝑐∥∞
∫
R𝑑

K2 (x + 2 𝑗𝑛z𝑖,𝑛, 2 𝑗𝑛z𝑖,𝑛)𝑑x.

Putting 𝜎2
2 := ∥𝑐∥ 𝜖

∫
R𝑑

K2 (x + 2 𝑗𝑛z𝑖,𝑛, 2 𝑗𝑛z𝑖,𝑛)𝑑x yields

Var[𝑔 (𝑛)𝑖 (U)] ≤ 2−𝑑 𝑗𝑛𝜎2
2 ,

which is the upper bound in condition C.5). For the lower bound, we have

Var[𝑔 (𝑛)𝑖 (U)] = E
[(
𝑔 (𝑛)𝑖 (U)

)2
]
−

[
E𝑔 (𝑛)𝑖 (U)

]2

=
∫
𝐼𝑑

K2 (2 𝑗𝑛s, 2 𝑗𝑛z𝑖,𝑛)𝑐(s)𝑑s −
(∫
𝐼𝑑

K(2 𝑗𝑛s, 2 𝑗𝑛z𝑖,𝑛)𝑐(s)𝑑s
)2
.

Put 𝜇2
𝑛 =

(∫
𝐼𝑑

K(2 𝑗𝑛s, 2 𝑗𝑛z𝑖,𝑛)𝑐(s)𝑑s
)2
. Noting that 𝐷𝜏 ⊂ 𝐼𝑑 , by a change of variables x = 2 𝑗𝑛s, we

obtain

Var[𝑔 (𝑛)𝑖 (U)] ≥
∫
𝐷𝜏

K2 (2 𝑗𝑛s, 2 𝑗𝑛z𝑖,𝑛)𝑐(s)𝑑s − 𝜇2
𝑛

≥ (1 − 𝜏)∥𝑐∥∞
∫
𝐷𝜏

K2 (2 𝑗𝑛s, 2 𝑗𝑛z𝑖,𝑛)𝑑s − 𝜇2
𝑛

≥ (1 − 𝜏)∥𝑐∥∞2−𝑑 𝑗𝑛
∫
R𝑑

K2 (x, 2 𝑗𝑛z𝑖,𝑛)𝑑x − 𝜇2
𝑛.

Proceeding again to the same change of variables, and observing from hypothesis (H.3) that∫
R𝑑

K(x, 2 𝑗𝑛z𝑖,𝑛)𝑑x = 1, we can write

𝜇2
𝑛 ≤

(
∥𝑐∥∞2−𝑑 𝑗𝑛

∫
R𝑑

K(x, 2 𝑗𝑛z𝑖,𝑛)𝑑x
)2

≤ ∥𝑐∥2
∞2−2𝑑 𝑗𝑛 ,

which implies −𝜇2
𝑛 ≥ −∥𝑐∥2

𝜖 2−4 𝑗𝑛 . Thus, for 𝑛 large enough, we obtain the lower bound in condition
C.5), i.e.,

Var[𝑔 (𝑛)𝑖 (U)] ≥ 2−𝑑 𝑗𝑛 (1 − 𝜏)∥𝑐∥∞
∫
R𝑑

K2 (x, 2 𝑗𝑛z𝑖,𝑛)𝑑x − ∥𝑐∥2
∞2−2𝑑 𝑗𝑛

≥ 2−𝑑 𝑗𝑛𝜎2
1 + 𝑜(1),
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with 𝜎2
1 := (1 − 𝜏)∥𝑐∥∞

∫
R𝑑
𝐾2 (x, 2 𝑗𝑛z𝑖,𝑛]𝑑x. Finally, C.5) holds. Moreover, letting 𝜏 → 0, we get

𝜎2
2 = 𝜎2

1 = ∥𝑐∥∞
∫
R𝑑

K2 (x, 2 𝑗𝑛u𝑑x.

Checking C.6): For all s ∈ 𝐼𝑑 , 𝑛 ≥ 1, 𝑖 = 1, . . . , 𝑘𝑛, by using Assumptions (H.1) and (H.2) and the
multiplicativity of kernel K, we have

|𝑔 (𝑛)𝑖 (s) | = |K(2 𝑗𝑛s, 2 𝑗𝑛z𝑖,𝑛) | =
𝑑∏
𝑚=1

|𝐾 (2 𝑗𝑛 𝑠𝑚, 2 𝑗𝑛 𝑧𝑖,𝑛,𝑚) |

≤
𝑑∏
𝑚=1

2 𝑗𝑛∑︁
𝑙=1

|𝜙(2 𝑗𝑛 𝑠𝑚 − 𝑙)𝜙(2 𝑗𝑛 𝑧𝑖,𝑛,𝑚 − 𝑙) |

≤ ∥𝜙∥𝑑∞
𝑑∏
𝑚=1

2 𝑗𝑛∑︁
𝑙=1

|𝜙(2 𝑗𝑛 𝑠𝑚 − 𝑙) |

≤ ∥𝜙∥𝑑∞∥𝜃𝜙 ∥𝑑∞.
Hence, sup𝑛≥1,1≤𝑖≤𝑘𝑛 ∥𝑔

(𝑛)
𝑖 ∥ ≤ ∥𝜙∥𝑑∞∥𝜃𝜙 ∥𝑑∞, and C.6) holds.

Since Conditions C.1) to C.6) are fulfilled, we can now apply Proposition 2 in Einmahl and Mason
(2000) to complete the proof of Lemma 3. ■

Finally, Lemma 2 and Lemma 3 give the proof of Proposition 1.
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