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Summary: Krishnamoorthy and Mathew (2002) made use of a one-way random effects model to
analyse lognormally distributed data. They proposed the use of generalized confidence intervals and
generalized p-values (frequentist methods) when a balanced data set (an equal number of measure-
ments for each observational unit) was available. Their method was demonstrated on occupational
exposure data. Harvey and van der Merwe (2014) developed a Bayesian approach, using objec-
tive prior distributions, to analyse the same situation as analysed by Krishnamoorthy and Mathew
(2002). Krishnamoorthy and Guo (2005) subsequently extended the generalized confidence intervals
and generalized p-value approaches to “unbalanced” data sets (unequal number of measurements for
each observational unit). Similarly, in this article the purpose is to extend the Bayesian approach in
Harvey and van der Merwe (2014) to unbalanced data. Several non-informative priors are evaluated.
Occupational exposure data is used for comparison. The Bayesian approach developed is applicable
to any one-way random effects model with lognormally distributed unbalanced data. Results from
this article indicate that the Bayesian approach is comparable to the frequentist approaches and in-
deed offers additional modelling ability.

1. Introduction

Lognormally distributed data occur frequently in practice. For example, in studies of the treatment
of the human immunodeficiency virus (HIV) important variables, such as the viral load, are often
found to be normally distributed after taking an appropriate log-transformation (Chu et al., 2010). In

1 Corresponding author.

AMS: 62C10



170 HARVEY & VAN DER MERWE

addition to the transformed data more closely resembling a normal distribution such data is assumed
to be lognormally distributed since the log-transformation is often used to stabilize variances when
modelling longitudinal data (see Li, Chu and Gallant (2006), Chu et al. (2005) and Lyles, Williams
and Chuachoowong (2001) for further discussions). Lognormally distributed data is not limited to
only HIV-related data. Another example of its occurrence is within occupational exposure research
(Finkelstein and Verma, 2001).

Many different methods have been proposed for the analysis of lognormally distributed data
from a one-way random effects model. For example, Krishnamoorthy and Mathew (2002) proposed
the one-way random effects model for the analysis of balanced and lognormally distributed occu-
pational exposure data (styrene exposures more specifically) measured on factory workers. Fifteen
random workers each had styrene exposures (in mg/m3) measured at 10 different time points. A
comprehensive discussion of occupational exposure data is beyond the scope of this article. The in-
terested reader is referred to the original articles by Krishnamoorthy and Mathew (2002) for a more
complete discussion as well as texts by Rappaport, Kromhout and Symanski (1993), Heerderik and
Hurley (1994), Lyles, Kupper and Rappaport (1997a) and Lyles, Kupper and Rappaport (1997b).

Krishnamoorthy and Mathew (2002) modelled the mean styrene exposure from a frequentist
point of view by means of generalized confidence intervals. Furthermore, they developed a gen-
eralized p-value approach that allowed them to test specific hypotheses regarding the occupational
exposure limit (OEL), specifically the probability of mean exposure exceeding the OEL. The OEL
is a pre-determined exposure threshold that has clinical significance (in some sense). This threshold
may differ depending on the clinical setting and usually represents the maximum level of exposure
that is deemed (according to clinical judgement) safe for any particular worker. It is not determined
in any way by the statistician or from the data itself. Refer to Lyles et al. (1997a) and Lyles et al.
(1997b) for a further discussion of the OEL within occupational exposure research. The concept of
an OEL is not restricted to occupational exposure data and similar thresholds exist within other re-
search fields. For example, in Chu et al. (2010) a similar threshold was applied that defined the level
at which an HIV positive patient became eligible for highly active antiretroviral therapy (HAART).
In insurance applications we may be interested in the probability of an insurance claim exceeding
a pre-specified boundary. It is, therefore, evident that the methods developed by Krishnamoorthy
and Mathew (2002) are not only applicable to occupational exposure research, but to any one-way
random effects model where the data have a lognormal distribution.

Harvey and van der Merwe (2014) proposed a Bayesian approach to analysing lognormally dis-
tributed data from a one-way random effects model. In their article they presented an objective
Bayesian approach for modelling the mean styrene exposure previously described and compared the
effect of several non-informative priors. It was shown that the Bayesian approach has several distinct
advantages over the generalized confidence intervals and generalized p-value approaches. The most
evident advantage is the flexibility of the Bayesian approach that allows for the modelling of mean
exposure for individual workers.

The previous examples and articles discussed considered the case of balanced data from a one-
way random effects model. The data were balanced in that there were an equal number of observa-
tions for each observational unit, i.e. for each worker. Unfortunately, the case of balanced data is
overly simplistic and unbalanced data (where every observational unit does not have the same num-
ber of measurements) is often encountered in practice. According to Lewsey, Gardiner and Gettinby
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(1997) unbalanced data is common and can arise due to any number of factors, such as equipment
failure, patients being lost to follow-up (in clinical trials) or even problems with data collection. For
example, in Littell, Stoup and Fruend (2002) in the chapter on Mixed Models unbalanced data from
a clinical trial performed in multiple trial centres (the observational units) was used and unbalancing
occurred simply due to the inability of every trial centre to recruit the same number of patients. For
a more detailed discussion on unbalanced data refer to Schafer and Graham (2002) and for more ex-
amples of the occurrence of unbalanced data refer to the illustrative examples in Liao, Lin and Iyer
(2005). The analysis of unbalanced data will in turn require an analysis framework that specifically
accounts for the unequal number of observations (Lewsey et al., 1997).

It was for this reason that Krishnamoorthy and Guo (2005) extended the generalized confidence
intervals and generalized p-values approaches to account for unbalanced data. However, in all other
respects the problem-statement was the same as in Krishnamoorthy and Mathew (2002).

The purpose of this article is to extend the methods presented in Harvey and van der Merwe
(2014) to the situation where we have unbalanced data. In other words, we will develop an objective
Bayesian framework to model unbalanced lognormally distributed data from a one-way random ef-
fects model. In order to complete the Bayesian specification of the model suitable prior distributions
have to be derived and their performance compared. This forms a large part of this article. The
selection and determination of non-informative priors in multi-parameter settings is not an easy task
and it has been observed that the selection of a specific prior distribution could have unexpectedly
dramatic effects on the posterior distribution. We will consider the Reference prior (Berger and
Bernardo, 1992) and the Probability-Matching prior (Datta and Ghosh, 1995). The effectiveness of
the proposed prior distributions will be compared.

Lastly, the Bayesian methods developed here are not unique to occupational exposure research.
However, in order to aid comparison with the generalized confidence intervals and generalized p-
value approaches in Krishnamoorthy and Guo (2005) all derivations will be made assuming the same
occupational exposure context.

2. Description of the setting

The setting for this article is similar to the setting described in Harvey and van der Merwe (2014).
The point of departure, conceptually, is that the data now is unbalanced. In Harvey and van der
Merwe (2014) the data represented the amount of exposure to a particular agent and for each worker
there were exactly the same number of observations. In the unbalanced case we have an unequal
number of observations for each worker (the mechanism by which this “missing” data is generated
is not of interest in this article). Even though this is a minor conceptual change all derivations of
priors and posterior distributions would necessarily change.

Therefore, in the unbalanced case we have the diagrammatic representation of the data shown in
Table 1.

Let Xi j represent the j-th shift-long exposure measurement for the i-th worker, where j = 1, . . . ,ni

and i = 1, . . . ,k. Therefore, there are ni measurements for the i-th worker, which results in the
“unbalanced” nature of the data. The Xi j are lognormally distributed and therefore Yi j = ln(Xi j)
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Table 1: Representation of shift exposure data.

Shift-long exposure measurements
Worker 1 2 . . . ni

1 x11 x12 . . . x1n1

2 x21 x22 . . . x2n2
...

...
...

. . .
...

k xk1 xk2 . . . xknk

are normally distributed. The situation can be represented by the following one-way random effects
model:

Yi j = µ + τi + ei j, i = 1, . . . ,k; j = 1, . . . ,ni,

where µ is the general mean, τi ∼ N
(
0,σ2

τ

)
and ei j ∼ N

(
0,σ2

e
)
. All the random variables are

independent of each other and here τi represents the random effect due to the i-th worker.
Given the lognormal distribution of the Xi j,

µxi = E (Xi j|τi) = E (exp [Yi j] |τi) = exp
(

µ + τi +
σ2

e /2

)
and µxi is the mean exposure for the i-th worker. Note that ln(E(Xi j|τi)) = µ + τi +σ2

e /2. Further-
more, τi is unknown but we do know that τi∼ N

(
0,σ2

τ

)
and therefore, ln(E(Xi j))∼ N

(
µ +σ2

e /2,σ2
τ

)
.

Let θ denote the probability that µxi exceeds the OEL. Thus, θ = P(µxi > OEL) = P(ln(µxi) >

ln(OEL)) = 1−Φ
({

ln(OEL)−µ−σ2
e /2
}
/στ

)
, where Φ(·) denotes the c.d.f. of the standard

normal distribution. The hypothesis of interest is:

H0 : θ ≥ A vs. H1 : θ < A,

where A is a specific quantity that is usually small (usually between 0.1 and 0.01), according to
Krishnamoorthy and Guo (2005). Based on our earlier definition of θ it is evident that the above
hypothesis (for a given value of A) is equivalent to the following:

H0 : µ + Z1−Aστ +
1
2 σ2

e ≥ ln(OEL) vs. H1 : µ + Z1−Aστ +
1
2 σ2

e < ln(OEL)

where Z1−A denotes the 100(1−A)-th percentile of the standard normal distribution. For a given
significance level α , the null hypothesis will be rejected if a 100(1−α)% upper confidence limit for
µ + Z1−Aστ +

1
2 σ2

e is less than ln(OEL).
Table 2 is an example of a data set of simulated “styrene exposures.” This data set is the same

as the data set used in Harvey and van der Merwe (2014), except that observations have been re-
moved at random, resulting in an “unbalanced”design. Removing observations at random to create
an unbalanced design is an accepted practice in literature (refer to the examples given in Liao et al.
(2005)). This simulated data set was used instead of real data to enable simple comparison to the
results obtained for the balanced design in Harvey and van der Merwe (2014). It was simulated to
represent the data used in Krishnamoorthy and Mathew (2002), given that only certain sufficient
statistics were presented in their article and not the complete data set. This data will serve as a basis
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Table 2: Simulated styrene exposures.

Shift-long exposures
Worker 1 2 3 4 5 6 7 8 9 10

1 95.6 64.7 50.9 87.4 82.3 149.9 33.4 77.5 70.8 60.9
2 57.4 82.3 174.2 107.8 98.5 129 121.5 95.6 92.8 133
3 84.8 214.9 79.8 169 149.9 164 84.8 84.8 114.4
4 68.7 77.5 54.1 41.3 64.7 46.5 59.1 45.2 54.1
5 114.4 101.5 49.4 101.5 90 52.5 114.4 79.8 68.7 87.4
6 87.4 242.3 145.5 133 174.2 214.9 137 129 169 179.5
7 54.1 75.2 84.8 55.7 90 70.8 60.9 101.5 64.7 95.6
8 64.7 95.6 57.4 95.6 82.3 101.5 92.8 60.9 101.5 98.5
9 137 208.5 92.8 159.2 92.8 82.3 90
10 125.2 87.4 121.5 90 154.5 107.8 117.9 179.5 129 129
11 42.5 73 50.9 59.1 49.4 66.7
12 57.4 68.7 59.1 64.7 55.7 92.8 42.5
13 101.5 149.9 111.1 77.5 111.1 84.8 64.7 62.8
14 68.7 101.5 111.1 179.5 82.3 174.2 174.2 87.4 145.5 114.4
15 121.5 77.5 145.5 174.2 77.5 92.8 159.2 129 104.6 77.5

for discussion in this article and will help us define and illustrate the objectives of the article. An
example based on real data is given later in this article. Table 2 represents the Xi j data points, from
which the Yi j = ln(Xi j) can easily be obtained.

From these data we have the following definitions and associated results (these results will be
used in all subsequent applications and examples):

k = 15

ν1 =
k
∑

i=1
(ni−1) ; ν2 = k−1

Ȳi• =
1
ni

Yi• =
1
ni

ni
∑
j=1

Yi j = [4.3 4.7 4.8 4.0 4.4 5.0 4.3 4.4 4.8 4.9 4.0 4.1 4.5 4.8 4.7]
′

ni = [10 10 9 9 10 10 10 10 7 10 10 6 7 8 10 10]
′

Ȳ•• = 1
k

k
∑

i=1
Ȳi• = 4.508

SSe = ν1m1 =
k
∑

i=1

ni
∑
j=1

(Yi j− Ȳi•)
2
= 10.492 = “within workers sum of squares”

SSτ = ν2m2 =
k
∑

i=1
ni(Ȳi•− Ȳ••)

2
= 11.885 = “between workers sum of squares.”

3. Bayesian methodology

The basis for analysing any situation from a Bayesian perspective is the following relationship, a
well-known result of Bayes’ theorem: Posterior ∝ Likelihood × Prior. The likelihood function (in
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matrix form) is given by:

L
(
µ,τττ,σ2

e ,σ
2
τ |Y
)
=
(
2πσ

2
e
)− 1

2 ñ
exp
{
− 1

2σe prior2 (Y− µ1−Zτττ)′ (Y− µ1−Zτττ)

}
×

(
2πσ

2
τ

)− 1
2 k

exp
{
− 1

2σ2
τ

τττ
′
τττ

}
, (1)

where ñ =
k
∑

i=1
ni, τττ ′ =

[
τ1 τ2 . . . τk

]
, µ1 = [µ µ · · · µ]

′
,

Z′ñ ×k =


11 12 · · · 1n1

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

0 0 · · · 0
11 12 · · · 1n2
...

...
. . .

...
0 0 · · · 0

· · · 0 0 · · ·
· · · 0 0 · · ·
. . .

...
...

. . .
· · · 11 12 · · ·

0
0
...

1nk


and Y =

[
y11 y12 · · · y1n1 · · · yk1 yk2 · · · yknk

]′
.

Now, we already know, from the specification of the random effects model, that τi ∼ N
(
0,σ2

τ

)
with i = 1, 2, . . . , k. Since this is the case we would, therefore, like to define prior distributions for
µ , σ2

e and σ2
τ . To simplify the mathematical derivations (since the posterior can then be expressed

in hierarchical form) we will define the quantity

r̃ = σ2
τ

σ2
e

and then define prior distributions in terms of µ , σ2
e and r̃ instead. In order to derive prior distri-

butions we first need to derive the integrated likelihood function, L
(
µ,σ2

e ,σ
2
τ |Y
)

for the following
model:

Y = µ1+Zτττ + e,

where e ∼ N
(
0,σ2

e Iñ
)

and τττ ∼ N
(
0,σ2

τ Ik
)
. This is given by the following:

L
(
µ,σ2

e ,σ
2
τ |Y
)

∝
(
σ

2
e
)− 1

2 (ñ−k) k

∏
i=1

(
1

niσ2
τ + σ2

e

) 1
2

exp

{
−1

2

[
ν1m1

σ2
e

+
k

∑
i=1

ni(ȳi•− µ)2

niσ2
τ + σ2

e

]}
. (2)

For sake of brevity only the necessary results are shown here. Full derivations with intermediate
results can be found in Harvey (2012). Now, if r̃ = σ2

τ

σ2
e

then it follows that:

L
(
µ,σ2

e , r̃|Y
)

∝
(
σ

2
e
)− 1

2 ñ k

∏
i=1

(
1

nir̃+ 1

) 1
2

exp

{
− 1

2σ2
e

[
ν1m1 +

k

∑
i=1

ni(ȳi•− µ)2

nir̃+ 1

]}
. (3)

In this article, two non-informative priors are compared, namely the Probability-matching and
Reference priors. These priors often lead to procedures with good frequentist properties while re-
taining the Bayesian flavour. The fact that the resulting posterior intervals of level 1−α are also
good frequentist intervals at the same level is a very desirable situation. An in-depth discussion of
the nature and merits of the Reference and Probability-matching priors lies outside the scope of this
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article, but the interested reader should consult Berger and Bernardo (1992) as well as Datta and
Ghosh (1995).

The Probability-Matching prior for the parameters
(
µ, r̃,σ2

e
)

is given by:

P
(
µ, r̃,σ2

e
)

∝
1

σ2
e

 k

∑
i=1

n2
i

(1+ r̃ni)
2 −

1
n

(
k

∑
i=1

ni

1+ r̃ni

)2


1
2

. (4)

The Reference prior for the parameter groupings
(
µ, r̃,σ2

e
)
,
(
r̃, µ,σ2

e
)

and
(
r̃,σ2

e , µ
)

is given
by:

PR1

(
µ, r̃,σ2

e
)

∝
1

σ2
e

 k

∑
i=1

n2
i

(1+ r̃ni)
2 −

1
ñ

(
k

∑
i=1

ni

1+ r̃ni

)2


1
2

. (5)

This is coincidentally the same as the Probability-Matching prior and therefore, the Probability-
Matching prior is also the Reference prior for these specific parameter orderings.

The Reference prior for the parameter groupings
(
µ,σ2

e , r̃
)
,
(
σ2

e ,µ, r̃
)

and
(
σ2

e , r̃,µ
)

is given by:

PR2

(
µ, σ

2
e , r̃

)
∝

1
σ2

e

{
k

∑
i=1

n2
i

(1+ r̃ni)
2

} 1
2

. (6)

It should be evident that if we substitute n1 = n2 = . . . = nk = n and ñ = kn in Equations (5)
and (6), i.e. assume we have the balanced case and if we transform r̃ back to σ2

τ , then Equations (5)
and (6) become the Jeffreys Independence priors as used in Harvey and van der Merwe (2014).

3.1. Joint posterior distribution for µ , σ2
e and r̃

We are now able to examine the distribution of the posterior distribution of µ ,σ2
e and r̃. This is based

on the previous derivations. From the formulation of the Bayesian model we know the following:

p
(
µ, σ2

e , r̃| Y
)

∝ L
(
µ, σ2

e , r̃ | Y
)

p
(
µ, σ2

e , r̃
)
,

where

L
(
µ,σ2

e , r̃|Y
)

∝
(
σ2

e
)− 1

2 ñ k
∏
i=1

(
1

ni r̃+ 1

) 1
2

exp
{
− 1

2σ2
e

[
ν1m1 +

k
∑

i=1

ni(ȳi•− µ)2

ni r̃+ 1

]}
.

If we use the Probability-Matching prior as defined by Equation (4), which is the same as the
Reference prior for the first ordering of parameters as described in Equation (5), then the joint
posterior distribution is given by:

PR1

(
µ, r̃,σ2

e |Y
)

∝

(
1

σ2
e

) 1
2 (ñ+2) k

∏
i=1

(
1

nir̃+ 1

) 1
2
× exp

{
− 1

2σ2
e

[
ν1m1 +

k

∑
i=1

ni(ȳi•− µ)2

nir̃+ 1

]}

×

 k

∑
i=1

n2
i

(1+ r̃ni)
2 −

1
n

(
k

∑
i=1

ni

1+ r̃ni

)2


1
2

, (7)
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where ν1m1 = SSE =
k
∑

i=1

ni
∑
j=1

(yi j− ȳi•)
2.

From Equation (7) it follows that the joint posterior can be expressed hierarchically as

PR1

(
µ, r̃,σ2

e |Y
)
= p

(
µ|Y, r̃,σ2

e
)
× p

(
σ2

e |r̃, Y
)
× p(r̃| Y),

where

µ|Y, r̃,σ2
e ∼ N

µ̂ , σ
2
e

(
k

∑
i=1

ni

1+ r̃ni

)−1
 (8)

and

µ̂ =

k

∑
i=1

ȳi•
ni

1+ r̃ni
k

∑
i=1

ni

1+ r̃ni

.

In addition,

PR1

(
σ

2
e |r̃, Y

)
= K1

(
1

σ2
e

) 1
2 (ñ+1)

exp

{
− 1

2σ2
e

[
ν1m1 +

k

∑
i=1

ni(ȳi•− µ̂)2

nir̃+ 1

]}
, (9)

which is an inverse Gamma distribution. Furthermore, we know that

K1 =

{
1
2

[
ν1m1 +

k
∑

i=1

ni(ȳi•− µ̂)2

ni r̃+ 1

]} 1
2 (ñ−1)

and

PR1 (r̃|Y) ∝

k

∏
i=1

(
1

nir̃+1

) 1
2
×

(
k

∑
i=1

ni

1+ r̃ni

)− 1
2

×

 k

∑
i=1

n2
i

(1+ r̃ni)
2 −

1
n

(
k

∑
i=1

ni

1+ r̃ni

)2


1
2

×

[
ν1m1 +

k

∑
i=1

ni(ȳi− µ̂)2

nir̃+1

]− 1
2 (n−1)

. (10)

If we use the alternate ordering for parameters as described in Equation (6) we find that the joint
posterior distribution has the same hierarchical structure, except that

PR2 (r̃|Y) ∝

k

∏
i=1

(
1

nir̃+1

) 1
2
×

(
k

∑
i=1

ni

1+ r̃ni

)− 1
2

×

(
k

∑
i=1

n2
i

(1+ r̃ni)
2

) 1
2

×

[
ν1m1 +

k

∑
i=1

ni(ȳi•− µ̂)2

nir̃+1

]− 1
2 (n−1)

, (11)

where 0 < r̃ < ∞.
Figure 1 depicts these two posterior distributions. Furthermore, the posterior distribution of

µ + τi (the mean of the i-th worker in the data set) given σ2
e and r̃ is normal with the following mean

and variance:
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*For further details see Harvey (2012) and van der Merwe, Pretorius and Meyer (2006).

Figure 1: Two Reference priors. Reference prior 1 (solid) and Reference prior 2 (dashed).

E
{
(µ + τi) | Y , σ2

e , r̃
}
= r̃ ni

1+r̃ni
ȳi•+

1
1+r̃ni

µ̂

and

Var
{
(µ + τi) | Y , σ2

e , r̃
}
= σ2

e
1+r̃ni

{
r̃+ 1

1+r̃ni

(
k
∑

i=1

ni
1+r̃ni

)−1
}

.

From the above it follows that

µ + τi +
1
2 σ2

e | Y , σ2
e , r̃

is normally distributed with mean

E
{(

µ + τi +
1
2

σ
2
e

)
| Y , σ

2
e , r̃

}
=

r̃ ni

1+ r̃ni
ȳi•+

1
1+ r̃ni

µ̂ +
1
2

σ
2
e (12)

and variance

Var
{(

µ + τi +
1
2

σ
2
e

)
| Y , σ

2
e , r̃

}
=

σ2
e

1+ r̃ni

r̃+
1

1+ r̃ni

(
k

∑
i=1

ni

1+ r̃ni

)−1
 . (13)

Now, we are interested in the posterior distribution of

exp
(

µ + τi +
σ2

e /2

)
, (14)

for i = 1, 2, . . . , k, in other words, for each worker.
Given σ2

e and r̃ we can now simulate from Equation (14) by simulating from a normal distribu-
tion with mean and variance specified by Equations (12) and (13) respectively. Using these results
we are able to simulate and test hypotheses for individuals (e.g. individual workers). The results
will be presented in later sections.
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3.2. Procedure for simulation study

The purpose of this article is to describe the behaviour of the various prior distributions in the setting
described earlier. Although detailed descriptions will be given in relevant sections, here we offer a
broad description of the simulation of σ2

e and r̃ values from the distributions obtained in previous
sections, including the final simulation of µ , which will ultimately enable the simulation of quantities
such as those defined by Equation (14). The simulation procedure can be described broadly as
follows:

1. Simulate a value of r̃ using either Equation (10) or (11), based on the choice of prior distri-
bution. Since neither Equation (10) nor Equation (11) is a known distribution and cannot be
solved in closed form the use of the Rejection method as described in Rice (1995) will be
used.

2. Each value of r̃ simulated in the previous step will then be substituted into Equation (9) to
simulate a value of σ2

e . In this case the distribution is of a known form, i.e. an Inverse Gamma
distribution, and therefore we can simulate σ2

e by making use of the fact that:{
1

σ2
e

[
ν1m1 +

k
∑

i=1

ni(ȳi•− µ̂)2

ni r̃+ 1

]}
∼ χ2

n−1.

It follows that a simulated value of σ2
e can be obtained from the equation

1
χ2

n−1

{[
ν1m1 +

k
∑

i=1

ni(ȳi•− µ̂)2

ni r̃+ 1

]}
= σ2

e .

Using the values of σ2
e and r̃ simulated in the previous steps we can simulate values of µ (if

desired) from Equation (8). All the desired quantities are based on these variables in some manner.

4. An upper confidence bound and test for the overall mean ex-
posure

In Krishnamoorthy and Guo (2005) one of the primary interests is testing the hypothesis of whether
the occupational exposure in an individual (discussed previously in Equations (12) and (13)) or
group of workers exceeds a pre-specified threshold. If we consider making inferences about the total
group, we are interested in the distribution of the overall mean exposure, which for this unbalanced
case can be represented as:

µx = exp
{

µ +
σ2

e

2
(r̃+ 1)

}
= eθ . (15)

Now we know from Equation (8) that

µ|Y, r̃,σ2
e ∼ N

(
µ̂ , σ2

e

(
k
∑

i=1

ni
1+r̃ni

)−1
)

and therefore,
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θ = µ + σ2
e

2 (r̃+ 1) |Y, r̃,σ2
e ∼ N (E (θ) , Var (θ))

is normally distributed with the following mean and variance:

E (θ) = E
{

µ +
σ2

e

2
(r̃+ 1) |Y, r̃,σ2

e

}
= µ̂ +

σ2
e

2
(r̃+ 1) , (16)

Var (θ) = Var
{

µ +
σ2

e

2
(r̃+ 1) |Y, r̃,σ2

e

}
= σ

2
e

(
k

∑
i=1

ni

1+ r̃ni

)−1

. (17)

Thus, given r̃ and σ2
e we simulate θ from a normal distribution with mean and variance defined

by Equations (16) and (17) and substitute this into Equation (15). We then repeat this process
l (= 100000) times.

Additionally Krishnamoorthy and Guo (2005) also simulated the following parameter (and in-
ference regarding this variable will be made using the Bayesian methodology developed previously):

ξ = µ + Z1−Aστ +
1
2 σ2

e ,

where A is a suitably chosen parameter between 0 and 1 and Z1−A denotes the 100(1−A)-th per-
centile of the standard normal distribution. Using a specific value of OEL the following hypothesis
can be tested:

H0 : ξ ≥ ln(OEL),

against the alternative hypothesis

H1 : ξ < ln(OEL).

For example, if our choice of A is 0.05 then essentially we are testing (one-sided) whether at least
5% of the workers have mean exposure levels in excess of the chosen OEL. In practice the OEL is
chosen to be a clinically relevant value. The specific choice of OEL is not the primary concern of
this research and has previously been discussed.

In order to replicate the methodology of Krishnamoorthy and Guo (2005) from a Bayesian per-
spective the simulation study was performed for a range of values of OEL and A.

Let ξ = µ + σe(Z1−Ar̃1/2 +σe/2). This representation is the same as the earlier definition of ξ ,
re-written for convenience in terms of σe and r̃ instead of σ2

e and στ . We know from Equation (8)
that ξ | Y, r̃,σ2

e is normally distributed with:

E
{

ξ | Y, r̃,σ2
e
}
∼ µ̂ + σe(Z1−Ar̃1/2 + σe

2 )

and

Var
{

ξ |Y, r̃,σ2
e
}
∼ σ2

e

(
k
∑

i=1

ni
1+r̃ni

)−1

.

This result is used for simulating the necessary observations for ξ necessary for hypothesis test-
ing. A value of r̃ is simulated from either Equation (10) or Equation (11). This is then used to
simulate a value of σ2

e from Equation (9) (as previously described). Using these simulated ob-
servations we can take the necessary square roots and simulate from the above-mentioned normal
distribution. The simulations were performed for several choices of OEL (= [130; 140; 150; 160;
170; 180]) and for several choices of A (= [0.1; 0.05; 0.025; 0.001]), as was done in Harvey and
van der Merwe (2014).
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5. Results from the simulation study

Using the methodology derived previously a simulation study was conducted to simulate 100 000
observations for each particular type of analysis. Using the unbalanced data provided in Table 2 we
were able to simulate observations relating to occupational exposure in the workplace. Since two
Reference priors were derived the simulations were repeated for each of these Reference priors. The
results are presented in the following sections.

5.1. Results: Individual worker means

As mentioned it was possible to simulate observations from the posterior distribution for each of the
15 workers, using both Reference priors. Selected results will be shown here for the purposes of
illustration. Simulation results for all 15 workers can be found in Harvey (2012).

From Tables 3 and 4 we can see that the results from the first and second Reference priors are
comparable, with no large differences between the various Reference priors. Reference prior 2 re-
sults in slightly wider confidence intervals, which is easily attributed to the shape of the distribution,
as seen in Figure 1. The effect of “unbalancing” however, is observed. For example, workers 4

Table 3: Simulation summary results: Reference prior 1.

Worker P(µxi > 130) 90% CI 95% CI Mean Median Mode
Low High Low High

Worker 4 <0.001 52.25 71.81 50.67 74.07 61.45 61.14 59.75
Worker 11 <0.001 51.78 75.94 49.90 78.86 63.10 62.68 61.25
Worker 15 0.0715 98.32 132.21 95.56 136.12 114.41 113.94 115.25

Table 4: Simulation summary results: Reference prior 2.

Worker P(µxi > 130) 90% CI 95% CI Mean Median Mode
Low High Low High

Worker 4 <0.001 52.26 71.81 50.68 74.13 61.47 61.13 59.75
Worker 11 <0.001 51.78 75.99 49.98 78.91 63.14 62.70 61.75
Worker 15 0.0721 98.30 132.21 95.63 136.08 114.40 113.94 113.25

and 11 both had comparable mean exposure levels (arithmetic means of 55.98 and 55.7 respectively
from the data set), but were at the two extremes (in this hypothetical data set) with regards to un-
balancing (worker 4 had 10 exposure observations, while worker 11 only had 6 observations). The
results for worker 15 agree with those found in the balanced case, as found in Harvey (2012) and
Harvey and van der Merwe (2014). It is interesting to note that in both cases the probability of
exceeding an OEL of 130 was less than 0.001 (based on 100 000 simulated observations). It thus
appears that the Bayesian methodology is able to model the effect of unbalancing and account for
additional uncertainty introduced by the unbalancing, particularly at a worker-specific level.
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5.2. Results: Overall mean exposure

The next results relate to the overall mean exposure, that is the exposure of the group of 15 workers
as a whole. The results in Table 5 and Figures 2 and 3 were obtained for the two Reference prior
distributions (the relevant information for each histogram is displayed in the Table 5). It is evident
that for overall mean exposure the results from Reference prior 1 and Reference prior 2 are similar.
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Figure 2: Overall mean exposure: Reference prior 1.
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Figure 3: Overall mean exposure: Reference prior 2.

The results from Table 5 as well as Figures 2 and 3 are based on 100 000 simulations. We see
very little difference between the two Reference prior distributions. For comparison, refer to the
results in Harvey and van der Merwe (2014) and Harvey (2012).
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Table 5: Simulation summary results of overall mean exposure.

All Workers P(µoverall > 130) 90% CI 95% CI Mean Median Mode
Low High Low High

Reference prior 1 0.0064 87.07 116.70 84.62 120.99 100.45 99.68 98.75
Reference prior 2 0.0064 87.02 116.81 84.77 121.21 100.46 99.65 98.75

5.3. Results: Hypothesis testing

Lastly, Krishnamoorthy and Guo (2005) tested hypotheses regarding the group of workers using the
following parameter:

ξ = µ + Z1−Aστ +
1
2 σ2

e ,

where A is a suitably chosen parameter between 0 and 1 and Z1−A denotes the 100(1−A)-th per-
centile of the standard normal distribution. Recall from previous derivations that this is equivalent
to ξ = µ + σe(Z1−Ar̃1/2 +σe/2). Several different values of A were chosen in addition to several
different OEL limits. The results in Figure 4 are once again produced for both Reference prior dis-
tributions. From Figure 4 we can see that only 0.1% or more of workers had occupational exposure
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Figure 4: Hypothesis testing for Reference priors 1 (above) 2 (below): A = 0.001.

levels (in log units) in excess of 5.9577 and 5.9547 (99.9th percentile) respectively for Reference
priors 1 and 2.
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5.4. Application to real data

The previous results were based on data that was simulated, according to the data used in Krish-
namoorthy and Mathew (2002) for the balanced case and again in Krishnamoorthy and Guo (2005)
for the unbalanced case. Data had to be simulated since the original data was not available, but only
certain descriptive results. The use of this simulated data still allowed sufficient comparison between
the Bayesian and frequentist approaches in previous sections.

In Krishnamoorthy and Mathew (2009) a data set containing styrene exposures (measured in
mg/m3) from laminators at a boat manufacturing plant was used. Krishnamoorthy and Mathew
(2009) stated that the interest was in estimating the proportion of workers for whom the exposure
exceeds a chosen OEL. The chosen OEL in this case was 213 mg/m3, i.e. 5.3613 units on the
log scale (justification for this choice of OEL was given in Lyles et al. (1997a) and Lyles et al.
(1997b)). The unbalanced data given in Table 6 was obtained from the original balanced data set. It
is lognormally distributed and can be analysed using a one-way random effects model.

Table 6: Styrene exposures on laminators at a boat manufacturing plant (log scale).

Observations
Worker 1 2 3

1 3.071 3.871
2 4.319 4.396 5.045
3 5.221 4.876 5.058
4 4.572 5.116 5.578
5 5.351 3.925 4.217
6 5.889 4.893 4.775
7 5.192 4.457 5.097
8 4.807 5.345
9 5.271 5.454

10 5.188 4.499 5.340
11 5.970 5.660 5.175
12 5.619 1.843 5.545
13 4.200 5.294 4.945

To obtain this unbalanced data set observations were randomly removed from the original bal-
anced data set. As previously mentioned, this practice is accepted in literature (refer to Liao et al.
(2005) for examples where a similar method was used to obtain unbalanced data). The third obser-
vation from worker 1 (2.965) and the first observation from workers 8 (4.477) and 9 (5.060) were
removed. The data was then analysed according to the Bayesian methodology developed previously,
using both Reference prior distributions.

The Bayesian methodology allowed modelling of exposures for specific workers (as opposed
to unknown future workers), as in Krishnamoorthy and Guo (2005). For example, for worker 1
the probability that his/her mean exposure exceeded the OEL of 213 was 0.05568 and 0.05576 for
Reference prior 1 and 2 respectively.

The overall mean exposure was also modelled similarly to previous sections and the probability
that the mean exposure of the entire group of workers exceeded the OEL of 213 was 0.22552 for
Reference prior 1 and 0.22542 for Reference prior 2.
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With regards to hypothesis testing, it was found that the probability that an exposure measure-
ment exceeds 7.1827 (on the log scale) is less than 0.1%, with both prior distributions yielding
similar results.

6. Conclusion

In this article the usefulness of the Bayesian methodology to the proposed setting of occupational
exposure data was examined, specifically for the case where there are an unequal number of ob-
servations for each observational unit (worker). The one-way random effects model was adapted
to account for unbalanced data using the chosen prior distributions. One of the advantages of the
Bayesian model is that it is able to model results for individual workers and not simply for an
unknown future worker. Only a few non-informative prior distributions have been derived in this
article, but they do by no means represent an exhaustive list. The derivation and comparison of all
possible prior distributions was not an objective of this research. However, the derivation and appli-
cation of other non-informative priors could be used to refine the analysis and improve performance.
Ultimately, if subjective prior information is available this could lead to significant improvements in
prediction of future exposure for individual workers as well as for groups of workers.
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