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In the present work, we propose a method of constructing Archimedean copulas
using the total time on test transform, extensively used in reliability modelling. It
is observed that the copula can be specified in terms of a univariate life distribution
with a finite mean and monotone hazard rate. We discuss some new properties of
the Kendall distribution arising from the proposed new generator and the associated
measures of dependence.

Keywords: Ageing, Dependence measures, Excess wealth transform, Kendall distribution.

1. Introduction
Copulas have come to occupy a prominent role in statistical literature as a primary tool in modelling
multivariate data by exploring the dependency structure between the constituent variables. Formally,
a bivariate copula 𝐶 (𝑢, 𝑣) is a function from 𝐼2 → 𝐼, 𝐼 = [0, 1] satisfying the properties:

(i) 𝐶 (𝑢, 0) = 𝐶 (0, 𝑣) = 0,

(ii) 𝐶 (𝑢, 1) = 𝑢, 𝐶 (1, 𝑣) = 𝑣,

(iii) for every 𝑢1, 𝑢2, 𝑣1, 𝑣2 in 𝐼 such that 𝑢1 ≤ 𝑢2, 𝑣1 ≤ 𝑣2,

𝐶 (𝑢2, 𝑣2) − 𝐶 (𝑢2, 𝑣1) − 𝐶 (𝑢1, 𝑣2) + 𝐶 (𝑢1, 𝑣1) ≥ 0.

Thus, 𝐶 (𝑢, 𝑣) satisfies the conditions for a bivariate distribution with uniform marginals on [0, 1].
More interestingly, if 𝐻 (𝑥, 𝑦) is a bivariate distribution function with marginals 𝐹 and 𝐺 then there
exists a copula

𝐶 (𝑢, 𝑣) = 𝐻
(
𝐹−1 (𝑢), 𝐺−1 (𝑣)

)
,

where 𝐹−1 is the inverse of 𝐹 and conversely, given a copula, we can find a bivariate distribution
function

𝐻 (𝑥, 𝑦) = 𝐶 (𝐹 (𝑥), 𝐺 (𝑦)) ,
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with marginals 𝐹 (𝑥) and 𝐺 (𝑦). Thus, from a given copula, we can generate a large class of
bivariate distributions through different choices of marginals, but possessing the same dependence
structure. Further, the dependence parameter can be estimated independently of the marginals. This
flexibility and unique properties of a copula makes it an attractive choice in modelling problems.
Currently, copulas find applications in quantitative finance in analysing risks, portfolio optimisation,
analysing prices, among others, in civil engineering for analysing high bridge constructions, for
simulation studies in earth quake engineering, mechanical and offshore constructions. It is also used
in medicine for brain research, oncology and cardio vascular studies. Some other areas are hydrology,
weather research, signal processing, reliability engineering, survival analysis and economics. We
refer to Jouanin et al. (2007), Fan and Patton (2014), Burney et al. (2018), and Zhang and Singh
(2019) and their references for more details.

A bivariate copula is said to be Archimedean if it can be written in the form

𝐶 (𝑢, 𝑣) = 𝜙[−1] (𝜙(𝑢) + 𝜙(𝑣)) ,
where

𝜙[−1] (𝑡) =
{
𝜙−1 (𝑡), 0 ≤ 𝑡 ≤ 𝜙(0),
0, 𝑡 > 𝜙(0),

and 𝜙, called the generator, is a continuous, strictly decreasing, convex function from 𝐼 to (0,∞) with
𝜙(1) = 0. Archimedean copulas (AC) are of special interest in view of (a) a large variety of useful
copulas belong to this class, (b) its representation by a single function renders its easy construction,
(c) provision to study scale free measures of dependence, and (d) ability to describe properties
of bivariate distributions through some designated univariate distributions. These properties have
encouraged a continuous stream of research to find new generators and new ACs with special proper-
ties. These include the use of Laplace transforms (Marshall and Olkin, 1988; Joe, 1997), composite
functions (Frees and Valdez, 1998), lambda functions (Michiels et al., 2011), hyperbolic functions
(Bal and Najjari, 2013), hyperbolic cotangent (Najjari et al., 2014), utility function (Spreeuw, 2014),
distribution functions and probability generating functions (Alhadlaq and Alzaid, 2020), Lorenz
curve (Fontanari et al., 2020), etc.

In this paper we present a new method of construction of ACs using the total time on test
transform (TTT), an important concept in reliability theory as the generator. The definition and
important properties of TTT are explained in the next section. The main motivation in choosing
TTT as the generator is the expectation that many of the reliability aspects of TTT can be used to
generate important properties of the resulting copulas. In Section 4, some results in this direction
are established. For example, bivariate distributions serve as models of lifetimes of two-component
devices. A crucial aspect to be observed in such cases is that the candidate model should match the
type of dependence exhibited by the observed lifetimes. We demonstrate in the sequel that an ageing
property such as increasing failure rate observed from the generator is equivalent to the negative
dependence property of the bivariate life distribution. Similar results exist for other ageing behaviour
of a univariate distribution associated with the generator. Thus, in our investigation, we have the
double advantage of constructing a new AC as well as one satisfying our modelling requirements and
satisfying other desirable properties discussed in the later sections.

The paper is organised into four sections. In Section 2, we review some of the existing definitions
and results that are required for future deliberation. This is followed in Section 3, with the proposal of
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a new generator. Finally, Section 4 undertakes the discussion of some new properties of the Kendall
distribution and dependence measures in the light of the generator based on TTT.

2. Preliminaries
Let 𝑋 be a continuous nonnegative random variable with distribution function 𝐹 (𝑥), survival function
�̄� (𝑥) and quantile function

𝑄𝑋 (𝑢) = inf{𝑥 | 𝐹 (𝑥) ≥ 𝑢}, 0 ≤ 𝑢 ≤ 1.

When 𝐹 (𝑥) is continuous and strictly increasing, 𝑄𝑋 (𝑢) becomes the ordinary inverse of 𝐹 (𝑥).
Assume that ` = 𝐸 (𝑋) < ∞. The hazard rate and mean residual life functions of 𝑋 are

ℎ𝑋 (𝑥) = 𝑓 (𝑥)
�̄� (𝑥)

and
𝑚𝑋 (𝑥) = 1

�̄� (𝑥)

∫ ∞

𝑥
�̄� (𝑡)𝑑𝑡,

where 𝑓 is the density function of 𝑋 . In terms of the quantile function, we have the hazard quantile
function and the mean residual quantile function as

ℎ𝑄 (𝑢) = ℎ𝑋 (𝑄𝑋 (𝑢)) = [(1 − 𝑢)𝑞𝑋 (𝑢)]−1

and

𝑚𝑄 (𝑢) = 𝑚𝑋 (𝑄𝑋 (𝑢)) = 1
1 − 𝑢

∫ 1

𝑢
(1 − 𝑝)𝑞𝑋 (𝑝)𝑑𝑝,

where 𝑞𝑋 (𝑢) = 𝑑𝑄𝑋 (𝑢)
𝑑𝑢 is the quantile density function of 𝑋 .

An equipment or device is said to be ageing positively (negatively) if its remaining lifetime
decreases (increases) as its age increases (decreases). Some important concepts in reliability theory
that describe the nature of ageing are the following. We say that 𝑋 is increasing (decreasing) hazard
rate, IHR (DHR) if ℎ𝑋 (𝑥) (ℎ𝑄 (𝑢)) is increasing (decreasing) in 𝑥 (𝑢). Similarly 𝑋 is increasing
(decreasing) hazard rate average, IHRA (DHRA) if 1

𝑥

∫ 𝑥
0 ℎ(𝑡)𝑑𝑡 increasing (decreasing) in 𝑥 and 𝑋

is new better (worse) than used, NBU (NWU) if �̄� (𝑥, 𝑦) ≤ (≥)�̄� (𝑥)�̄� (𝑦). A detailed discussion of
ageing concepts, their properties and applications can be found in Nair et al. (2013).

When several units are tested to ascertain their lifetimes, some of the units may fail within the
prescribed time of the test, while others may survive. The sum of all completed and incomplete life
lengths constitute the TTT. When the number of units are increased indefinitely, the TTT becomes

𝑇 (𝑢) =
∫ 𝑢

0
(1 − 𝑝)𝑞𝑋 (𝑝)𝑑𝑝. (1)

Some properties of 𝑇 (𝑢) are:

(i) Whenever 𝐹 (𝑥) is continuous, 𝑇 (𝑢) is an increasing function of 𝑢 with 𝑇 (0) = 0 and 𝑇 (1) = `.
Also 𝑇 (𝑢) is a quantile function with support (0, `).
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(ii) The distribution of 𝑋 is uniquely determined by 𝑇 (𝑢) as

𝑄𝑋 (𝑢) =
∫ 𝑢

0

𝑇 ′ (𝑝)
1 − 𝑝 𝑑𝑝.

(iii) Also, 𝑇 ′ (𝑢) = [
ℎ𝑄 (𝑢)

]−1 and 𝑀𝑄 (𝑢) = `−𝑇 (𝑢)
1−𝑢 . Further, 𝑋 is IHR (DHR) if and only if 𝑇 (𝑢)

is concave (convex) in [0, 1].

The above definitions and properties are available in Nair and Sankaran (2009) and Nair et al. (2013).
For the AC with generator 𝜙, the function

𝐾 (𝑡) = 𝑡 − 𝜙(𝑡)
𝜙′ (𝑡+) , (2)

where prime denotes differentiation and 𝜙(𝑡+) the limiting value of 𝜙(𝑥) as 𝑥 tends to 𝑡 from above,
is the distribution function of the random variable 𝐶 (𝑈,𝑉), where 𝑈 and 𝑉 are uniform (0, 1)
random variables. We call (2) as the Kendall distribution function. See Nelsen (2006, Chapter 4) for
detailed discussion of this distribution, and Susam and Ucer (2018, 2020) for additional references
and applications to tests of hypotheses. A function 𝑔(𝑥) is said to be super (sub-) additive if
𝑔(𝑥 + 𝑦) > (<)𝑔(𝑥) + 𝑔(𝑦). Next, the definitions of certain dependence properties of Archimedean
copulas are given: If 𝐶𝜙 is an Archimedean copula with generator 𝜙 then it is

(i) Positively (negatively) quadrant dependent, PQD (NQD) if and only if − log 𝜙−1 (𝑡) is sub-
additive (super-additive).

(ii) Stochastically increasing (SI) if and only if −𝑑
𝑑𝑡 𝜙

−1 (𝑡) is a log-convex function.

(iii) Left tail decreasing (LTD) if and only if − log 𝜙−1 (𝑡) is a concave function.

We refer to Avérous and Dortet-Bernadet (2004) for further details of the above definitions.

3. Construction of an Archimedean copula
Continuing the notations in the previous section, we first obtain the conditions under which an
Archimedean copula can be constructed using the TTT of 𝑋 . Note that if the generator satisfies
𝜙(0) = ∞, we say that the AC is strict, otherwise it is non-strict.

Theorem 1. Let 𝑋 be a continuous nonnegative random variable with 𝐸 (𝑋) < ∞ and decreasing
hazard rate. Then

𝐶𝑀 (𝑢, 𝑣) = 𝑀 [−1] (𝑀 (𝑢) + 𝑀 (𝑣)) , (3)

is a non-strict Archimedean copula, where 𝑀 (𝑢) = 𝑇 (1−𝑢), the mirror image of 𝑇 (𝑢), the total time
on test transform.

Proof. Since 𝑇 (0) = 0, we have 𝑀 (1) = 0. Also 𝑀 is decreasing, since 𝑇 is increasing. Being a
decreasing hazard rate random variable, the TTT of 𝑋 is convex and so is 𝑀 (𝑢). Thus, 𝑀 is the
generating function of an Archimedean copula 𝐶 : 𝐼2 → 𝐼 given by (3), which is not strict by virtue
of 𝑀 (0) = 𝑇 (1) = ` < ∞. ■
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Example 1. Let 𝑋 be a Pareto I random variable with quantile function

𝑄(𝑢) = 𝜎(1 − 𝑢)− 1
𝛼 , 0 ≤ 𝑢 ≤ 1, 𝛼, 𝜎 > 0.

Then the TTT of 𝑋 is
𝑇 (𝑢) = 𝜎

𝛼 − 1

(
(1 − 𝑢) 𝛼−1

𝑎 − 1
)
,

giving
𝑀 (𝑢) = 𝜎

𝛼 − 1

(
𝑢

𝛼−1
𝛼 − 1

)
and

𝑀−1 (𝑢) =
(
1 + 𝛼 − 1

𝜎
𝑢

) 𝛼
𝛼−1

.

Thus,
𝐶𝑀 (𝑢, 𝑣) = 𝑀−1

[ 𝜎

𝛼 − 1

{
𝑢

𝛼−1
𝛼 − 1 + 𝑣 𝛼−1

𝛼 − 1
}]

= max
(
𝑢

𝛼−1
𝛼 + 𝑣 𝛼−1

𝛼 − 1, 0
) 𝛼

𝛼−1
, 𝛼 ≠ 1, 𝛼 ∈ [0, ∞],

which is the Clayton copula.

For each generating function 𝜙 in the general definition

𝐶𝜙 (𝑢, 𝑣) = 𝜙[−1] (𝜙(𝑢) + 𝜙(𝑣)) , (4)

Genest and Rivest (1993) observed that there exists a distribution function 𝐹𝜙 such that

𝐹𝜙 (𝑢) = 1 − 𝜙−1 (𝑢), 0 ≤ 𝑢 ≤ 1, (5)

and that when 𝜙 is continuous, convex, and decreasing, with 𝜙(1) = 0, 𝐹𝜙 is unimodal on [0, ∞) with
mode at zero. Later, Avérous and Dortet-Bernadet (2004) asserted that 𝜙−1 is the survival function
of the random variable 𝑍 = 2𝜙 [max (𝐹1 (𝑥), 𝐹2 (𝑥2))], where 𝐹1 and 𝐹2 are marginal distribution
functions of 𝑋1 and 𝑋2. For example, if 𝜙(𝑢) = − log(𝑢), the copula generated by 𝜙(𝑢) is 𝐶𝜙 = 𝑢𝑣,
the independent copula denoted usually by Π. On the other hand, taking 𝑀 = − log(𝑢), we have
𝑇 (𝑢) = − log(1 − 𝑢). The univariate distribution arising from 𝜙 is

𝐹𝜙 (𝑥) = 1 − 𝑒−𝑥 ,
the unit exponential distribution. At the same time, the Archimedean copula in (3) with 𝑀 as above
gives the quantile function

𝑄𝑇 (𝑢) =
∫ 𝑢

0

𝑇 ′ (𝑝)
1 − 𝑝 𝑑𝑝 =

𝑢

1 − 𝑢 ,

that corresponds with the Pareto II distribution with survival function �̄� (𝑥) = (1 + 𝑥)−2, 𝑥 > 0.
The distribution obtained from (5) and the baseline distribution from which the generator has been
originated, are different.

It is also true that if 𝜙 and 𝑇 correspond to the same distribution, then the copulas 𝐶𝜙 and 𝐶𝑀 may
be different. For example, the TTT that corresponds to the exponential distribution �̄� (𝑥) = exp[−_𝑥]
is 𝑇 (𝑢) = _−1𝑢. Hence 𝑀 (𝑢) = _−1 (1 − 𝑢) and

𝐶𝑀 (𝑢, 𝑣) = 𝑀−1
(

1 − 𝑢
_

,
1 − 𝑣
_

)
= max(𝑢 + 𝑣 − 1, 0),
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the Frechet-Hoeffding lower bound of every copula 𝐶 (𝑢, 𝑣). But, 𝐶𝜙 (𝑢, 𝑣) = 𝑢𝑣. Thus, it becomes
evident that the properties of the copulas𝐶𝑀 and𝐶𝜙 based on the quantile functions𝑄𝑀 and𝑄𝜙 will
be distinct, and therefore, the former is worth consideration. The TTTs corresponding Archimedean
copulas, and their 𝑀 functions of several distributions are exhibited in Table I.

The TTT, itself being a quantile function, possesses a TTT called the second order TTT. In
this manner associated with a TTT, we can construct a hierarchy of TTTs with several interesting
properties as discussed in Nair et al. (2008). For example, if the baseline distribution has increasing
hazard rate, the higher order TTTs have lesser increasing hazard rates with eventually at some higher
order, the hazard rate begins to decrease. Thus, by increasing the order of TTT one can reduce the
hazard rate and thereby generate a new distribution with more reliable lifetime. While constructing
ACs with such TTTs, it will be seen that we will be reducing the amount of negative dependence
at each modification with eventually getting one with positive dependence. These results will be of
practical importance in the choice of appropriate models for given data. The above method allows the
construction of a hierarchy of Archimedean copulas by defining TTT of order 𝑛 (Nair et al., 2008),
defined as

𝑇𝑛 (𝑢) =
∫ 𝑢

0
(1 − 𝑝)𝑡𝑛−1 (𝑝)𝑑𝑝, 𝑛 = 1, 2, . . . ,

with 𝑇0 (𝑢) = 𝑄(𝑢), 𝑡𝑛 (𝑢) = 𝑑𝑇𝑛 (𝑢)
𝑑𝑢 and `𝑛−1 =

∫ 1
0 𝑇𝑛−1 (𝑝)𝑑𝑝 < ∞, based on the fact that

𝑇1 (𝑢) =
∫ 𝑢

0 (1 − 𝑝)𝑞(𝑝)𝑑𝑝 is the quantile function in the support of [0, `0], `0 = 𝐸 (𝑋). One can
take 𝑋𝑛 to be the random variable with quantile function 𝑇𝑛 (𝑢) defined on [0, `𝑛]. The distribution
of 𝑋𝑛 is specified by

𝑡𝑛 (𝑢) = (1 − 𝑢)𝑡𝑛−1 (𝑢) = (1 − 𝑢)𝑛𝑡0 (𝑢) = (1 − 𝑢)𝑛𝑞(𝑢), 𝑛 ≥ 1.

The Archimedean copula corresponding to 𝑋𝑛 is

𝐶𝑛 (𝑢, 𝑣) = 𝑀 [−1]
𝑛 (𝑀𝑛 (𝑢) + 𝑀𝑛 (𝑣)) ,

where 𝑀𝑛 (𝑢) = 𝑇𝑛 (1 − 𝑢).

Example 2. Let 𝑋 be distributed as Pareto II with 𝑄(𝑢) = 𝛼
[
(1 − 𝑢)− 1

𝑐 − 1
]
, 𝛼, 𝑐 > 0. Then

𝑇𝑛 (𝑢) =
∫ 𝑢

0
(1 − 𝑝)𝑛𝑞(𝑝)𝑑𝑝

=
∫ 𝑢

0
(1 − 𝑝)𝑛 𝛼

𝑐
(1 − 𝑝)− 1

𝑐 −1𝑑𝑝

=
𝛼

𝑐𝑛 − 1

[
1 − (1 − 𝑢)𝑛− 1

𝑐

]
,

giving

𝑀 (𝑢) = 𝛼

𝑐𝑛 − 1

[
1 − 𝑢𝑛− 1

𝑐

]
and 𝑀−1 (𝑢) =

(
1 − 𝑐𝑛 − 1

𝛼
𝑢

) 𝑐
𝑐𝑛−1

.

Then,
𝐶𝑛 (𝑢, 𝑣) = max

[
𝑢

𝑐𝑛−1
𝑐 + 𝑣 𝑐𝑛−1

𝑐 − 1, 0
] 𝑐

𝑐𝑛−1
, 𝑐 >

1
𝑛 − 1

.
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Figure 1. Density plots of Clayton copula with uniform marginals generated from the TTT of order
(a) 𝑛 = 2, (b) 𝑛 = 5, (c) 𝑛 = 10 and (d) 𝑛 = 20 of the Pareto II distribution with parameter 𝑐 = 1

For 𝑛 = 1, 𝐶1 (𝑢, 𝑣) is the same as the Clayton copula in Example 1. When 𝑛 = 2, 3, ..., we have a
hierarchy of copulas as shown in Figure 1. Notice that how the change in the order of the generator
can induce corresponding changes in shapes of the copulas in the figures.

Now, we consider the case when 𝑋 has an increasing hazard rate. From Alsina et al. (2003), a
function 𝐴 : 𝐼2 → 𝐼 such that (i) 𝐴(𝑥, 𝑦) = 𝐴(𝑦, 𝑥), (ii) 𝐴(𝑥, 𝑦) ≤ 𝐴(𝑧, 𝑤), 𝑥 ≤ 𝑧, 𝑦 ≤ 𝑤,
(iii) 𝐴(𝐴(𝑥, 𝑦), 𝑧) = 𝐴(𝑥, 𝐴(𝑦, 𝑧)), and (iv) 𝐴(𝑥, 1) = 𝑥 for every 𝑥 in 𝐼 is called a T-norm, and
each continuous T-norm is Archimedean if there exists an additive generator 𝑡 (𝑥) which satisfies
𝐴(𝑥, 𝑦) = 𝑡−1 (𝑡 (𝑥) + 𝑡 (𝑦)). It becomes a copula if and only if 𝑡 (𝑥) is convex. Otherwise it is an
S-norm defined by 𝑆 : 𝐼2 → 𝐼 satisfying (i), (ii), and (iii), and 𝑆(𝑥, 0) = 𝑥. Also,

𝑆(𝑥, 𝑦) = 1 − 𝐴(1 − 𝑥, 1 − 𝑦).

Thus when 𝑋 has an IHR, the TTT is concave and hence does not qualify to be a copula but only as
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an S-norm
𝐶∗ (𝑢, 𝑣) = 1 − 𝐶 (1 − 𝑢, 1 − 𝑣),

called the co-copula, which has a useful interpretation as

𝐶∗ (𝑢, 𝑣) = 𝑃(𝑈 ≤ 𝑢 ∪ 𝑉 ≤ 𝑣),

for uniform variates𝑈, 𝑉 over [0, 1].
Since𝑇 (1−𝑢) cannot provide an Archimedean copula when 𝑋 has IHR, we consider the alternative,

𝑊 (𝑢) = ` − 𝑇 (𝑢) =
∫ 1

𝑢
(1 − 𝑝)𝑞(𝑝)𝑑𝑝,

which is called the excess wealth transform of 𝑋 . Some properties of 𝑊 (𝑢), important references
relative to it, and new applications are available in Nair and Vineshkumar (2021).

Theorem 2. Let 𝑋 be a continuous nonnegative random variable with finite expectation and increas-
ing hazard rate. Then,

𝐶𝑊 (𝑢, 𝑣) = 𝑊 [−1] (𝑊 (𝑢) +𝑊 (𝑣)) (6)

is a non-strict Archimedean copula.

Proof. We have 𝑊 (1) = 0, 𝑊 (𝑢) is decreasing, and 𝑊 ′ (𝑢) = −(1 − 𝑢)𝑞(𝑢) > 0, so that 𝑊 (𝑢) is
convex. Thus, 𝑊 (𝑢) is the generator of the Archimedean copula 𝐶𝑊 (𝑢, 𝑣) and 𝑊 (0) = ` < ∞,
shows that 𝐶𝑊 is non-strict. ■

Example 3. Let 𝑋 have rescaled beta distribution, which has an IHR with survival function

�̄� (𝑥) =
(
1 − 𝑥

𝑅

)𝑐
, 0 ≤ 𝑥 ≤ 𝑅, 𝑐, 𝑅 > 0,

and
𝑄(𝑢) = 𝑅

[
1 − (1 − 𝑢) 1

𝑐

]
.

This gives
𝑊 (𝑢) = 𝑅

𝑐 + 1
(1 − 𝑢) 𝑐+1

𝑐 .

Using

𝑊−1 (𝑢) = 1 −
[
𝑐 + 1
𝑅

𝑢

] 𝑐
𝑐+1

,

we write the corresponding Archimedean copula as

𝐶𝑊 (𝑢, 𝑣) = max
[
1 −

{
(1 − 𝑢) 𝑐+1

𝑐 + (1 − 𝑣) 𝑐+1
𝑐

} 𝑐
𝑐+1
, 0

]
, 𝑐 ∈ [0, ∞] .

More examples can be seen in Table 1.
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Remark 1. The univariate distributions arising out of 𝜙1 (𝑢) = 𝑇 (1 − 𝑢) in Theorem 1 and 𝜙2 (𝑢) =
𝑊 (𝑢) in Theorem 2 are generally different. They respectively have the quantile functions

𝑄𝜙1 (𝑢) = −
∫ 𝑢

0

𝜙′1 (1 − 𝑝)
1 − 𝑝 𝑑𝑝

and
𝑄𝜙2 (𝑢) = −

∫ 𝑢

0

𝜙′2 (−𝑝)
1 − 𝑝 𝑑𝑝.

Remark 2. The two generators 𝑇 (1− 𝑢) and𝑊 (𝑢) = ` −𝑇 (𝑢) give the same copula if and only if 𝑋
is exponential with �̄� (𝑥) = 𝑒−𝑥 . This is expected as the hazard rate being constant can be interpreted
as either IHR or DHR. Moreover, the only solution of 𝑇 (1 − 𝑢) = ` − 𝑇 (𝑢) is 𝑇 (𝑢) = 𝑢, the TTT of
the unit exponential law.

4. Kendall distribution
In this section, we discuss some new properties of the Kendall distribution, given in (2), of the
copulas generated in the new framework.

Theorem 3. The Kendall distribution 𝐾 (𝑦) of the Archimedean copula generated by TTT and the
distribution of 𝑋 are uniquely determined by each other.

Proof. When 𝑋 has an IHR, the Kendall distribution is given by

𝐾 (𝑦) = 𝑦 − 𝑊 (𝑦)
𝑊 ′ (𝑦) , (7)

so that
𝑑 log𝑊 (𝑦)

𝑑𝑦
= [𝑦 − 𝐾 (𝑦)]−1 .

This implies

log𝑊 (𝑦) = −
∫ 1

𝑦
[𝑝 − 𝐾 (𝑝)]−1𝑑𝑝

and

𝑊 (𝑦) = exp
[
−

∫ 1

𝑦
(𝑝 − 𝐾 (𝑝))−1𝑑𝑝

]
.

Using the relationship between𝑊 (𝑢) and 𝑞(𝑢),

𝑞(𝑢) = −𝑊 ′ (𝑢)
1 − 𝑢 = [(1 − 𝑢) (𝑢 − 𝐾 (𝑢))]−1 exp

[
−

∫ 1

𝑢
(𝑝 − 𝐾 (𝑝))−1𝑑𝑝

]
,

the quantile density function of 𝑋 , which determines the distribution of 𝑋 . When 𝑋 has a DHR, the
proof is quite similar, with 𝑀 (𝑢) replacing𝑊 (𝑢) and the definition of 𝑇 (𝑢) in (1) to find 𝑞(𝑢). The
converse follows from (7) and (1), and

𝑞(𝑢) = [(1 − 𝑢) (𝑢 − 𝐾 (𝑢))]−1 exp
[∫ 𝑢

0
(𝑝 − 𝐾 (𝑝))−1𝑑𝑝

]
. ■
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−
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Example 4. Consider the generator 𝑊 (𝑢) = (1 − 𝑢) \ , \ > 1. Then 𝑞(𝑢) = \ (1 − 𝑢) \ and

𝑄(𝑢) =
(
1 − \−1

\ 𝑢
) 1

\−1 , giving the distribution of 𝑋 as

�̄� (𝑥) =
(
1 − 𝑥

𝑅

)𝑐
, 0 ≤ 𝑥 ≤ 𝑅, 𝑐 > 0,

where 𝑐 = 1
\−1 and 𝑅 = \

\−1 . Also, 𝐾 (𝑢) = 1
\ (1 + \𝑢 − 𝑢), −1

\−1 ≤ 𝑢 ≤ 1, showing that 𝐾 (𝑢) is the
uniform distribution function over

(
−1
\−1 , 1

)
. More examples are given in Table 2.

There are several properties of the AC constructed by the new method and the Kendall distribution
in reliability theory, as well as in the selection of copulas on the basis of dependence criteria. These
are discussed in the rest of this section. The basic concepts in modelling bivariate data using copulas
and their applications can be found in Nair et al. (2018).

In the case of IHR random variables,

𝑊 (𝑢) =
∫ 1

𝑢
(1 − 𝑝)𝑞(𝑝)𝑑𝑝 = (1 − 𝑢)𝑚𝑄 (𝑢),

and
𝑊 ′ (𝑢) = −(1 − 𝑢)𝑞(𝑢) = −ℎ−1

𝑄 (𝑢).
Similarly, when 𝑋 has a DHR, 𝑇 (𝑢) = ` − 𝑀 (𝑢) and 𝑇 ′ (𝑢) = 1/ℎ𝑄 (𝑢). Thus, we have the Kendall
distribution expressed in terms of the hazard and mean residual quantile functions.

Theorem 4. The Kendall distribution corresponding to 𝑋 is given by

𝐾 (𝑢) =
{
𝑢 + (1 − 𝑢)𝑚𝑄 (𝑢)ℎ𝑄 (𝑢) when 𝑋 has an IHR,
𝑢 + [

` − 𝑢𝑚𝑄 (1 − 𝑢)] ℎ𝑄 (1 − 𝑢) when 𝑋 has a DHR.

Example 5. Assume that 𝑋 is distributed as half-logistic with

�̄� (𝑥) = 2
[
1 + exp

( 𝑥
𝜎

)]−1
,

or equivalently

𝑄(𝑢) = 𝜎 log
(

1 + 𝑢
1 − 𝑢

)
, 𝜎 > 0.

We have ℎ𝑄 (𝑢) = (2𝜎)−1 (1 + 𝑢) and 𝑚𝑄 (𝑢) = 2𝜎
1−𝑢 log

(
2

1+𝑢
)
, so that

𝐾 (𝑢) = 𝑢 + (1 + 𝑢) log
(

2
1 + 𝑢

)
.

Since most of the life distributions have known forms for their ℎ𝑄 (𝑢) and 𝑚𝑄 (𝑢), it is easier to
calculate 𝐾 (𝑢) directly from them, as seen from Table 3.

In modelling problems, the most important aspect of a copula is the nature of dependency it offers.
Several approaches to measure the dependency among the variables in a copula are available in the
literature. One of these is to evaluate the extent of the dependence through some global measures of
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association. The Pearson coefficient of correlation, Kendall’s tau, Spearman’s rho, and Blomquest’s
beta are some of the important measures in this connection. Of these, Kendall’s tau has a simple
form for the Archimedean copula. For an Archimedean copula with generator 𝜙, Kendall’s tau has
the expression

𝜏 = 1 + 4
∫ 1

0

𝜙(𝑢)
𝜙′ (𝑢) 𝑑𝑢.

When TTT is used to find the generator, the Kendall coefficient becomes

𝜏 =

{
1 + 4

∫ 1
0

𝑊 (𝑢)
𝑊 ′ (𝑢) 𝑑𝑢, when 𝑋 has an IHR,

1 + 4
∫ 1

0
𝑀 (𝑢)
𝑀′ (𝑢) 𝑑𝑢, when 𝑋 has a DHR.

Making use of the reliability functions

𝜏 =

{
1 − 4

∫ 1
0 (1 − 𝑢)𝑚𝑄 (𝑢)ℎ𝑄 (𝑢)𝑑𝑢, when 𝑋 has an IHR ,

1 − 4
∫ 1

0
[
` − 𝑚𝑄 (𝑢)

]
ℎ𝑄 (𝑢)𝑑𝑢, when 𝑋 has a DHR .

An advantage of the above formula is that the knowledge of the copula or generator is not essential
in calculating the dependence measure of the associated copula. This aspect becomes quite useful in
the choice of the copula appropriate to given data on the basis of the value of 𝜏.

Example 6. Consider the mean residual quantile distribution (Midhu et al., 2013)

𝑄(𝑢) = −(𝑐 + `) log(1 − 𝑢) − 2𝑐𝑢, −` ≤ 𝑐 ≤ `, ` > 0.

For this distribution, 𝑚𝑄 (𝑢) = ` + 𝑐𝑢 and ℎ𝑄 (𝑢) = (` − 𝑐 + 2𝑐𝑢)−1. Assume that 𝑐 < 0 so that
ℎ𝑄 (𝑢) is increasing. Then the Kendall’s tau is

𝜏 = 1 − 4
∫ 1

0

(1 − 𝑢) (` + 𝑐𝑢)
` − 𝑐 + 2𝑐𝑢

𝑑𝑢 = 2(` − 𝑐) + 4
(
𝑐 + (𝑐 − `)2

2

)
log

` − 𝑐
` + 𝑐 .

A second approach to verify dependence is to define certain properties and classify bivariate
distributions accordingly. The properties like PQD, SI, LTD, and LCSD defined in Section 2 belong
to this category. For Archimedean copulas the following results are true.

Theorem 5. An Archimedean copula is

(i) PQD (NQD) if and only if − log𝑊−1 (𝑢) is sub-additive (super-additive) when 𝑋 is IHR and
− log𝑀−1 (𝑢) is sub-additive (super-additive) when 𝑋 has a DHR.

(ii) SI(𝑌 |𝑋) (SI(𝑋 |𝑌 )) if and only if −𝑑𝑊−1 (𝑢)/𝑑𝑢 (−𝑑𝑀−1 (𝑢)/𝑑𝑢) is log-convex when 𝑋 has an
IHR (DHR).

(iii) LTD if − log𝑊−1 (𝑢) ( − log𝑀−1 (𝑢)) is concave when 𝑋 has an IHR (DHR).

Regarding tail dependence, the relevant results are stated in the next theorem.
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Theorem 6. If 𝐶 is an Archimedean copula, then the upper and lower tail dependence parameters
are

_𝑈 =



2 − lim𝑥→0
1−𝑀−1 (2𝑥 )
1−𝑀−1 (𝑥 ) , if 𝑋 has a DHR,

2 − lim𝑥→0
1−𝑊−1 (2𝑥 )
1−𝑊−1 (𝑥 ) , if 𝑋 has an IHR,

and

_𝐿 =



lim𝑥→∞
𝑀−1 (2𝑥 )
𝑀−1 (𝑥 ) , if 𝑋 has a DHR,

lim𝑥→∞
𝑊−1 (2𝑥 )
𝑊−1 (𝑥 ) , if 𝑋 has an IHR.

Another important result is that the type of dependence in the AC can be determined from the
𝑇 (𝑢) function. Since 𝑇 (𝑢) is a quantile function, 𝑇 (1 − 𝑢) represents the corresponding survival
function of a random variable, say 𝑆. One can deduce from Avérous and Dortet-Bernadet (2004),
Propositions 1 and 5 that

(i) 𝑆 is NBU (NWU) if and only if 𝐶 is NQD (PQD), and

(ii) 𝑆 is IHR (DHR) if and only if 𝐶 is LTI (LTD).

To conclude this work, it is observed that Archimedean copulas can be generated in terms of TTT
of a nonnegative random variable, with finite mean and either increasing or decreasing hazard rate.
These generators are different from the conventional ones and therefore gives scope for using them
in the place of conventional generators. We have spotted some applications of the results. The
time-dependent measures of association and stochastic ordering of Archimedean copulas can also be
derived from the properties of the life distribution. These aspects are being investigated and will be
reported elsewhere.

Acknowledgements. We thank the Editor and the reviewers for their valuable suggestions for
improving the presentation of this work.
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properties of their generating functions. Sankhyā: The Indian Journal of Statisticss, 66, 607–620.
Bal, H. and Najjari, V. (2013). Archimedean copulas family via hyperbolic generator. Gazi

University Journal of Science, 26, 195–200.
Burney, S. M. A., Ajaz, O., and Burney, S. (2018). Multivariate copula modeling with application

in software project management and information systems. International Journal of Advanced
Computer Science and Applications, 9, 319–324.

Fan, Y. and Patton, A. J. (2014). Copulas in econometrics. Annual Review of Economics, 6,
179–200.

Fontanari, A., Cirillo, P., and Oosterlee, C. W. (2020). Lorenz-generated bivariate Archimedean
copulas. Dependence Modeling, 8, 186–209.

CONSTRUCTION OF ARCHIMEDEAN COPULAS USING TOTAL TIME ON TEST TRANSFORMS 33



Frees, E. W. and Valdez, E. A. (1998). Understanding relationships using copulas. North American
Actuarial Journal, 2, 1–25.

Genest, C. and Rivest, L.-P. (1993). Statistical inference procedures for bivariate Archimedean
copulas. Journal of the American Statistical Association, 88, 1034–1043.

Joe, H. (1997). Multivariate Models and Multivariate Dependence Concepts. Chapman Hall, London.
Jouanin, J.-F., Riboulet, G., and Roncalli, T. (2007). Financial application of copulas. In Szegö,

G. (Editor) Risk Measures of the 21st Century. John Wiley & Sons.
Marshall, A. W. and Olkin, I. (1988). Families of multivariate distributions. Journal of the

American Statistical Association, 83, 834–841.
Michiels, F., Koch, I., and De Schepper, A. (2011). A new method for the construction of bivariate

Archimedean copulas based on the lambda function. Communications in Statistics - Theory and
Methods, 40, 2670–2679.

Midhu, N. N., Sankaran, P. G., and Nair, N. U. (2013). A class of distributions with the linear
mean residual quantile function and it’s generalizations. Statistical Methodology, 15, 1–24.

Nair, N. U. and Sankaran, P. G. (2009). Quantile-based reliability analysis. Communications in
Statistics - Theory and Methods, 38, 222–232.

Nair, N. U., Sankaran, P. G., and Balakrishnan, N. (2013). Quantile-Based Reliability Analysis.
Birkhäuser, Basel.

Nair, N. U., Sankaran, P. G., and John, P. (2018). Modelling bivariate lifetime data using copula.
Metron, 76, 133–153.

Nair, N. U., Sankaran, P. G., and Vineshkumar, B. (2008). Total time on test transforms of order
n and their implications in reliability analysis. Journal of Applied Probability, 45, 1126–1139.

Nair, N. U. and Vineshkumar, B. (2021). Relation between cumulative residual entropy and excess
wealth transform with applications to reliability and risk. Stochastics and Quality Control, 36,
43–57.

Najjari, V., Bacigäl, T., and Bal, H. (2014). An Archimedean copula family with hyperbolic cotan-
gent generator. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
22, 761–768.

Nelsen, R. B. (2006). An Introduction to Copulas. Springer, New York, NY.
Spreeuw, J. (2014). Archimedean copulas derived from utility functions. Insurance: Mathematics

and Economics, 59, 235–242.
Susam, S. O. and Ucer, B. H. (2018). Testing independence for Archimedean copula based

on Bernstein estimate of Kendall distribution function. Journal of Statistical Computation and
Simulation, 88, 2589–2599.

Susam, S. O. and Ucer, B. H. (2020). A goodness-of-fit test based on Bézier curve estimation of
Kendall distribution. Journal of Statistical Computation and Simulation, 90, 1194–1215.

Zhang, L. and Singh, V. P. (2019). Copulas and their Applications in Water Resources Engineering.
Cambridge University Press, Cambridge.

Manuscript received 2023-04-18, revised 2024-02-25, accepted 2024-03-07.

34 NAIR & VINESHKUMAR


