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Summary: The risk performances, under the symmetric squared error loss function, of the esti-
mators of the regression coefficients after a preliminary test for serial correlation have been widely
investigated in the literature. However, it is well known that the use of the symmetric loss functions
is inappropriate in estimation problems where underestimation and overestimation have different
consequences. We consider the Linear Exponential and Bounded Linear Exponential loss functions
which allows for asymmetry. The risks of the estimators are derived and numerically evaluated by
using simulations.
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1. Introduction

The classical linear regression model assumption of no serial correlation in the error terms is often
not plausible in time series regression models. Cochrane and Orcutt (1949), in particular, found that
error terms in most economic models are positively correlated. Under the uncertainty of the validity
of this assumption, serial correlation test procedures such as the Durbin and Watson (1950, 1951,
1971) is used to test for the significance of the serial correlation in the error terms. If the hypothesis
of no serial correlation is accepted, then the regression coefficients are estimated by the ordinary
least squares (OLS), otherwise a feasible generalised least squares (FGLS) estimator that corrects
for serial correlation is considered. This estimation strategy is what is referred to in the literature as
the serial correlation preliminary test (pretest) estimation.

The sampling performance of the serial correlation pretest estimator relative to its component
estimators, OLS and FGLS, have been well investigated in the literature (see Morey, 1975; Judge
and Bock, 1978; Fomby and Guilkey, 1978; King and Giles, 1984; Folmer, 1988, etc.). Comparisons
of the estimators’ performances in these studies are based on risks under the symmetric squared error
(SE) loss function. Monte Carlo results from these studies are in agreement that there are significant
risk gains by considering the pretest estimator, compared to the OLS estimator for serial correlation
coefficient (ρ) approximately greater than 0.3. Moreover, the pretest estimator compares favorably
to the FGLS estimator for small values of ρ , and performs just as well for medium and larger values
of ρ .

However, in some estimation problems under- and overestimation estimation of the regression
coefficients do not have the same consequences as implied by the use of the symmetric loss functions.
In economic models, for example, underestimation and overestimation of a regression coefficient are
more likely to have different consequences in terms of the appropriate policy tools to be applied and
the implications thereof. Therefore, as recognised by Varian (1975), Zellner (1986) and Wen and
Levy (2001), the symmetric loss functions such as the SE loss are inappropriately used in some
estimation problems. In this paper we consider the asymmetry loss functions, Linear-Exponential
(LINEX) as proposed by Varian (1975) and the Bounded Linear-Exponential (BLINEX) introduced
by Wen and Levy (2001). We derive the risks of the OLS, GLS, FGLS and pretest estimators under
the first order autoregressive error terms specification. The risk properties under asymmetry and the
effect of the loss asymmetry are evaluated numerically using Monte Carlo simulations.

The next section discusses the model, estimators and the test procedure under consideration.
Section 3 presents the risk derivations, the numerical evaluations of the risk function and discussions
follow in Section 4. An application is considered in Section 5, and we conclude in Section 6.

2. The estimation problem

Consider the classical linear regression model

y = Xβββ +u (1)

where y is a T ×1 vector of observations on a dependent variable, X is a T ×k nonstochastic design
matrix of full column rank k, βββ is a k×1 vector of unknown regression coefficients and u is a T ×1
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vector of the error terms. We are concerned with estimating the regression coefficients when the
error terms are (as frequently assumed in applied econometric modelling) generated by a stationary
first order autoregressive process

ut = ρut−1 + et , (e1,e2, ...,eT )
′ ∼ N(0,σ2

e I),0≤ ρ < 1.

Under this assumption, it can be shown (see, for example, Gujarati, 2003) that

u ∼ N(0,σ2
e φφφ)

where

φφφ =
1

(1−ρ2)


1 ρ ρ2 . . . ρT−1

ρ 1 ρ . . . ρT−2

ρ2 ρ 1 . . . ρT−3

...
...

...
. . .

...
ρT−1 ρT−2 ρT−3 . . . 1


(T×T ).

It is well known that under serial correlation, the OLS estimator does not have optimal statistical
properties. For example, for positive serially correlated error terms, the most likely situation with
economic time series, Judge, Griffiths, Hill, Lutkepohl and Lee (1985) have shown that the variances
of the OLS regression coefficients are biased downward. There are a number of FGLS estimator that
have been proposed to correct for first order autoregressive error terms. The most commonly used are
the Cochrane and Orcutt (1949), the Prais and Winsten (1954), Durbin’s (1960) and the Maximum
Likelihood (ML) estimator of Beach and Mackinnon (1978). The Cochrane-Orcutt, Prais-Winsten
and Durbin estimators differ in the estimate of ρ used and the transformation method applied. Monte
Carlo evidence from Rao and Griliches (1969) and Judge and Bock (1978), among others, suggest
that FGLS estimators are relatively more efficient than the OLS estimator for | ρ |≥ 0.3.

However, in empirical work the value of ρ is unknown, that is, it is not known whether the level of
serial correlation is significant or not. Therefore, it is necessary to perform a preliminary test for
serial correlation by testing the hypotheses

H0 : ρ = 0 H1 : ρ > 0.

The Durbin-Watson (1950; 1951; 1971) is the commonly used test procedure for serial correlation.
The test statistic, d, is given by

d =

T
∑

t=2
(ût − ût−1)

2

T
∑

t=1
û2

t

ût = (yt −Xtβ̂ββ OLS) t = 1,2, ...,T. (2)

If dα is the critical value for a specified level of significance, for d > dα H0 is not rejected and
if d ≤ dα H0 is rejected. The preliminary test estimation strategy is to use the OLS estimator if
we cannot reject the null hypothesis and to use a FGLS estimator if the null hypothesis is rejected.
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Hence, the serial correlation pretest estimator is defined as

β̂ββ PT E = IA(d)β̂ββ OLS +(1− IA(d))β̂ββ FGLS (3)

where

IA(d) =
{

1 if H0 is accepted
0 otherwise.

The Durbin and the ML estimators are the most preferable FGLS estimators (see, King and Giles,
1984; Folmer, 1988). Consequently, we consider only these two estimators for the FGLS component
of the pretest estimator. Fomby and Guilkey (1978) suggested that an optimal level of significance
for the pretest should be about 50%.
As noted by Simons (1988), in the context of serial correlation preliminary test estimation, the
usual hypothesis of linear restrictions in the general preliminary test estimation is replaced by the
hypothesis of no serial correlation which then implies that the OLS estimator is now the restricted
estimator whereas the FGLS estimator is the unrestricted estimator. For a discussion on the general
preliminary test estimation and other related topics see Judge and Bock (1978), Saleh and Kibria
(1993, 2011), Saleh (2006), Arashi, Tabatabaey and Hassanzadeh (2009) and Arashi (2009, 2012),
among others.

3. Risk derivations

In any estimation problem, it is important to choose an appropriate loss function by taking the prac-
tical implications into consideration. Even though the symmetric SE loss function is the most fre-
quently used in the literature, this is inappropriate in applications where the consequences of over-
estimation may be more serious than underestimation, or vice versa. Varian (1975) proposed the
asymmetric LINEX loss function which has exponential losses on one side of zero and linear losses
on the other. The LINEX loss is however unbounded. Wen and Levy (2001), on the other hand,
introduced the BLINEX loss function which is asymmetric and bounded, and thus more useful in
practical applications where it is required to have an upper bound on the loss. In this section we
present the risk derivations of the OLS, GLS, FGLS and pretest estimators under the asymmetric
LINEX and BLINEX loss functions. For the BLINEX loss, however, the nature of the loss function
makes it difficult to derive the exact expressions of the risks, hence we only present approximated
risk functions.

3.1. Risk under LINEX loss

Suppose β̂ββ is an estimator of the unknown parameter vector βββ . The LINEX loss takes the form

LLINEX (β̂ββ ;βββ ) = c[exp[a′(β̂ββ −βββ )]−a′(β̂ββ −βββ )−1] (4)

where a = (a1, ...,ak)
′ and ai 6= 0 for i = 1, ...,k and c > 0. The properties of the LINEX loss are

discussed in Varian (1975). The parameter c is a scale parameter, and generally assumed to be equal
to unity. The asymmetry vector parameter a determines the shape of the loss function, with the signs
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of the ai’s reflecting the direction of asymmetry and their magnitudes the degree of asymmetry. The
LINEX loss is quite asymmetric for large values of ‖a‖ and almost symmetric for small values of
‖a‖. For simplicity, we will consider asymmetry vectors a where the values of the ai’s are the same.

3.1.1. Risk function of OLS estimator

The risk function of the OLS estimator, β̂ββ OLS, under the LINEX loss is

ℜLINEX (β̂ββ OLS;β )β )β ) = E
{

c
[
exp[a′(β̂ββ OLS−βββ )]−a′(β̂ββ OLS−βββ )−1

]}
= c

[
exp(−a′βββ )M

β̂ββ OLS
(a)−a′(βββ −βββ )−1

]
= c

[
exp(−a′βββ )exp(βββ ′a+

1
2

a′ΣΣΣOLSa)−1
]

= c
[

exp(
1
2

a′ΣΣΣOLSa)−1
]

(5)

where use is made of the fact that

M
β̂ββ OLS

(a) = exp
[
βββ
′a+

1
2

a′ΣΣΣOLSa
]

(6)

and ΣΣΣOLS = σ2
e (X′X)−1.

3.1.2. Risk functions of GLS and FGLS estimators

For the GLS estimator, β̃ββ GLS, the risk function under the LINEX loss is

ℜLINEX (β̃ββ GLS;βββ ) = E
[
c
[
exp[a′(β̃ββ GLS−βββ )]−a′(β̃ββ GLS−βββ )−1

]]
= c

[
exp(−a′βββ )M

β̃ββ GLS
(a)−a′(βββ −βββ )−1

]
= c

[
exp(−a′βββ )exp(βββ ′a+

1
2

a′ΣΣΣGLSa)−1
]

= c
[

exp(
1
2

a′ΣΣΣGLSa)−1
]

(7)

where M
β̃ββ GLS

(a) =exp
[
βββ ′a+ 1

2 a′ΣΣΣGLSa
]

and ΣΣΣGLS = σ2
e (X′φ−1X)−1. Now since the FGLS estima-

tor, β̂ββ FGLS, is a GLS-type estimator, it then follows directly from equation (7) that the risk function
of the FGLS estimator under the LINEX loss function is given by

ℜLINEX (β̂ββ FGLS;β )β )β ) = c
[

exp(
1
2

a′ΣΣΣFGLSa)−1
]

(8)

where ΣΣΣFGLS = σ2
e (X′φ̂−1X)−1.
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3.1.3. Risk function of the PTE

The following property of expected values is used in deriving the risk function of the pretest estima-
tor:

E[A]≡ E[E[A|B]], where A≡L (β̂ββ PT E ;βββ ) and B≡ outcome of the hypothesis test. (9)

Making use of equation (9), the risk function of the pretest estimator, β̂ββ PT E , for a specified level of
significance, η , is given by

ℜLINEX (β̂ββ PT E ;βββ ) = E
[
c
[
exp[a′(β̂ββ PT E−βββ )]−a′(β̂ββ PT E−βββ )−1

]]
= E

[
c
[
exp[a′(β̂ββ OLS−βββ )]−a′(β̂ββ OLS−βββ )−1

]
|H0

]
P(d > dη)

+E
[
c
[
exp[a′(β̂ββ FGLS−βββ )]−a′(β̂ββ FGLS−βββ )−1

]
|H1

]
P(d ≤ dη)

= ℜLINEX (β̂ββ OLS;β )β )β )(1−η)+ℜLINEX (β̂ββ FGLS;β )β )β )η , with η = P(d ≤ dη)

= c
[

exp(
1
2

a′ΣΣΣOLSa)(1−η)+ exp(
1
2

a′ΣΣΣFGLSa)η−1
]

using equations (5) and (8)

3.2. Risk under BLINEX loss

If β̂ββ is the estimator of the unknown parameter vector βββ then the BLINEX loss function is defined
as

LBLINEX (β̂ββ ;βββ ) =
LLINEX (β̂ββ ;βββ )

1+λLLINEX (β̂ββ ;βββ )

= 1
λ

[
1− 1

1+b[exp(a′(β̂ββ −βββ ))−a′(β̂ββ −βββ )−1]

] (10)

where a = (a1, ...,ak)
′ and ai 6= 0 for i = 1, ...,k, λ > 0 and b = λc > 0. The BLINEX loss is

bounded by 0 and 1
λ

and the signs of the ai’s reflects the direction of asymmetry, with negative ai’s
penalising the negative errors more heavily and vise versa for positive values of the ai’s. On the other
hand, b is an asymmetry parameter and its magnitude determines the direction of asymmetry, with
smaller values representing relatively higher degree of asymmetry and larger values representing
relatively lower degree of asymmetry. See Wen and Levy (2001) for a more detailed discussion of
the properties of the BLINEX loss.

3.2.1. Risk function of OLS estimator

The risk function of the OLS estimator, β̂ββ OLS, under the BLINEX loss may be derived as
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ℜBLINEX (β̂ββ OLS;β )β )β ) = E

[
1
λ

(
1− 1

1+b[exp(a′(β̂ββ −βββ ))−a′(β̂ββ −βββ )−1]

)]

= E

[
1
λ

(
1− 1

1−b[a′(β̂ββ −βββ )−exp(a′(β̂ββ −βββ ))+1]

)]

and if we define
Z = b[a′(β̂ββ OLS−βββ )−exp(a′(β̂ββ OLS−βββ ))+1]

then the risk function can be expressed as

ℜBLINEX (β̂ββ OLS;β )β )β ) = E
[

1
λ

(
1− 1

1−Z

)]
= E

[ 1
λ
[1− (1+Z +Z2 + ...)]

]
by applying Maclaurin series expansion

=− 1
λ

[
E(Z)+E(Z2)+ ...

]
.

(11)

We consider the expected values in equation (11) in turn. First if we take E(Z) then

E(Z) = E
[
b
[
a′(β̂ββ OLS−βββ )−exp(a′(β̂ββ OLS−βββ ))+1

]]
= b

[
a′E
[
(β̂ββ OLS−βββ )

]
−E

[
exp(a′(β̂ββ OLS−βββ ))

]
+1
]

= b
[
a′(βββ −β )β )β )−M

β̂ββ OLS
(a)exp(−a′βββ )+1

]
= b

[
−exp(

1
2

a′ΣΣΣOLSa)+1
]

by using equation (6). (12)

Next we take E(Z2), then

E(Z2) = E
{

b(a′(β̂ββ OLS−βββ )− exp[a′(β̂ββ OLS−βββ )]+1)′b(a′(β̂ββ OLS−βββ )− exp[a′(β̂ββ OLS−βββ )]+1)
}

= b2
{

E[(β̂ββ OLS−βββ )′aa′(β̂ββ OLS−βββ )]+2E[a′(β̂ββ OLS−βββ )]+E[exp[2a′(β̂ββ OLS−βββ )]]

−2E[a′(β̂ββ OLS−βββ )exp[a′(β̂ββ OLS−βββ )]]−2E[exp[a′(β̂ββ OLS−βββ )]]+1
}

= b2
{

a′σ2
e (X

′X)−1a+2[a′(βββ −βββ )]+exp(−2a′βββ )M
β̂ββ OLS

(2a)

−2E[a′(β̂ββ OLS−βββ )exp[a′(β̂ββ OLS−βββ )]]−2exp(−a′βββ )M
β̂ββ OLS

(a)+1
}

where use is made of the fact that E[(β̂ OLS−βββ )(β̂ββ OLS−βββ )′] =σ2
e (X′X)−1 and equation (6).
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Having defined ΣΣΣOLS = σ2
e (X′X)−1 then it follows that

E(Z2) = b2
{

a′ΣΣΣOLSa+exp(−2a′βββ )exp(2a′βββ+2a′ΣΣΣOLSa)

−2E[a′(β̂ββ OLS−βββ )exp[a′(β̂ββ OLS−βββ )]]−2exp(−a′βββ )exp(a′βββ+
1
2

a′ΣΣΣOLSa)+1
}

= b2
{

a′ΣΣΣOLSa+exp(2a′ΣΣΣOLSa)−2exp(
1
2

a′ΣΣΣOLSa)

−2E[a′(β̂ββ OLS−βββ )exp[a′(β̂ OLS−βββ )]]+1
}

(13)
and for the term 2E[a′(β̂ββ OLS−βββ )exp[a′(β̂ββ OLS−βββ )]], in equation (13) we take

((β̂ββ OLS−βββ )−ΣΣΣOLSa)′ΣΣΣ−1
OLS((β̂ββ OLS−βββ )−ΣΣΣOLSa)

= ((β̂ββ OLS−βββ )′−(ΣΣΣOLSa)′)ΣΣΣ−1
OLS((β̂ββ OLS−βββ )−ΣΣΣOLSa)

= (β̂ββ OLS−βββ )′ΣΣΣ−1
OLS(β̂ββ OLS−βββ )−(β̂ββ OLS−βββ )′ΣΣΣ−1

OLSΣΣΣOLSa
−(ΣΣΣOLSa)′ΣΣΣ−1

OLS(β̂ββ OLS−βββ )+(ΣΣΣOLSa)′ΣΣΣ−1
OLSΣΣΣOLSa

= (β̂ββ OLS−βββ )′ΣΣΣ−1
OLS(β̂ββ OLS−βββ )−(β̂ββ OLS−βββ )′a−a′(β̂ββ OLS−βββ )+a′ΣΣΣOLSa

= (β̂ββ OLS−βββ )′ΣΣΣ−1
OLS(β̂ββ OLS−βββ )−2β̂ββ

′
OLSa+2βββ

′a+a′ΣΣΣOLSa.

Therefore

(β̂ββ OLS−βββ )′ΣΣΣ−1
OLS(β̂ββ OLS−βββ ) = ((β̂ββ OLS−βββ )−ΣΣΣOLSa)′ΣΣΣ−1

OLS((β̂ββ OLS−βββ )−ΣΣΣOLSa)
+2β̂ββ

′
OLSa−2βββ

′a−a′ΣΣΣOLSa

and

− 1
2 (β̂ββ OLS−βββ )′ΣΣΣ−1

OLS(β̂ββ OLS−βββ )+ β̂ββ
′
OLSa =− 1

2 ((β̂ββ OLS−βββ )−ΣΣΣOLSa)′ΣΣΣ−1
OLS((β̂ββ OLS−βββ )−ΣΣΣOLSa)

+βββ
′a+ 1

2 a′ΣΣΣOLSa
(14)

which then implies that

E[2a′(β̂ββ OLS−βββ )exp(a′(β̂ββ OLS−βββ ))]

= E[2a′β̂ββ OLSexp(a′(β̂ββ OLS−βββ ))−2a′βββ exp(a′(β̂ββ OLS−βββ ))]

= 2a′ exp(−a′βββ )E[β̂ββ OLSexp(a′β̂ββ OLS)]−2a′βββ exp(−a′βββ )E[exp(a′β̂ββ OLS)]

= 2a′ exp(−a′βββ )
∞∫
−∞

. . .

∞∫
−∞

β̂ββ OLSexp(a′β̂ββ OLS) f
β̂ββ OLS

(β̂ββ OLS)dβ̂ββ OLS−2a′βββ exp(−a′βββ )M
β̂ββ OLS

(a)

= 2a′ exp(−a′βββ )

{ ∞∫
−∞

. . .

∞∫
−∞

β̂ββ OLS exp(a′β̂ OLS)(2π)
−k
2 |ΣΣΣOLS|

−1
2

exp[−1
2
(β̂ββ OLS−βββ )′ΣΣΣ−1

OLS(β̂ββ OLS−βββ )]dβ̂ββ OLS

}
−2a′βββ exp(−a′βββ )exp(βββ ′a+

1
2

a′ΣΣΣOLSa)
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= 2a′ exp(−a′βββ )

{ ∞∫
−∞

...

∞∫
−∞

β̂ββ OLS(2π)
−k
2 |ΣΣΣOLS|

−1
2

exp[−1
2
(β̂ββ OLS−βββ )′ΣΣΣ−1

OLS(β̂ββ OLS−βββ )+a′β̂ββ OLS]dβ̂ββ OLS

}
−2a′βββ exp(βββ ′a+

1
2

a′ΣΣΣOLSa−a′βββ )

= 2a′ exp(−a′βββ ){ ∞∫
−∞

. . .

∞∫
−∞

β̂ββ OLS(2π)
−k
2 |ΣΣΣOLS|

−1
2 exp

[
− 1

2
(β̂ββ OLS−βββ −ΣΣΣOLSa)′ΣΣΣ−1

OLS(β̂ββ OLS−βββ −ΣΣΣOLSa)+

βββ
′a+

1
2

a′ΣΣΣOLSa
]
dβ̂ββ OLS

}
−2a′βββ exp(

1
2

a′ΣΣΣOLSa), from equation (14)

= 2a′ exp(−a′βββ )

{ ∞∫
−∞

...

∞∫
−∞

β̂ββ OLS(2π)
−k
2 |ΣΣΣOLS|

−1
2

exp
[
− 1

2
((β̂ββ OLS−βββ )−ΣΣΣOLSa)′ΣΣΣ−1

OLS((β̂ββ OLS−βββ )−ΣΣΣOLSa)
]
dβ̂ββ OLS

}

exp(βββ ′a+
1
2

a′ΣΣΣOLSa)−2a′βββ exp(
1
2

a′ΣΣΣOLSa)

= 2a′ exp(−a′βββ )
(

exp(βββ ′a+
1
2

a′ΣΣΣOLSa)E(β̂ββ OLS)

)
−2a′βββ exp(

1
2

a′ΣΣΣOLSa)

= 2a′ exp(
1
2

a′ΣΣΣOLSa)(βββ +ΣΣΣOLSa)−2a′βββ exp(
1
2

a′ΣΣΣOLSa)

= 2a′βββ exp(
1
2

a′ΣΣΣOLSa)+2a′ΣΣΣOLSaexp(
1
2

a′ΣΣΣOLSa)−2a′βββ exp(
1
2

a′ΣΣΣOLSa)

= 2a′ΣΣΣOLSaexp(
1
2

a′ΣΣΣOLSa)

where use is made of the fact that E(β̂ββ OLS) =
∞∫
−∞

...
∞∫
−∞

β̂ββ OLS f
β̂OLS

(β̂ββ OLS) dβ̂ββ OLS.

Therefore, it follows from above and equation (13) that

E(Z2) = b2
{

a′ΣΣΣOLSa+exp(2a′ΣΣΣOLSa)−2exp(
1
2

a′ΣΣΣOLSa)

−2a′ΣΣΣOLSaexp(
1
2

a′ΣΣΣOLSa)+1
}
. (15)

Hence, from equations (12) and (15), the approximated risk function of the OLS estimator under the
BLINEX risk function is
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ℜBLINEX (β̂ββ OLS;βββ )

=− 1
λ
[E(Z)+E(Z2)+O(3)]

∝− 1
λ
[b(−exp(

1
2

a′ΣΣΣOLSa)+1)+b2(a′ΣΣΣOLSa+exp(2a′ΣΣΣOLSa)−2exp(
1
2

a′ΣΣΣOLSa)

−2a′ΣΣΣOLSaexp(
1
2

a′ΣΣΣOLSa)+1)]. (16)

3.2.2. Risk functions of GLS and FGLS estimators

It follows similarly to the approach used in deriving the OLS risk, that the approximated GLS risk
under the BLINEX loss is given by

ℜBLINEX (β̃ββ GLS;βββ )

=− 1
λ
[E(Z)+E(Z2)+O(3)]

∝− 1
λ
[b(−exp(

1
2

a′ΣΣΣGLSa)+1)+b2(a′ΣΣΣGLSa+exp(2a′ΣΣΣGLSa)−2exp(
1
2

a′ΣΣΣGLSa)

−2a′ΣΣΣGLSaexp(
1
2

a′ΣΣΣGLSa)+1)] (17)

and from equation (17) the approximated risk expression for the FGLS estimator under BLINEX is
given by

ℜBLINEX (β̂ββ FGLS;βββ )

∝− 1
λ
[b(−exp(

1
2

a′ΣΣΣFGLSa)+1)+b2(a′ΣΣΣFGLSa+exp(2a′ΣΣΣFGLSa)−2exp(
1
2

a′ΣΣΣFGLSa)

−2a′ΣΣΣFGLSaexp(
1
2

a′ΣΣΣFGLSa)+1)]. (18)

3.2.3. Risk function of PTE

It then follows from equations (16), (18) and (9) that the approximated pretest estimator risk function
under the BLINEX for a specified level of significance, η , is given by

ℜBLINEX (β̂ββ PT E ;βββ )

= E

[
1
λ

(
1− 1

1+b[exp(a′(β̂ββ PT E−βββ ))−a′(β̂ββ PT E−βββ )−1]

)]

= E

[
1
λ

(
1− 1

1+b[exp(a′(β̂ββ PT E−βββ ))−a′(β̂ββ PT E−βββ )−1]

)
|H0

]
P(d > dη)

+E

[
1
λ

(
1− 1

1+b[exp(a′(β̂ββ PT E−βββ ))−a′(β̂ββ PT E−βββ )−1]

)
|H1

]
P(d ≤ dη)
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= ℜBLINEX (β̂ββ OLS;βββ )(1−η)+ℜBLINEX (β̂ββ FGLS;βββ )η

∝

{
− 1

λ
[b(−exp(

1
2

a′ΣΣΣOLSa)+1)+b2(a′ΣΣΣOLSa+exp(2a′ΣΣΣOLSa)−2exp(
1
2

a′ΣΣΣOLSa)

−2a′ΣΣΣOLSaexp(
1
2

a′ΣΣΣOLSa)+1)]
}
(1−η)+{

− 1
λ
[b(−exp(

1
2

a′ΣΣΣFGLSa)+1)+b2(a′ΣΣΣFGLSa+exp(2a′ΣΣΣFGLSa)−2exp(
1
2

a′ΣΣΣFGLSa)

−2a′ΣΣΣFGLSaexp(
1
2

a′ΣΣΣFGLSa)+1)]
}

η .

We now turn to the numerical analysis of the risk functions.

4. The Monte Carlo simulation

The data used for the Monte Carlo experiment were generated by the single explanatory variable
model

Yt = β1 +β2Xt +ut

where Xt = exp(0.04t)+wt , wt ∼N(0,0.0009), ut = ρut−1+et , et ∼N(0,0.0036), t = 1,2, ...,T and
β = (β1,β2) = (1,1). This specification of the X′s with a trend component was used in a study by
Beach and Mackinnon (1978). The results are presented for two sample sizes, T = 20 and T = 50,
and we consider ten values of ρ varying by tenths from 0.0 to 0.9. N = 1000 replications of the
experiment were used.
The estimators compared are: the ordinary least squares (OLS), the Durbin estimator (DE), and Max-
imum Likelihood estimator (MLE), a pretest estimator choosing between OLS and DE, (DEPTE)
and a pretest estimator choosing between OLS and MLE, (MLEPTE). Following Fomby and Guilkey
(1978) we only consider α = 0.5 for the pretest, since they found this to be the optimal level of
significance. The exact critical values for the Durbin-Watson test are obtained by making use of
simulations.
The risks for any of the estimator β̂ββ relative to the LINEX and BLINEX loss, respectively, are
calculated by

ℜLINEX (β̂ββ ;βββ ) =
1
N

N
∑
j=1

c
(

exp[a′(β̂ββ j−βββ )]−a′(β̂ββ j−βββ )−1
)

ℜBLINEX (β̂ββ ;β )β )β ) =
1
N

N
∑
j=1

1
λ

[
1− 1

1+b[exp(a′(β̂ββ j−βββ ))−a′(β̂ββ j−βββ )−1]

]

and normalised by dividing by the GLS risks ℜ(β̃ββ GLS;βββ ) to obtain the relative risks. That is, the
estimator risks are evaluated relative to the GLS risk, which is best linear unbiased estimator under
serial correlation and therefore makes a good reference for other estimators performance as we
expect it to strictly dominate all estimators over the entire range of ρ . Thus, for any estimator,
the closer the relative risk to unity, the better the performance of that estimator relative to GLS
estimator. Comparisons of the risks in terms of relative risks also makes it easier for comparability
across the different loss functions. The loss parameter combinations used in the simulation are
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a = (−0.5,−0.5) c = 1,a = (−3,−3) c = 1 and a = (−8,−8) c = 1 for the LINEX loss and a =

(−0.5,−0.5), b = 2, λ = 0.2 and a = (−3,−3), b = 0.0002,λ = 0.2 for the BLINEX loss. All
computations were done in the SAS 9.2 package.

5. Numerical evaluations and discussion

The results of our analysis are summarised in Tables 1 and 2 and Figures 1 and 2. The results sug-
gest that some of the key results under the symmetric SE loss as reported in the literature continue
to hold as the degree of loss asymmetry increases. In particular, the risks of all estimators increases
with ρ and the relative ordering of the estimators performances remains the same as the degree of
loss asymmetry varies. Generally, the DEPTE is preferable for small sample size T=20, while the
MLEPTE performs the best for T=50. Furthermore, the risks of the FGLS estimators and their cor-
responding pretest estimators decreases and converge as the sample size increases, a result which is
consistent with findings by Judge et al. (1985) on the asymptotic properties of the FGLS estimators.
We also find that the risks of the pretest estimators are quite robust to loss asymmetry for small to
medium values of ρ . For large values of ρ , however, the risks are generally decreasing as the degree
of loss asymmetry increases. This is clearly illustrated in Figure 1 for the DEPTE risks under the
LINEX loss and Figure 2 for the MLEPTE risks under the BLINEX loss. Hence, we note that for
larger values of ρ , the risk gains of the pretest estimators over the OLS increases with higher loss
asymmetry. That is, when there is a sufficient degree of asymmetry, the benefits of preliminary test
estimation under asymmetry loss are even more.

Table 1: Relative risk function values under the LINEX loss.

T = 20 T = 50
Loss param-
eters

Estimator ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9 ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9

a=(-0.5,-0.5) OLS 1.000 1.035 1.118 1.221 1.000 1.011 1.045 1.153
c=1 DE 1.011 1.019 1.036 1.091 1.001 1.004 1.008 1.032

MLE 1.014 1.024 1.043 1.088 1.000 1.003 1.006 1.023
DEPTE 1.000 1.015 1.036 1.091 1.001 1.004 1.008 1.032
MLEPTE 1.001 1.021 1.043 1.088 1.000 1.003 1.006 1.023

a=(-3,-3) OLS 1.000 1.034 1.118 1.220 1.000 1.011 1.044 1.148
c=1 DE 1.010 1.018 1.034 1.086 1.001 1.004 1.008 1.028

MLE 1.013 1.023 1.041 1.085 1.001 1.003 1.006 1.020
DEPTE 1.000 1.014 1.035 1.086 1.001 1.004 1.008 1.028
MLEPTE 1.001 1.020 1.041 1.084 1.000 1.003 1.006 1.020

a=(-8,-8) OLS 1.000 1.035 1.122 1.239 1.000 1.011 1.043 1.148
c=1 DE 1.009 1.017 1.032 1.077 1.002 1.005 1.009 1.021

MLE 1.013 1.022 1.038 1.082 1.001 1.004 1.007 1.013
DEPTE 1.000 1.013 1.033 1.077 1.001 1.005 1.009 1.021
MLEPTE 1.001 1.019 1.037 1.082 1.000 1.003 1.007 1.013
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Table 2: Relative risk function values under the BLINEX loss.

T = 20 T = 50
Loss param-
eters

Estimator ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9 ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9

a=(-0.5,-0.5) OLS 1.000 1.034 1.118 1.219 1.000 1.011 1.045 1.152
b=2 DE 1.011 1.019 1.036 1.090 1.001 1.004 1.008 1.032
λ=0.2 MLE 1.014 1.024 1.043 1.088 1.000 1.003 1.006 1.023

DEPTE 1.000 1.015 1.036 1.090 1.001 1.004 1.008 1.032
MLEPTE 1.001 1.021 1.042 1.088 1.000 1.003 1.006 1.023

a=(-3,-3) OLS 1.000 1.034 1.118 1.220 1.000 1.011 1.044 1.148
b=0.0002 DE 1.010 1.018 1.034 1.086 1.001 1.004 1.008 1.028
λ=0.2 MLE 1.013 1.023 1.041 1.085 1.001 1.003 1.006 1.020

DEPTE 1.000 1.014 1.035 1.086 1.001 1.004 1.008 1.028
MLEPTE 1.001 1.020 1.041 1.084 1.000 1.003 1.006 1.020

Figure 1: Relative risk functions for the Durbin pretest estimator under LINEX loss.

6. Numerical example

As an illustration, we consider the South African annual data on aggregate household consumption
expenditure and aggregate household disposable income for the period 1946-1990, obtained from the
South African Reserve Bank website. The aggregate household consumption function, explained in
most macroeconomic introductory textbooks is estimated empirically to determine the household
consumption behavior for the South African economy over the period 1946-1990, emphasising the
use of the serial correlation pretest estimator and consideration for asymmetry loss in empirical
work.
Keynes (1936) believed that real consumption expenditure is highly dependent on real disposable
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Figure 2: Relative risk functions for the Maximum likelihood pretest estimator under BLINEX loss.

income and his theory has resulted in the well known Keynesian consumption function

Ct = α +θYt +ωt (19)

where Ct is the real aggregate household consumption expenditure, Yt is the real aggregate household
disposable income and ωt is a vector of error terms. In economics theory, α is the autonomous
consumption or the minimum level of consumption and θ is the marginal propensity to consume,
which indicates the rate of change in real household consumption for a unit change in the real
household disposable income. According to Keynes theory of consumption, the MPC is positive
but less than unity, suggesting that an increase in real household disposable income will lead to
an increase in real household consumption, but this increase will be less than the increase in real
household income because a proportion of real disposable income is saved.

Since some more complex specification of equation (19), with more explanatory variables, could be
more realistic, we make a simplistic assumption that if there is serial correlation in the error terms it
is pure serial correlation, that is serial correlation is due to the natural sequential ordering of the data
and not due to the possible misspecification of the model.

Of interest here is the estimation of θ , the marginal propensity to consume, which generally plays
a role in economic stabilisation through some policy multipliers. For a discussion on this, see, for
example, van Zyl (1970). Simply put, for example, when a very large proportion of disposable
income is consumed, then θ is close to unity, and the aggregate saving rate is very low. In such a
scenario, in terms of the policy implications, on the fiscal side tax incentives can be used to curb
consumer demand and encourage savings, i.e. contributions to unit trusts and on the monetary side,
interest rates can be used to discourage spending by increasing the interest rates. Conversely, when
households consume too little of their disposable income compared to saving, θ is very small, then
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fiscal policy can be used to stimulate demand by decreasing tax rates while the monetary policy tool
would be to lower the interest rates. Accordingly, overestimation or underestimation of the marginal
propensity to consume, could lead to wrong policy decision. Thus, when estimating θ , depending
on which one has more severe consequences between overestimation and underestimation, it could
be more appropriate to find an estimator that is relatively more efficient relative to a performance
measure that allows for asymmetry. The direction of penalisation will then generally depend on the
economic conditions.

6.1. Empirical estimation

For estimation we use the log-linear model for equation (19). Using the OLS residuals, the Durbin-
Watson statistic d = 0.511 and the 50% exact critical value for the Durbin-Watson test d0.5 = 2.05.
Therefore, since the Durbin-Watson statistic, is less than the critical value, the null hypothesis H0 :
ρ = 0 is rejected, suggesting that the level of serial correlation in the error terms is significant. First,
we determine whether the first order autoregressive error process is the correct error generating
process. This is done by making use of the tentative order selection tests based on the smallest
canonical correlation (SCAN) and the extended sample autocorrelation function (ESACF) methods
as presented in Table 3 where p is the order of the autoregressive, d∗ is the order of integration, q is
the moving average order and noting that the ARMA orders are identified by choosing the minimum
Bayesian information criterion (BIC), see details in van Staden (2012). Table 3 shows that the OLS
residuals are compatible with the first order autoregressive process.

Table 3: ARMA(p+d∗,q) Tentative Order Selection Tests.

SCAN ESACF
p+d∗ q BIC p+d∗ q BIC

1 0 −7.26506 1 0 −7.26506
0 2 −6.82147 0 2 −6.82147

Since the level of serial correlation is significant, the preliminary test estimation strategy will choose
the FGLS estimator that corrects for serial correlation. It is however important to note that the
sampling properties of the pretest estimator will differ from those of the FGLS estimator. Since the
sampling distribution of the serial correlation pretest estimator has not been derived analytically, we
make use of the non-overlapping block bootstrap procedure with block length l=3 to estimate and
compare the standard errors and confidence intervals of the Durbin pretest estimator to OLS and
Durbin estimators. See Lahiri (2003) for a discussion on the block bootstrap technique.

The bootstrap estimates, standard errors and confidence interval lengths are presented in Table 4. The
OLS estimate of the slope coefficient has the least standard error and a narrower confidence interval.
This is to be expected because as we pointed out earlier, under serial correlation the standard errors
of the OLS coefficients are underestimated and consequently the confidence intervals are inaccurate.
Note that under serial correlation the sampling properties of the Durbin pretest estimator are closer
to those of its FGLS component, Durbin estimator.
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Table 4: Bootstrap estimates.

β̂OLS β̂DE β̂DEPT Eα=0.5

Slope coefficient 0.9851383 0.9840124 0.9840136

Standard error 0.0247173 0.0255237 0.0255249

95% confidence interval length 0.0968621 0.101243 0.101243

7. Conclusion

This paper extends the choice of the loss function used in comparing the estimators in models with
first order autoregressive error terms to asymmetry loss functions. The results of our analysis reaf-
firm that there are considerable risk gains by using the serial correlation pretest estimators. For
smaller to medium values of ρ , the risk performances of the pretest estimators are quite robust to
loss asymmetry. For larger values of ρ , on the other hand, the relative risks of the pretest estimators
decrease as the loss asymmetry increase and their risk gains over the OLS increases with higher loss
asymmetry.
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