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Hotspot detection in spatial analysis identifies geographic areas with elevated
event rates, facilitating more effective policy interventions aimed at reducing such
incidents. In the current literature, several methods have been used to detect hotspots
such as measures for local spatial association and spatial scan methods. However,
the performance of these methods is limited for small-scale hotspots as well as
spatial domains where the number of areas is small. In this work, we propose a
new approach, making use of the Discrete Pulse Transform (DPT) to decompose
spatial lattice data along with the multiscale Ht-index and the spatial scan statistic
as a measure of saliency on the extracted pulses to detect significant hotspots. The
proposed method outperforms the well-used local Getis-Ord statistic in a simulation
study, especially on small-scale hotspots. The method is also illustrated on South
African COVID-19 cases and South African crime data.
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Ht-index, Local Getis-Ord, Mutliscale decomposition, Multiscale Ht-index, Spatial lattice data,
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1. Introduction
A spatial hotspot is defined as an area in the spatial domain where the occurrence of events or the
rate of event occurrences is higher relative to the domain as well as the neighbouring areas (Wang
et al., 2013; Chainey, 2014; Stresman et al., 2019; Zahran et al., 2020; Modiba et al., 2022). In the
application section of this paper, this is discussed in a use-case scenario. In spatial lattice data, the
spatial domain is divided into predefined subregions. For this reason, a hotspot in such data will be
considered as an already defined subregion or a collection of these subregions in the spatial domain.

Detecting spatial hotspots is important to identify areas of concern and then to effectively and
efficiently deploy preventative measures and resources (Chainey, 2014). Examples of applications
include, but are not limited to, criminology (Chen et al., 2010), zoological sciences (Wu et al., 2013),
public health (Mahara et al., 2016), disease mapping (Stresman et al., 2019), traffic accidents (Cheng
et al., 2018) and forest fires (Said et al., 2017). Although hotspot detection is mostly used in the
literature to identify areas of concern, it is important to note that hotspot detection methods can also
be used to detect higher concentrations of positive outcomes.
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To detect spatial hotspots, local indicators of spatial association (LISA) have been used in the
literature (Anselin, 1995). These are the Getis-Ord statistic (Getis and Ord, 1992), Geary’s C (Geary,
1954) and the Moran’s I statistic (Moran, 1948). For all of these statistics, the value for the test
statistic is calculated as a global measure of the overall degree of event clustering present in the
entire spatial domain. All three have a counterpart to calculate the spatial association at each spatial
unit, then called the local statistic as defined by Anselin (1995). In the case of spatial lattice data,
each subregion is considered a spatial unit where measurements are observed. Then, the significant
locations are detected according to the test statistic value of the local measure of association.

A commonly used LISA statistic, is the local Getis-Ord statistic (Getis and Ord, 1992). Since its
development, it has been used in a number of applications (Lees, 2006; Songchitruksa and Zeng,
2010; Jana and Sar, 2016; Everett et al., 2021; Althaf et al., 2022). The test statistic values for the
local Getis-Ord statistic approach normality as the number of areas increases. Therefore, when the
number of areas is small, the normality assumption is violated and the results of the method are
influenced negatively (Getis and Ord, 1992).

Another LISA statistic, also used in the literature, is the local Moran’s I statistic (Anselin, 1995).
It has been used in a variety of applications (Ruiz et al., 2004; Zhang et al., 2008; Bone et al., 2013;
Tepanosyan et al., 2019). Similarly as for the local Getis-Ord statistic, Wang et al. (2023) also found
that the results of the local Moran’s I are jeopardised when the number of areas is small.

Another group of hotspot detection methods covered in the literature is the spatial scan method
(Kulldorff, 1997). Being an effective hotspot detection method, especially in disease mapping, the
spatial scan statistic uses a circular sliding window approach to scan the study area and effectively
test whether the event occurrences are by chance using a likelihood ratio test. The exact properties,
such as size and shape, of the hotspots present will always be unknown before-hand. Features of the
sliding window determines the type and the size of the hotspots detected. The significance of the
sliding window is also highlighted by Kulldorff (1997). Since the development of the spatial scan
method, many different methods and sliding windows have been implemented. These methods are
summarised in a review paper by French et al. (2022). Another limitation of the spatial scan statistic
is that the performance of the method is not optimal when the hotspots to detect are small in size
(Aamodt et al., 2006).

A hotspot can be seen as a salient feature, which is an important and distinctive part of the
data (Kadir and Brady, 2001). A method applied to images, the Discrete Pulse Transform (DPT)
algorithm, has been used to extract salient features (Fabris-Rotelli and Stein, 2018, 2020). It was
first developed for one-dimensional arrays (Rohwer, 2006) and Anguelov and Fabris-Rotelli (2010)
extended the algorithm to two-dimensional arrays. The DPT algorithm performs a hierarchical
decomposition by recursively applying the LULU operators, 𝐿𝑛 and 𝑈𝑛, 𝑛 = 1, . . . , 𝑁 , where 𝑁 is
the size of the array. The 𝐿𝑛 and 𝑈𝑛 operators smooth local minimum and maximum sets of size
𝑛. As the DPT algorithm smooths the array using the LULU operators, the smoothed-out values are
extracted as pulses (Fabris-Rotelli and Stein, 2018, 2020). See Fabris-Rotelli and Stein (2020) for an
example). The size of the pulses is then called scales. By adding all the extracted pulses together,
the original array is obtained and therefore reconstructed in full. Salient features can be extracted by
reconstructing selective pulses, hence partial reconstruction (Fabris-Rotelli and Stein, 2020).

Stander et al. (2021) applied the DPT on irregular spatial lattice data for the first time. Previously,
the DPT algorithm has only been applied to regular spatial lattice data (images). As far as the authors
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are aware, this paper then presents the second implementation of the DPT on irregular spatial lattice
data. In this paper, we propose a new hotspot detection method using the multiscale decomposition
algorithm on irregular spatial lattice data to extract salient features. In this application, the salient
features of interest will be hotspots in spatial lattice data.

Herein, the choice of which pulses to partially reconstruct is a two-step process. First, informative
intervals are created with the multiscale Ht-index (Fabris-Rotelli and Stein, 2020). The multiscale
Ht-index has been extended from the Ht-index developed by Jiang et al. (2013) which divided the
scales of the pulses into intervals. Secondly, to know which intervals contain the salient features, we
require some quantification method. We propose the use of the spatial scan statistic to quantify the
saliency of the partially reconstructed pulses for the intervals of scales identified by the multiscale
Ht-index.

The newly proposed hotspot detection method introduces an approach only requiring the counting
model, the Poisson process. Therefore, the method is robust to the number of areas in the spatial
domain considered. Also, quantifying the saliency for each interval of pulses separately adds to
the robustness of the method for small-scale clusters. The proposed hotspot detection method will
perform equally well on the number of events or the rate of events. Based on the application at hand,
the user may determine the appropriate scenario.

The structure of the paper is as follows. In Section 2, we will cover some important theoretical
concepts necessary for the proposed method and the proposed methodology. Section 3 is started with
a proof of concept in the form of a simulation study, followed by two applications of the proposed
method on South African crime and COVID-19 data in Section 4. The discussion of the results as
well as the conclusion is in Section 5.

2. Methodology
2.1 Spatial lattice data
Spatial lattice data are observed over a collection of areas. This type of spatial data, observed over
𝑁 areas, can be represented as

𝑍 (𝐷) = {𝑍 (𝐴1), 𝑍 (𝐴2), . . . , 𝑍 (𝐴𝑁 )} ,

where 𝐷 =
⋃𝑁
𝑖=1 𝐴𝑖 and 𝑖 = 1, . . . , 𝑁 (Cressie, 1993). Here, 𝑍 (·) indicates the spatial process

observed which can either be continuous or discrete. The observed spatial process at each area is
typically the average or the sum of the measured attribute for 𝐴𝑖 .

The areas in spatial lattice data are predefined and can either be regularly or irregularly shaped.
When areas in spatial lattice data are regularly shaped, all the areas have the same shape and size.
Spatial lattice data with regularly shaped areas are also known as image arrays, but some sources
refer to them as gridded data (Li et al., 2015). These can also be referred to as regular lattice data.
In the literature, spatial lattice data with irregularly shaped areas are referred to as either areal data
(Banerjee et al., 2014) or spatial lattice data (Cressie, 1993). Examples of irregularly shaped areas
include, but are not limited to ward boundaries, district boundaries and province boundaries1. To
avoid confusion with the term spatial lattice data, we refer to such data as irregular lattice data. The

1 Examples of three levels of administrative boundaries. This is the terminology used in South Africa.
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Figure 1. Illustration of irregular lattice data where each 𝐴𝑖 represents a municipality in the Northern
Cape province in South Africa. 𝑍 (𝐴𝑖) is simulated and indicated with a colour scale. The simulation
of 𝑍 (𝐴𝑖) is done such that four neighbouring regions have higher values and consequently form a
hotspot.

term spatial lattice data will then be used as a collective term to refer to both types of data, irregular
lattice data and regular lattice data.

Figure 1 is an illustration of irregular lattice data which will be used as an illustrative example for
the remainder of this section. The colour scale in Figure 1 represents the 𝑍 (𝐴𝑖) values of each 𝐴𝑖 .
Each 𝐴𝑖 in the example is a municipality in the Northern Cape province in South Africa while 𝑍 (𝐴𝑖)
are simulated such that four neighbouring regions have higher values and form a hotspot. The 𝑍 (𝐴𝑖)
values are simulated by using spatial sampling to sample spatial random points throughout the entire
spatial domain. The number of sampled points in 𝐴𝑖 is then 𝑍 (𝐴𝑖). Then, in four neighbouring
regions, additional spatial random points are sampled such that these areas have a higher 𝑍 (·) value
and subsequently form a hotspot.

In the illustrative example for this section, we are considering the rate of event occurrences. The
observed value at each subregion is standardised by dividing the number of events by the size of the
region.

2.2 Connectivity
We define a morphological connection in Definition 1. The Discrete Pulse Transform works on
connected sets, 𝐶𝑖 , and is defined for a morphological connection.

Definition 1. Morphological connection (Serra, 1988). Let 𝐵 be an arbitrary non-empty set. A
family C of subsets of 𝐵 is called a connected class or a connection on 𝐵 if:
(1) ∅ ∈ C;
(2) {𝑥} ∈ C for all 𝑥 ∈ 𝐵; and
(3) For any family, 𝐶𝑖 ∈ C for 𝑖 ∈ 𝐼, ⋂

𝑖∈𝐼
𝐶𝑖 ≠ ∅ =⇒

⋃
𝑖∈𝐼
𝐶𝑖 ∈ C.

If a set 𝐶𝑖 belongs to a connection C, then 𝐶𝑖 is called a connected set.
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Tobler’s First Law of Geography states that everything is related to everything else, but near
things are more related than distant things (Tobler, 1970). Therefore, when working with spatial
data, neighbours are defined between the areas to account for the spatial dependence that may exist,
following the idea of connectivity in Definition 1. For 𝐴𝑖 , we define the set of neighbours as:

N(𝐴𝑖) =
𝑞𝑖⋃
𝑘=1

N 𝑘 (𝐴𝑖),

where N 𝑘 (𝐴𝑖), 𝑘 = 1, . . . , 𝑞𝑖 , are the areas that satisfy the neighbourhood definition and are
neighbours of 𝐴𝑖 (Zhu et al., 2010). The number of areas, 𝑞𝑖 , that satisfies the neighbourhood
definition might differ for each 𝐴𝑖 .

Different neighbourhood definitions exist in the literature, but for the purpose of this paper, we will
only focus on the Rook contiguity neighbourhood definition (Bivand et al., 2013). Two areas, 𝐴𝑖 and
𝐴 𝑗 , are defined to be Rook contiguity neighbours if they share a polygon edge2. In image analysis
(regular lattice data), the Rook contiguity neighbours are also known as 4-connectivity3. According
to Fabris-Rotelli (2013), the Rook contiguity neighbourhood definition satisfies Definition 1.

The neighbourhood object can be represented with an adjacency matrix. Some sources refer to
the term spatial weight matrix (Zhu et al., 2010) or proximity matrix (Banerjee et al., 2014). The
adjacency matrix is an 𝑁 ×𝑁 matrix indicating the neighbourhood relationship between spatial units,

W =
[
𝑤𝑖 𝑗

]𝑁
𝑖, 𝑗=1 ,

where 𝑤𝑖𝑖 = 0, implying that 𝐴𝑖 ∉ N(𝐴𝑖). For the Rook contiguity neighbourhood definition, the
𝑤𝑖 𝑗 entries are either 0 or 1 (Bivand et al., 2013),

𝑤𝑖 𝑗 =

{
1 if 𝐴 𝑗 ∈ N (𝐴𝑖),
0 otherwise. (1)

The Rook contiguity neighbour definition is illustrated in Figure 2 using the illustrative example
from Figure 1. The white star indicates, 𝐴𝑖 , the area whose contiguity neighbours we are interested
in. The red lines connect toN1 (𝐴𝑖), N2 (𝐴𝑖), andN3 (𝐴𝑖), the areas with which 𝐴𝑖 shares a boundary
and satisfy the Rook contiguity neighbourhood definition.

2.3 LULU operators and the Discrete Pulse Transform
The LULU operators (Anguelov and Fabris-Rotelli, 2010) are non-linear and fully trend-preserving
filters that operate on a signal 𝑓 ∈ A(Z2), whereA is a vector lattice with𝑁 data points. Traditionally,
these operators have been applied on regular lattices with 𝑁 areas and for the explanation of the theory,
we will consider regular lattice data in two dimensions. The 𝐿𝑛 operator smooths local maximum
sets of size 𝑛 and the𝑈𝑛 operator smooths local minimum sets of size 𝑛. These are defined as,

𝐿𝑛 ( 𝑓 ) (𝑥) = max
𝑉∈N𝑛 (𝑥 )

min
𝑦∈𝑉

𝑓 (𝑦), 𝑥 ∈ Z2, (2)

𝑈𝑛 ( 𝑓 ) (𝑥) = min
𝑉∈N𝑛 (𝑥 )

max
𝑦∈𝑉

𝑓 (𝑦), 𝑥 ∈ Z2, (3)

2 Another contiguity neighbourhood definition is the Queen contiguity neighbours where 𝐴𝑖 and 𝐴 𝑗 share either a polygon
edge or a vertex.
3 The Queen contiguity neighbours are also known as 8-connectivity.
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Figure 2. Illustration of the Rook contiguity neighbourhood definition. The white star indicates 𝐴𝑖 .
The red lines connect to N1 (𝐴𝑖),N2 (𝐴𝑖) and N3 (𝐴𝑖).

where N𝑛 (𝑥) is the set of all connected sets of size 𝑛 + 1 containing point 𝑥, N𝑛 = {𝑉 ∈ C : 𝑥 ∈
𝑉, card(𝑉) = 𝑛 + 1}, where C is a morphological connection and card(𝑉) denotes the number of
elements in the set 𝑉 . 𝑥 ∈ Z2 is the position of the array cell in a regular grid, for example 𝑥 = (1, 1)
is the first row, first column. The array cell itself is then an areal unit 𝐴𝑖 , a regular polygon, i.e., a
square. See Fabris-Rotelli and Stein (2018, 2020) and Stander et al. (2021) for details not repeated
here. Local minimum and maximum sets are defined in Definition 3 but it is also necessary to define
an adjacent set, 𝑉 ∈ C (see Definition 2).

Definition 2. Adjacent set (Anguelov and Fabris-Rotelli, 2010). Let 𝑉 ∈ C. A point 𝑥 ∉ 𝑉 is
adjacent to 𝑉 if 𝑉 ∪ {𝑥} ∈ C. The set of all points adjacent to 𝑉 is

adj(𝑉) = {𝑥 ∈ Z2 : 𝑥 ∉ 𝑉, 𝑉 ∈ C}.

Definition 3. Local maximum set and local minimum set (Anguelov and Fabris-Rotelli, 2010). A
connected subset 𝑉 of Z2 is called a local maximum set of 𝑓 ∈ A(Z2) if

sup
𝑦∈𝑎𝑑 𝑗 (𝑉 )

𝑓 (𝑦) < inf
𝑥∈𝑉

𝑓 (𝑥).

Similarly 𝑉 is a local minimum set if

inf
𝑦∈𝑎𝑑 𝑗 (𝑉 )

𝑓 (𝑦) > sup
𝑥∈𝑉

𝑓 (𝑥).

Thus, a local minimum (maximum) set is a connected set with an adjacent set strictly more (less)
than the value of the set, as illustrated in Figure 3. Figure 3(a) illustrates a local minimum set, set
𝑉 , with the blue blocks, while the green blocks are the adjacent set, 𝑎𝑑𝑗 (𝑉). Figure 3(b) shows a
local maximum set, set 𝑉 , with the red blocks, and the adjacent set, 𝑎𝑑𝑗 (𝑉), with the green blocks.
In Anguelov and Fabris-Rotelli (2010), it has been proven that the 𝐿𝑛 and 𝑈𝑛 operators can only
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(a) (b)
Figure 3. Illustrations of (a) local minimum and (b) local maximum sets. In (a) the blue blocks are
the local minimum set and the green blocks are the adjacent set, whereas in (b) the red blocks are the
local maximum set and the green blocks are the adjacent set.

be applied to local minimum and local maximum sets. This implementation leads to a simpler
computation than applying (2) and (3), i.e., from first principles.

The Discrete Pulse Transform (DPT) is a hierarchical decomposition algorithm that recursively
applies the 𝐿𝑛 and 𝑈𝑛 operators for 𝑛 = 1, . . . , 𝑁 , where 𝑁 is the size of the array. At each iteration
of the DPT algorithm, the smoothed signal 𝑃𝑛 ( 𝑓 ) is subtracted from the identity operator. This
results in signal 𝑓 filtered by applying 𝑃𝑛 (Anguelov and Fabris-Rotelli, 2010). The process starts
by applying 𝐿1 and𝑈1, hence smoothing local minimums and local maximums of size 1. The value
of 𝑛 is increased at each step from 2 up to 𝑁 , obtaining

𝐷𝑃𝑇 ( 𝑓 ) = (𝐷1 ( 𝑓 ), 𝐷2 ( 𝑓 ), . . . , 𝐷𝑁 ( 𝑓 )),

where 𝐷1 ( 𝑓 ) = (𝐼 − 𝑃1) ( 𝑓 ), 𝐷𝑛 ( 𝑓 ) = (𝐼 − 𝑃𝑛) ◦ 𝑄𝑛−1 ( 𝑓 ), 𝑃𝑛 = 𝐿𝑛 ◦ 𝑈𝑛 or 𝑃𝑛 = 𝑈𝑛 ◦ 𝐿𝑛, and
𝑄𝑛 = 𝑃1 ◦ · · · ◦ 𝑃𝑛, 𝑛 ∈ N, and where 𝐼 is the identity operator. The filtered parts removed are called
pulses, 𝜙𝑛𝑠 , 𝑠 = 1, . . . , 𝛾(𝑛), where 𝛾(𝑛) is the number of pulses of scale 𝑛. For a connected set
𝑉 ⊂ Z2 ∋ card(𝑉) = 𝑛, a pulse is defined as

𝜙𝑛𝑠 =

{
𝑐 if 𝑥 ∈ 𝑉,
0 otherwise,

for some constant 𝑐 ∈ R. The original signal can be reconstructed in full as,

𝑁∑︁
𝑛=1

𝐷𝑛 ( 𝑓 ) =
𝑁∑︁
𝑛=1

𝛾 (𝑛)∑︁
𝑠=1

𝜙𝑛𝑠 .

The implementation of the DPT algorithm is similar for irregular lattice data as for regular lattice
data, as long as the neighbourhood structure satisfies the definition of a morphological connection.
The only difference when applying the DPT algorithm to irregular lattice data compared to regular
lattice data is the neighbourhood object being defined differently (Stander et al., 2021). According
to Fabris-Rotelli (2013), the contiguity neighbours satisfy Definition 1. When applying the LULU
operators and the DPT algorithm to irregular spatial lattice data, the subregions from the irregular
lattice data, 𝐴𝑖 , are used instead of 𝑥 ∈ Z2.
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A partially reconstructed signal can be attained by summing together pulses in a certain interval.
For example, consider pulses with scales [𝑒𝑙; 𝑒𝑢], then the partial reconstruction is

𝑓 𝑝[𝑒𝑙 ;𝑒𝑢 ] (𝐷) =
⌊𝑒𝑢 ⌋∑︁
𝑛=⌈𝑒𝑙 ⌉

𝐷𝑛 ( 𝑓 ) =
𝛾 (𝑛)∑︁
𝑠=1

𝜙𝑛𝑠 , (4)

and represented by the spatial process,

𝑍 𝑝[𝑒𝑙 ;𝑒𝑢 ] (𝐷) =
{
𝑍 𝑝[𝑒𝑙 ;𝑒𝑢 ] (𝐴1), 𝑍 𝑝[𝑒𝑙 ;𝑒𝑢 ] (𝐴2), . . . , 𝑍 𝑝[𝑒𝑙 ;𝑒𝑢 ] (𝐴𝑁 )

}
. (5)

When implementing the DPT algorithm, all possible connected sets are considered at each iteration.
The inability to parallel process the DPT algorithm adds to the computational aspect. Laurie (2010)
mentions that the algorithm has a complexity of O(𝑁3). As the number of areas in the spatial
lattice data increases, the complexity also increases rapidly. Graph-based algorithms, such as the
Roadmaker’s algorithm (Laurie, 2010), which was later on extended to the Roadmaker’s Pavage
algorithm (Stoltz, 2014), have been developed for implementation of the DPT algorithm. The
implementation of the DPT decomposition for this paper is done with the Roadmaker’s Pavage
algorithm. This method is discussed in detail in Stander et al. (2021).

2.4 Multiscale Ht-index
Salient features can be extracted by partially reconstructing pulses with certain scales. The multiscale
Ht-index (Fabris-Rotelli and Stein, 2020) is utilised to obtain informative intervals of the scales of
the extracted pulses from the DPT algorithm.

The Ht-index utilises head/tail breaks in order to divide the data into sensible groups (Jiang
et al., 2013). This method is applied to the scales of the pulses extracted using the DPT algorithm.
For example, consider the pulses with the following scales 1, 1, 1, 1, 2, 2, 6, 9 respectively after
decomposition. The first step is to calculate the mean of the scales, which is 2.875. This leads to 75%
of the scales being less than the mean (1, 1, 1, 1, 2, 2). The process is repeated by only considering
the scales larger than the mean in the previous step (6, 9). The mean of 6 and 9 is 7.5. Then 50% of
the values are less than the mean and the process can stop. The calculation was performed twice, so
the Ht-index is equal to 2. The intervals to consider for the extracted pulses are [1; 2.875], [6; 7.5],
and [9; 9].

With the multiscale version of the Ht-index, the calculations are repeated on the intervals calculated
in each previous step. The multiscale version of the Ht-index allows for a visual representation in
a tree-like structure as in Figure 4. The multiscale Ht-index calculated from the decomposition of
the illustrative example in Figure 1 is shown in Figure 4. The initial intervals calculated with the
Ht-index are [1; 4.654], [5; 10.222], [12; 19.5], and [27; 27]. These are shown as the first (top)
level. From here, the Ht-index calculation is repeated on each interval. For example, applying the
Ht-index on the scales in the interval [5; 10.222] results in intervals [5; 7.571] and [8; 10]. These
are shown in the second level below the interval used.

2.5 Saliency quantification
We propose the use of the spatial scan statistic as a measure to quantify the saliency in each interval
resulting from the multiscale Ht-index.
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Figure 4. Visual representation of the multiscale Ht-index in a tree-like structure. The multiscale
Ht-index applied to the decomposition of the illustrative example in Figure 1.

Let us consider a spatial scan statistic applied to spatial lattice data. The domain, 𝐷, consists of 𝑁
areas with a total of 𝑛𝐷 events occurring over the entire domain. We denote 𝑛𝐴𝑖 to be the number of
events occurring in area 𝐴𝑖 . A sliding window approach is used in the process by iterating over each
area.

The spatial scan statistic is defined for a Poisson model. The Poisson process is the logic counting
process which is a popular choice in spatial statistics. The null hypothesis of homogeneity is tested
against the alternative hypothesis 𝐻𝐴 : 𝑝 > 𝑞, 𝐴𝑖 ∈ 𝐷, where 𝑝 is the probability of a certain event
occurring in area 𝐴𝑖 ⊂ 𝐷 and 𝑞 is the probability of a certain event occurring in area 𝐴̄𝑖 ⊂ 𝐷 \ 𝐴𝑖 .

The test statistic of the spatial scan statistic is obtained by using a likelihood ratio test. The test
statistic is fully derived by Kulldorff (1997). The likelihood ratio is,

𝐿𝑅(𝐴𝑖) =
{ (

𝑛𝐴𝑖

𝜇𝐴𝑖

)𝑛𝐴𝑖
(
𝑛𝐷−𝑛𝐴𝑖

𝑛𝐷−𝜇𝐴𝑖

)𝑛𝐷−𝑛𝐴𝑖
𝑛𝐴𝑖 > 𝜇𝐴𝑖 ,

1 otherwise,

where 𝜇𝐴𝑖 is the expected number of events to occur in area 𝐴𝑖 under the null hypothesis of
homogeneity (Kulldorff, 1997; Duczmal et al., 2006; Ishioka et al., 2007). The test statistic is then,

𝜆 = max
𝐴𝑖∈𝐷

𝐿𝑅(𝐴𝑖). (6)

The test statistic value from (6) is calculated for each interval from the multiscale Ht-index. As
the scales of the pulses are integer values, we consider only the integer values within the interval
in partial reconstruction. For example, if we consider the scales in the interval from the multiscale
Ht-index, [1; 4.654], then the partial reconstruction is obtained with (4) as,

𝑓 𝑝[1;4.654] (𝐷) =
4∑︁
𝑛=1

𝐷𝑛 ( 𝑓 ) =
𝛾 (𝑛)∑︁
𝑠=1

𝜙𝑛𝑠 ,

with the spatial process, 𝑍 𝑝[1;4.654] (𝐷), as in (5). The partial reconstruction is shown in Figure 5(a).
For 𝑓 𝑝[1;4.654] (𝐷), we calculate 𝐿𝑅(𝐴𝑖),∀𝐴𝑖 ∈ 𝐷. The calculated non-zero values for 𝐿𝑅(𝐴𝑖) are
{38.491; 35.052; 67.117; 33.614}. These are shown in Figure 5(b). The test statistic value for the
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(a) (b)
Figure 5. Considering the interval of scales [1; 4.654] from the multiscale Ht-index from the
illustrative example. (a) 𝑓 𝑝[1;4.654] (𝐷), the partial reconstruction of the scales. (b) 𝐿𝑅(𝐴𝑖), the
likelihood ratio, calculated for 𝑓 𝑝[1;4.654] (𝐷).

Figure 6. Test statistic value, 𝜆, calculated for each interval from the multiscale Ht-index. The value
of 𝜆 is indicated by colour.

corresponding interval from the multiscale Ht-index is,

𝜆 = max
𝐴𝑖∈𝐷

𝐿𝑅(𝐴𝑖) = max
𝐴𝑖∈𝐷

{38.491; 35.052; 67.117; 33.614} = 67.117.

Figure 6 indicates the test statistic value for each interval by colour on the multiscale Ht-index
visualisation from Figure 4. The interval with the maximum test statistic value is considered to contain
the salient pulses. In this case, the interval with the maximum test statistic value is [1; 4.654].

2.6 Hotspot identification
After a test statistic value is calculated for each interval from the multiscale Ht-index, the corre-
sponding pulses whose scales are included in the interval are reconstructed according to (4). The
hotspot areas are detected as the areas with standardised values of more than 1.96 at a significance
level of 0.05. The values of the areas are standardised to have zero mean and a standard deviation of
one. The observed values in spatial lattice data are usually the average of the events. Similar to the
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(a) (b)
Figure 7. (a) Hotspot areas identified with the proposed algorithm. (b) Original values for each 𝐴𝑖
are plotted against the index and partially reconstructed values of the salient pulses are plotted on the
same axis.

Getis-Ord statistic, the limiting distribution of the averages is normal (Modiba et al., 2022).
In Figure 7(b), the original values for each 𝐴𝑖 are plotted against the index of the area with the

partially reconstructed values of the identified salient pulses on the same axis. This indicates the
ability of the algorithm (before identifying the hotspots) to extract important features and information
from data while smoothing noise. The identified hotspots are also shown in Figure 7(a). Recall from
Figure 1 that the areas where the hotspots are identified, match where the hotspot was simulated.

In summary, the proposed hotspot detection method starts by first decomposing the irregular
spatial lattice data, using the DPT algorithm, into pulses. The pulses from the decomposition can
be partially reconstructed to detect salient features in the data. The multiscale Ht-index is used
to divide the scales of the extracted pulses into intervals. If the scales included in an interval are
[𝑒𝑙; 𝑒𝑢], then the partial reconstruction is, 𝑓 𝑝[𝑒𝑙 ;𝑒𝑢 ] (𝐷) =

∑⌊𝑒𝑢 ⌋
𝑛=⌈𝑒𝑙 ⌉ 𝐷𝑛 ( 𝑓 ). For each interval from the

multiscale Ht-index, the pulses with the relevant scales are partially reconstructed and (6) is applied.
The interval resulting in the maximum test statistic value is considered to contain the salient pulses.
A partial reconstruction is done again for these pulses whereafter the hotspot areas are detected as
the areas with standardised values of more than 1.96.

3. Simulation study
To determine the accuracy and robustness of the proposed hotspot detection method, we perform a
simulation study. In the simulation study, irregular spatial lattice data are simulated such that some
of the areas within the spatial domain are known to be hotspot areas. The results for the proposed
method are compared to the local Getis-Ord statistic as it is the most popular method in literature
and the gold standard for hotspot detection in GIS software such as ArcGIS4. The local Getis-Ord

4 https://pro.arcgis.com/en/pro-app/2.9/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm.
Accessed on: 8 March 2023.
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(Getis and Ord, 1992) statistic is defined as,

𝐺∗
𝑖 =

∑𝑁
𝑗=1 𝑤𝑖 𝑗𝑥 𝑗 − 𝑥

∑𝑁
𝑗=1 𝑤𝑖 𝑗

𝑠

√︂
𝑁

∑𝑁
𝑗=1 𝑤

2
𝑖 𝑗−

(∑𝑁
𝑗=1 𝑤𝑖 𝑗

)2

𝑁−1

,

where 𝑤𝑖 𝑗 is the neighbourhood relationship between 𝐴𝑖 and 𝐴 𝑗 as defined in (1), 𝑥 𝑗 = 𝑍 (𝐴 𝑗 ), the
value observed at 𝐴 𝑗 , and

𝑠 =

√√√
1
𝑁

𝑁∑︁
𝑗=1
𝑥2
𝑗 − 𝑥2 and 𝑥 =

1
𝑁

𝑁∑︁
𝑗=1
𝑥 𝑗 .

3.1 Simulation design
The simulations are conducted by simulating random points over the entire spatial domain from a
Poisson Process with 𝑁 × 50 points, where 𝑁 is the number of areas in the spatial domain. At each
iteration, areas are selected and more points are simulated in those areas such that it can be considered
a hotspot area. The simulated points are aggregated such that the total number of points in 𝐴𝑖 is the
value of the spatial process observed in the corresponding area, 𝑍 (𝐴𝑖). The proposed method as well
as the local Getis-Ord statistic is applied to each of the simulations. The detected hotspots are then
recorded and compared to where the hotspots are known to be simulated.

The simulation study is performed on two spatial domains, one with 20 areas and one with 52
areas. Variation in the simulation study is obtained by varying the size of the hotspot and the number
of areas included in the hotspot. The hotspot is created by simulating either 5%, 30%, or 60% more
than the total number of points to the randomly chosen hotspot areas. The choice of the number of
hotspot areas to include in the simulation study is 1) one area to illustrate that the proposed method
is able to detect small and single hotspot areas (to indicate the sensitivity of the method), 2) two
neighbouring areas to illustrate the proposed method’s ability to detect larger neighbouring areas,
and 3) two separate areas for illustration on disjoint areas. To select the areas where more points are
simulated to form a hotspot area, an area is selected completely at random. For the first choice, only
the selected area is used. In the case of the second choice, an adjacent region to the selected area is
also selected. Lastly, for the third choice, another region is selected that is not adjacent to the first
selected region. For each combination of spatial domain, hotspot size, and number of hotspots, 500
simulations are performed.

3.2 Simulation results
Examples of some simulations on the spatial domain with 20 areas are shown in Figure 8. The
𝑍 (𝐴𝑖) are plotted on a map with red and green stars indicating where either the proposed method or
local Getis-Ord detected hotspots. This can be seen in Figure 8(a)–(c). The original values, 𝑍 (𝐴𝑖),
as well as the partially reconstructed values, 𝑍 𝑝 (𝐴𝑖), are plotted against the index of the areas on
the same axis. The partial reconstruction shown is for the pulses whose scales are included in the
interval resulting in the maximum test statistic value from the multiscale Ht-index. Straight vertical
lines show the areas where the hotspots are detected. This is done for both the proposed method (see
Figure 8(d)–(f)) as well as local Getis-Ord (see Figure 8(g)–(i)).
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(g) One area (h) Two neighbouring areas (i) Two separate areas
Figure 8. Examples of the simulations on the spatial domain with 20 areas with (a) one, (b) two
neighbouring, and (c) two separate simulated hotspots. The stars on the maps indicate where either
the proposed method or local Getis-Ord detects hotspots. The original values, 𝑍 (·), and the partially
reconstructed values, 𝑍 𝑝 (·), of the salient pulses are plotted against the index of the region. Identified
hotspot areas are indicated with vertical lines for the proposed method ((d)–(f)) as well as local Getis-
Ord ((g)–(i)).

The accuracy of the proposed method, especially on small-scale hotspots and spatial domains with
a small number of areas, is illustrated in the example shown in Figure 8. The proposed method is able
to accurately detect hotspots present in spatial lattice data while the local Getis-Ord statistic does
not identify the hotspots correctly. A similar situation is presented in Figure 9 where simulations on
the spatial domain with 52 areas are shown. Figure 9(a)–(c) shows the plotted 𝑍 (𝐴𝑖) values on a
map with red and blue stars indicating where either the proposed method or local Getis-Ord detected
hotspots. In Figure 9(d)–(f), the original values as well as the partially reconstructed values are
plotted against the index of the area. Straight lines indicate where the proposed method detected the
hotspots while Figure 9(g)–(i) show where local Getis-Ord detects the hotspots.

From Figure 8 and Figure 9, it can be seen that the proposed method has the ability to identify
the hotspots in single areas while local Getis-Ord tends to indicate multiple neighbouring areas.
The proposed method is more accurate and robust than the local Getis-Ord statistic, especially with
small-scale hotspots.
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Figure 9. Examples of the simulations on the spatial domain with 52 areas with (a) one, (b) two
neighbouring, and (c) two separate simulated hotspots. The stars on the maps indicate where either
the proposed method or local Getis-Ord detects hotspots. The original values, 𝑍 (·), and the partially
reconstructed values, 𝑍 𝑝 (·), of the salient pulses are plotted against the index of the area. Identified
hotspot areas are indicated with vertical lines for the proposed method ((d)–(f)) as well as local
Getis-Ord ((g)–(i)).

The results for each combination of number of hotspots and size from the simulation study are
shown in Table 1. We considered performance measures such as true positive rate5 (TPR), true
negative rate6 (TNR), false positive rate7 (FPR), false negative rate8 (FNR), and accuracy9. It is clear
from the table that the proposed method outperforms the local Getis-Ord statistic on the simulated
data. Although the accuracy is consistent between the number of hotspots, the true positive rate is
lower for when two hotspots are present than for when only one hotspot is present.

It is interesting to note that the TNR for local Getis-Ord is, although lower than the proposed
method, still high. The reason for this is the small number of hotspot regions relative to the total
regions in the domain which causes the inflation of the TNR.

5𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ) , where 𝑇𝑃: True positive and 𝐹𝑁 : False negative.
6𝑇𝑁𝑅 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) , where 𝑇𝑁 : True negative and 𝐹𝑁 : False positive.
7𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁 ) , where 𝐹𝑃: False positive and 𝑇𝑁 : True negative.
8𝐹𝑁𝑅 = 𝐹𝑁/(𝐹𝑁 + 𝑇𝑃) , where 𝐹𝑁 : False negative and 𝑇𝑁 : True positive.
9 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑁 + 𝑇𝑃)/(𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃) .
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Table 1. Results from the simulation study. The true positive rate (TPR), true negative rate (TNR),
false positive rate (FPR), false negative rate (FNR), as well as the accuracy are shown for both the
proposed method and the local Getis-Ord statistic. The results for the simulation study are shown
for the different number of hotspots and the size of the hotspot separately. An overall performance
metric is also calculated on the data combined.

Proposed method Local Getis-Ord statistic
Number of hotspots Size TPR TNR Accuracy TPR TNR Accuracy

FPR FNR FPR FNR

One

5% 0.999 0.998 0.998 0.046 0.952 0.927
0.002 0.001 0.048 0.954

30% 0.993 0.998 0.998 0.045 0.949 0.924
0.002 0.007 0.051 0.955

60% 0.997 0.998 0.998 0.041 0.952 0.927
0.002 0.003 0.048 0.959

Two neighbouring

5% 0.839 0.998 0.989 0.376 0.939 0.909
0.002 0.161 0.060 0.624

30% 0.827 0.998 0.989 0.394 0.939 0.909
0.002 0.173 0.061 0.605

60% 0.824 0.998 0.988 0.375 0.939 0.908
0.002 0.176 0.061 0.625

Two separately

5% 0.774 0.999 0.988 0.004 0.954 0.901
0.001 0.226 0.046 0.996

30% 0.774 0.999 0.987 0.001 0.955 0.902
0.001 0.226 0.045 0.999

60% 0.765 0.999 0.987 0.002 0.954 0.901
0.001 0.235 0.046 0.998

Overall 0.840 0.999 0.991 0.162 0.948 0.912
0.001 0.159 0.052 0.838

4. Application
4.1 COVID-19 cases in South Africa
The COVID-19 pandemic hit the world hard in 2020. The first case of COVID-19 in South Africa
was confirmed on 5 March 2020 and the entire country went into lockdown on 26 March 2020.
Local governments and decision-makers around the world kept a close eye on the cases to be able to
implement several lockdown measures to contain the spread of the virus. In such a case, the use of
hotspot detection methods is useful to identify the areas at risk.

For this example, the total number of COVID-19 cases is considered at municipal level in South
Africa for April – July 202010. South Africa consists of nine provinces and 278 municipalities. The

10 The right to use this data was approved by the NAS ethics committee NAS317/2022.
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Figure 10. Total COVID-19 cases for April – July 2020 at municipal level, standardised by the area
of the region.

(a) Local Getis-Ord (b) Proposed algorithm
Figure 11. Detected hotspots shown on a map using (a) the local Getis-Ord statistic and (b) the
proposed method.

observed values are standardised by dividing the observed counts by the area of the region. This is
shown in Figure 10. The proposed method as well as the local Getis-Ord statistic is then applied to
the standardised values.

The results for both the local Getis-Ord statistic and the proposed algorithm are shown in Figure
11(a) and Figure 11(b), respectively. It should be noted that the local Getis-Ord statistic detects larger
areas as hotspots while the proposed method detects smaller, more precise, areas. This can be seen
especially in the upper right hotspot areas (Gauteng area of South Africa). Also, take note that local
Getis-Ord detects regions as hotspots that, by visually inspecting and comparing to Figure 10, are
clearly not hotspots. The same applies to the areas that should clearly be detected as a hotspot but are
missed by local Getis-Ord while detected with the proposed algorithm. Focussing some attention on
the detected hotspot areas in the lower left of the map (Cape Town region), the area which has the
clearest maximum value in the region is not detected by local Getis-Ord as a hotspot but is indeed
identified by the proposed method.

The areas highlighted as hotspots in Figure 11(b) using the proposed method, are the metropolitan
areas in South Africa. These areas are more likely to be hotspots of COVID-19 cases as the population
is denser and the mobility of individuals is higher.

Another proof of concept is shown in Figure 12 where the original values as well as the partially
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(a) (b)
Figure 12. The original values and the partially reconstructed values of the salient pulses are plotted
against the index of the area. Identified hotspot areas are indicated with vertical lines for (a) local
Getis-Ord as well as (b) the proposed method.

reconstructed values are plotted against the index of the area on the same axis. The vertical lines
indicate the detected hotspots for the local Getis-Ord statistic (in Figure 12(a)) and the proposed
algorithm (in Figure 12(b)). It can be seen that the proposed algorithm indicates the peaks in the data
with higher accuracy while the local Getis-Ord statistic has many more false positives. The proposed
method is detecting smaller scale hotspots than the local Getis-Ord statistic.

In the case of a pandemic such as COVID-19, the impact of stricter lockdown measures can have
a severe impact on the already struggling economy of South Africa. Therefore, wrongly detecting an
area as a hotspot should be avoided at all costs.

4.2 Crime in South Africa
South Africa has the third highest crime rate in the world11. Hotspot detection methods have been
used by decision-makers around the world to deploy resources to contain criminal activity (Chainey,
2014). In this example, the crime cases of three different crime types (property, violent, and sexual
crimes) are considered at police precinct level in South Africa12. The observed crime counts at each
police precinct are standardised by dividing the observed counts by the area of the region.

The proposed method as well as local Getis-Ord are applied to each of the crime types separately.
Figure 13 displays the detected hotspots of property crimes (local Getis-Ord statistic in Figure 13(a)
and proposed method in Figure 13(d)), violent crimes (local Getis-Ord statistic in Figure 13(b) and
proposed method in Figure 13(e)) and sexual crimes (local Getis-Ord statistic in Figure 13(c) and
proposed method in Figure 13(f)). Similarly to the previous example in Section 4.1, the local Getis-
Ord statistic detects larger areas as hotspots while the proposed method detects smaller regions. A
larger number of connected areas (a larger hotspot) can be seen to be identified as a hotspot by the
proposed method in Figure 13(e) which is an indication of the proposed method’s ability to also
detect larger scale hotspots.

In Figure 14, the original values and the partially reconstructed values are plotted against the
index of the area on the same axis. The vertical lines indicate the detected hotspots for the local

11 https://worldpopulationreview.com/country-rankings/crime-rate-by-country. Accessed on: 22 February 2023
12 Data used with permission from Prof Breetzke from the Department of Geography, Geoinformatics & Meteorology,
University of Pretoria.

MULTISCALE DECOMPOSITION OF SPATIAL LATTICE DATA FOR HOTSPOT DETECTION 73



Local Getis-Ord

(a)Property
crim

e
(b)V

iolentcrim
e

(c)Sexualcrim
e

Proposed method

(d)Property
crim

e
(e)V

iolentcrim
e

(f)Sexualcrim
e

Figure13.D
etected

hotspotsshow
n

on
a

m
ap

using
(a)–(c)localG

etis-O
rd

statistic
and

(d)–(f)the
proposed

m
ethod.

74 STANDER, FABRIS-ROTELLI & CHEN



Lo
ca

lG
et

is-
O

rd

(a) Property crime (b) Violent crime (c) Sexual crime

Pr
op

os
ed

m
et

ho
d

(d) Property crime (e) Violent crime (f) Sexual crime
Figure 14. The original values and the partially reconstructed values of the salient pulses are plotted
against the index of the area. Identified hotspot areas are indicated with vertical lines for (a)–(c) local
Getis-Ord as well as (d)–(f) the proposed method.

Getis-Ord statistic (Figure 14(a–c)) and the proposed algorithm (Figure 14(d–f)). Similarly to the
previous example, it can be seen that the proposed algorithm indicates the peaks in the data with
higher accuracy while the local Getis-Ord statistic has many more false positives.

5. Discussion and conclusion
In this paper, a hotspot detection method that makes use of the Discrete Pulse Transform to decompose
irregular spatial lattice data is proposed. The multiscale Ht-index together with the spatial scan
statistic is then used as a measure to quantify the saliency on the extracted pulses to detect significant
hotspots.

The proposed method was validated with a simulation study where it was compared to the local
Getis-Ord statistic. It was concluded that the proposed method is more accurate and robust than
the local Getis-Ord statistic. The proposed method has the ability to detect hotspots with a higher
accuracy, precision, and robustness than the local Getis-Ord. One aspect that drew attention in
Section 3 and 4 was that the proposed method is able to detect small-scale hotspots, while local
Getis-Ord tends to identify multiple connected areas as hotspots.

Although the proposed method works well on the scenarios tested in this paper, the method has
not been tested on other lattice structures. The type of examples shown here is what the size of the
lattices should look like in applications, but the scalability has not been verified in the simulation
study. More variety can be introduced in the simulation study by allowing the size and shape of the
cluster to include more possibilities. In future applications, a sensitivity analysis can be performed
to test the proposed method’s sensitivity to the strength of the hotspot.

In future work, the proposed method can be extended to detect warm spots, cold spots, and cool
spots. A warm spot is a hotspot with a lower significance, hence an area of concern but lower
concern than a hotspot area. Cold spots are the opposite of hotspots and cool spots are the opposite
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of cold spots13. Methods such as Monte Carlo simulation can be explored for the final hotspot
detection step. The extension of this method to predict emerging hotspots can be implemented14.
The prediction of hotspot areas has been investigated in recent publications in both criminology and
disease mapping (Adepeju et al., 2016; Chen et al., 2020). In this paper, only the Rook contiguity
neighbourhood definition has been considered. In future applications, the influence of different
neighbourhood definitions can be investigated when implementing the DPT step of the proposed
method. Other neighbourhood definitions that can be considered are distance-based and graph-based
methods (Bivand et al., 2013).
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