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Summary: In this paper we consider robust and efficient estimators of the shape parameter of
symmetric alpha-stable distributions obtained by using the Minimum Density Power Divergence
method introduced in Basu, Harris, Hjort and Jones (1998). We established their high asymptotic
efficiency and verified these results in simulations. The functionals corresponding to the estimators
have bounded influence functions and simulations confirm their robustness when the sample distri-
bution is in a vicinity of the model distribution. The simulations also show that the Minimum Density
Power Divergence Estimators (MDPDEs) of the shape parameter of alpha-stable distributions have
superior performance over other existing estimators. The high efficiency combined with robustness
of the MDPDEs in estimating the shape parameter of alpha-stable distributions make them an attrac-
tive alternative to the preceding estimation procedures considered in the literature.

1. Introduction

Alpha-stable distributions were discovered by Paul Lévy (cf. Lévy (1925)) and are characterized
by four parameters: a € (0,2], B € [-1,1], 6 > 0 and u € R which have interpretations of shape,
skewness, scale and location, respectively. They have found numerous practical applications in a
number of Sciences ranging from Physics, Biology, Geology, Ecology to Finance. Due to their
attractive theoretical properties and rapidly growing access to computing power these distributions
have enjoyed an increasing popularity over the last three decades. Nonetheless, working with alpha-
stable models in practice remains even nowadays a non-trivial task. The density functions of these
distributions have no closed form representation except the cases of Gaussian (o = 2), Cauchy
(aa=1)and Lévy (a0 = %) distributions, respectively.

!'Corresponding author.

AMS: 62F10, 62F35, 62F12



88 KANGOGO & KOZEK

If 0 < o < 2 the alpha-stable distributions have finite p-th order moments for 0 < p < « but
infinite p-moments if p > ¢. Since the alpha-stable distribution with & = 2 is gaussian, it has all p-th
order moments finite. Consequently, if & < 2 the infinite variance of alpha-stable random variables
implies that rare observations of very large magnitude can be expected, which may dominate the
sum of all other remaining random variables. Thus, it is not advisable to treat these observations
as outliers since excluding them from the sample results in a loss of information available in the
original data. In many cases these observations may be even of the greatest interest, cf. Huber and
Ronchetti (2009) and Hampel, Ronchetti, Rousseeuw and Stahel (1986).

The problem of parameter estimation for alpha-stable random variables has been studied exten-
sively. The earliest estimation methods were developed by Fama and Roll (1971). Their approach
was based on empirical quantiles. They obtained estimates of the shape parameter o for & > 1 but
omitted the case when o < 1. A year later Press (1972) developed a method for estimating parame-
ters of alpha-stable distributions using empirical characteristic functions. By using the properties of
the plot of the log-log characteristic function, Koutrouvelis (1980) developed a method for estimating
the shape parameters based on linear regression. A further improvement of this method was given
in Koutrouvelis (1981), yet even the improved estimator suffers of high bias (see Weron (2001)).
Other authors who also have used the sample characteristic function include Paulson, Holcomb and
Leitch (1975), Feuerverger and McDunnough (1981) and Kogon and Williams (1998). McCulloch
(1986) developed a method based on quantiles to estimate the shape parameter for o« > 0.6. How-
ever, as he noted, his method performed very poorly when o < 0.6. Badahdah and Siddiqui (1991)
have also used empirical quantiles as well as other statistics such as the trimmed and the Winsorised
means to estimate parameters of these distributions. DuMouchel (1973) made the first attempt to
develop the maximum likelihood estimation in the case of alpha-stable distributions. He pointed out
that the maximum likelihood method was not robust. Nolan (1997) and Nolan (2001) further ex-
plored and developed the maximum likelihood estimation method for the parameters of alpha-stable
distributions.

To obtain robust and efficient estimators of the shape parameter ¢ of symmetric stable distri-
butions, we apply an estimation procedure introduced in Basu et al. (1998). In the present case it
minimizes a divergence between two densities: the density function of a symmetric alpha-stable
distribution and the true, though unknown, probability density function.

The paper is organized as follows. In Section 2 we recall M-parametrization and basic features of
alpha-stable distributions which will be needed in the sequel. In Section 3 we consider the Minimum
Density Power Divergence Estimators (MDPDEs) as estimators of the shape parameter ¢ of stable
distributions. In Sections 4 and 5 we compute the influence functions and the asymptotic relative
efficiencies of these estimators. In Section 6 we report our simulations for both uncontaminated and
contaminated models. Finally, in Section 7 we present our conclusions.

2. M-parametrization and numerical problems of alpha-stable
distributions

A detailed discussion of the problems related to the probability density functions of alpha-stable dis-
tributions can be found in Zolotarev (1964), Zolotarev (1986), Janicki and Weron (1994), Samorod-
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nitsky and Taqqu (1994) and Uchaikin and Zolotarev (1999). We shall use Zolotarev’s M-parametrization
of stable distributions recalled in Definition 1 below. This parametrization ensures that the probabil-

ity density functions and probability distribution functions are jointly continuous in parameters, cf.
Cheng and Liu (1997), Nolan (1997) and Zolotarev (1986).

Definition 1 A random variable Y is stable if and only if Y = aZ + b, wherea > 0,b € Rand Zis a
random variable with a characteristic function

E (exp(itZ)) = { exp{—0%|t|*(1 —ifsign(t)tan(Z2)(|ot|' "% — 1)) +iut}, if a # 1,

exp{—olt|(1+ifsign(t)2In(olt])) +iut}, if a=1. M

In formula (1) parameter 0 < o < 2 determines the tail weight and is called the shape parameter,
the skewness parameter € [—1, 1] determines the asymmetry of the distribution, ¢ > 0 is the scale
parameter and determines the spread of the distribution, and u € R is the location parameter and
determines the location of the mode of the distribution.

As we already stated in Section 1, with the exception of the three special cases (Gaussian, Cauchy
and Lévy distributions), the probability density functions of alpha-stable distributions do not have
closed form expressions. However it is known that they exist and have bounded continuous deriva-
tives of all orders on their support (Zolotarev (1986), p. 23).

We focus our attention on estimating the shape parameter o and assume that the other parameters
are known. Hence, without loss of generality in our case we can assume for simplicity thata = 1,b =
0,8 =0,0 =1 and u = 0. Then the characteristic function of Y reduces to the following form

E (exp(itY)) = exp{—|t|*},a € (0,2]. (2)
It will be convenient to use the following notation for the random variable Y in formula (2)
e F(y;a) denotes a cumulative distribution function (cdf) of ¥,
e f(y;a) denotes a probability density function (pdf) of ¥ and
e Sy denotes the probability distribution of Y.

Although alpha-stable distributions have characteristic functions of a closed form, it is still hard
to calculate their densities by direct application of the inversion theorem because it involves inte-
grals of highly oscillating functions over unbounded regions. Several methods have been proposed
in the literature to numerically compute density functions of alpha-stable distributions. DuMouchel
(1973) and Holt and Crow (1973) tabulated densities for alpha-stable distributions for selected val-
ues of a and skewness parameter 3. We will use Zolotarev’s integral representations of the densities,
cf. Zolotarev (1986), Chapter 2. Nolan (1997) discussed accurate algorithms for computing gen-
eral alpha-stable densities with o¢ > 0.1 using this Zolotarev’s M-parameterizations. More recently,
Takemura and Matsui (2006) combined the Nolan’s approach and asymptotic series expansions to
compute the densities of symmetric alpha-stable distributions. Other asymptotic series expansions
that have been used in the literature include Bergstrom (1952), Section XVIIL.6 of Feller (1966),
Chapter 2 of Ibragimov and Linnik (1971), and Chapter 5 of Lukacs (1970). In our work it was
necessary to improve and control the precision of the method reported in Takemura and Matsui
(2006). For the sake of brevity of presentation we omit here the technical details for which we refer
to Chapter 2 of Kangogo (2012).
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3. The MDPDEs for symmetric alpha-stable distributions

Our estimation method of the shape parameter ¢ is based on the minimum density power divergence
(MDPD) introduced in Basu et al. (1998). Details of the asymptotic properties of the MDPDEs are
also discussed in the general case in Judrez and Schucany (2006).

We consider the parametric family of symmetric alpha-stable distributions F (y; &) whose prob-
ability density functions are denoted by f(y; ). Let y € (0,1] denote a parameter of the MDPD
method that controls a trade-off between robustness and efficiency of the estimators of o.

The divergence between f(y; o) and the true unknown density function f(y) is given by

i) = [ {7 70a) - (14 )00+ 270 b

The MDPD functional chooses & such that the density f(y; o) is as close as possible to the true
unknown p.d.f. f(y) of the population. To see that this functional can be considered as a function of
the true cdf F' we present it in an equivalent way in the following form

oy(F)=argmin| [ ey - (14 DB B O

where Y is a random variable with the distribution function F(y). The third term of the right-hand
side of equation (3) does not depend on ¢. Therefore, minimising expression (3) with respect to o
is equivalent to the following minimisation problem

oy(F) = argmin | [ i)y~ (14 D) 150 . @

Since f(y; @) is a bounded and continuous probability density function, cf. Theorem 5.8.1 of Lukacs
(1970), the integral and the expected values in equation (4) are finite.

Let £, (y) denote the empirical distribution function of a sample Y;,Y,,...,Y,, with ¥;’s having
cdf F. By evaluating the functional @, given by formula (4) at F;,, we get the MDPD estimator of o

ay(F,) = argmin [/flﬂ’ (y;o)dy — 1+ Z (Y o) 1
The estimator
Oy = 0y ()

belongs to the class of general M-estimators introduced in Huber (1967) and can be obtained as a
solution of the equation

Ja l/f”yy, Jdy—(1+2) lifVY,,a]:o.

Passing with differentiation under the integral sign, we obtain the estimating equation

9 1 P,
/fy(y; )5 frody—— Y s @)= f(¥j;0) =0 5)

Jj=1
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which is effectively used to find numerically &y,. We applied here an efficient and robust MM-
algorithm for solving equations introduced in Kozek and Trzmielak-Stanistawska (1988) and Kozek
and Trzmielak-Stanistawska (1989) and available from Matlab Central at
http://www.mathworks.com/matlabcentral/fileexchange/29253-rootktsmm.

4. Influence functions of MDPDEs at the symmetric alpha-stable
distributions

For the sake of clarity of presentation of our results we present below, in Proposition 1 and Corollary
1, the form of the influence function for the functional o, (F) given by formula (4) or, equivalently,
by equation (5). Proposition 1 is an immediate consequences of Theorem 2 of Basu et al. (1998)
and of their formula for influence function given in section 3.3. Related results can also be found
in Theorem 5 of Judrez and Schucany (2006). We need these results to prove Theorem 1 implying
robustness of the MDPDE:s.

Proposition 1 (Basu et al. (1998), Section 3) Let Y7, - ,Y, be i.i.d random variables with a cumu-
lative distribution function F and a probability density function f. If f(y; o) is a probability density
function of a symmetric alpha-stable distribution and y € (0, 1] is a parameter of the MDPD method
then the expression for the influence function of ay(F) is given by

IF (x; 0 (F), F) = J g {u(x; @) f7 (v @) — Cr} 6)
where
JyF = / W (y; ) f1H (v @)dy
+/{i(y; —yu(y; )} {F () — [T ()} £ (y; )y, ©)
& = [ulyia)f (i) (r)dy ®)
and where u(y; ) = dlog f(y; ) /da and i(y; &) = —du(y; &) /dax.

Corollary 1 If we take f = f(.; &) and note that

@) = £ (202 f:)

then formula (6) simplifies to
IF (x;0(F), For) = Joy g, P(x; 0y, Fa) )
where
2
b =[5 (5 r00) (10)

and

Y(xay(Fa) Fa) = f1'(x Oé)aa (x; @) /fyy, af(y’ a)dy. (11)
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Recall that the density function of a symmetric alpha-stable distribution f(.;¢) is unimodal,
bounded and has uniformly bounded derivatives of all orders, cf. Zolotarev (1986), Lukacs (1970),
Takemura and Matsui (2006). Hence we infer from formula (11) that W(x; oty (Fy), F) is bounded
as a function of x and that it converges to 0 when either x — co or x — —oo. It is clear that for alpha-
stable distributions Jy r, given by formula (10) is positive. So, we have the following Theorem.

Theorem 1 For alpha-stable distributions the influence function IF (x; 0y(Fy), F) given by formula
(9) is bounded as a function of x and

|)}|iglooIF(X; oy (Fg), Fo) = 0.

Let us emphasize that Theorem 1 implies robustness of the of the MDPDEs. Bounded influence
curve implies finite gross error sensitivity of the MDPDEs and the fact that the influence curve
converges to zero when |x| — oo implies that sensitivity of MDPDEs to large observations vanishes
with their size increasing. We refer to Huber (1964) and Hampel et al. (1986) for comprehensive
discussion of the role and interpretation of the influence function and for a comprehensive theory of
Robust Statistics.

By formula (9) it becomes evident that computation of the influence function requires in the
present case evaluation of the alpha-stable probability density function, it’s derivative with respect
to the shape parameter & and a numerical evaluation of integrals over unbounded region R.

The difficulty in guaranteeing in such cases a reliable integration is related to heavy-tails of
the alpha-stable distributions. Restricting in a numerical integration support of the integrands to a
fixed region like [—10%, 10¥] with small values of k is not acceptable because in many cases, the
contributions coming from an exterior of such a support have non-negligible values.

On the other hand, it is not easy to carry out precise numerical integration over a large region
for integrands with variation changing over the support. Our integrands are quickly varying in a
vicinity of zero and then they are decaying to zero slowly, often extremely slowly. Hence, it is
necessary to identify regions of different variation and carry out integration over these subregions
independently. In our Matlab programming, we relied in each subregion on guadl, a convenient
adaptive implementation of the Gauss-Lobatto quadrature.

Figures 1(a) and 1(b) show influence curves of the MDPD functionals for ¢ = 0.8,1.1,1.4 and
for y=0.01 and 0.05, respectively. They show that the gross error sensitivity is increasing when y
decreases towards 0. This remains consistent with our results on the efficiency of the estimators as
the efficiency increases with y decreasing towards 0. Hence, y represents a parameter controlling a
balance between the efficiency and robustness.

It may be interesting to note the multi-modal and non-monotonous character of the influence
curves. The influence of the observations in a close vicinity of zero is close to zero. However next,
in the middle zone, we observe two symmetric positive peaks of the influence function followed
by a decay into negative values. The behavior of the influence curve seems very interesting in the
external zones, where, by Corollary 1, it is returning towards zero via negative values. We suggest
the interpretation of this feature of the influence curve as a shift of the value of the shape parameter
towards zero caused by large observations. In the case of small values of o, huge observations
abound in the alpha-stable sample, and so indeed, the presence of large observations may provide
evidence towards a low value of ¢. The large observations should not be considered here as outliers
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Influence functions of MDPDESs of o with y=0.01
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Figure 1: Influence functions of the MDPDE for the
Y=0.01,0.05, respectively.

shape parameters o and selected values of
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and removed from the sample because they carry important information about the shape of the alpha-
stable distribution.

5. Efficiency of the MDPDEs of the shape parameter

The problems of consistency and asymptotic normality of the MPDPEs in general cases have already
been considered in Basu et al. (1998) and, under different set of assumptions, in Judrez and Schucany
(2006). The conditions required in Judrez and Schucany (2006) are less restrictive and are met in the
considered case of alpha-stable distributions.

By using Theorem 2 of Judrez and Schucany (2006) the convergence holds true if the minimizer
in expression (4) is unique and the density function is continuous. Both conditions are met in our
case and so, the conclusion on consistency follows.

By applying Theorem 5 of Judrez and Schucany (2006) or Theorem 2 of Basu et al. (1998) in the
case of alpha-stable distributions and for the considered MDPDEs we infer the following results on
the asymptotic distribution of the MPDPEs. We use these results to calculate theoretical asymptotic
variances and asymptotic efficiencies of the MDPDE:s presented in Table 1.

Proposition 2 If Yy,--- Y, are i i.d random variables with a cumulative distribution function F' and
density f, then for &, = ay(F,), the empirical MDPDEs of the shape parameters o € (0,2] of
alpha-stable distributions, we have

Vi (G — 0y (F)) —>JV< , yFMVFJyF)

where J | VF is given by formula (7), {r by formula (8) and

My (0 (F) = [l @)1 () £ (3)dy - G-
Hence we have the following corollary suitable for our case.

Corollary 2 If F is a cumulative distribution function of a symmetric alpha-stable distribution Fy,
then

\/ﬁ (a%n - aV(FOC)) — N (0>AV(aY(F06)’FOC)) )
where AV (oty(Fy), Fy) is the asymptotic variance given by the sandwich formula
Ty Myrady s
with

2
My ro (0y(Fyr)) /fzy_ y; o ( Iy )> dy—&f

= [ F10n0) 2 flr: )

and where Jy r, is given by formula (10).
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Equipped with the formulae of Corollary 2 for asymptotic variances AV (0 (Fy),Fy) one can
now numerically calculate asymptotic efficiencies of the MDPDEs. We recall that the limiting case
Y = 0 corresponds to the Kullback-Leibler discrepancy and that the Maximum Likelihood estimator
coincides in this case with the MDPDEzs, c.f. Basu et al. (1998). Hence, the asymptotic efficiency of
the MDPDE:s can be found by comparing the asymptotic variances AV (F, oty(F)) and AV (F, 0p(F)).
This can be evaluated numerically, but great care needs to be taken in numerical evaluation of the
related integrals. As we discussed in Section 2, an iterative procedure has to be implemented to
guarantee high accuracy of the numerical values of the integrals.

In Table 1, we report the asymptotic relative efficiencies for the selected values of ¥ and for
o €40.1,(0.1),2}. It can be seen that as the value of y increases, the asymptotic relative efficiencies

Table 1: Asymptotic efficiencies of the MDPDE:s for selected ¢’s and y’s.

o\y || 0| 0.01 0.02 0.05 0.1 0.5 1
0.1 || 1] 0.9998 | 0.9998 | 0.9997 | 0.9993 0.9831 0.9170
0.2 || 1] 0.9941 | 0.9758 | 0.8888 | 0.7574 0.4930 0.4168
0.3 || 1] 0.9930 | 0.9736 | 0.8754 | 0.7112 0.4021 0.3375
04 | 1] 0.9939 | 09775 | 0.8901 | 0.7237 0.3645 0.2849
0.5 || 1] 0.9952 | 0.9821 | 0.9094 | 0.7553 0.3534 0.2589
0.6 || 1] 0.9962 | 0.9859 | 0.9264 | 0.7892 0.3523 0.2470
0.7 || 1] 0.9970 | 0.9888 | 0.9399 | 0.8200 0.3596 0.2443
0.8 || 1] 0.9976 | 0.9909 | 0.9506 | 0.8459 0.3702 0.2432
0.9 || 1] 0.9980 | 0.9925 | 0.9581 | 0.8672 0.3817 0.2474
1.0 || 1 | 0.9984 | 0.9937 | 0.9651 | 0.8865 0.3966 0.2511
1.1 || 1] 0.9986 | 0.9947 | 0.9704 | 0.9016 0.4111 0.2533
1.2 || 1] 0.9987 | 0.9959 | 0.9763 | 0.9196 0.4332 0.2588
1.3 || 1] 0.9990 | 0.9957 | 0.9807 | 0.9323 0.4503 0.2587
1.4 || 1] 0.9993 | 0.9965 | 0.9838 | 0.9414 0.4632 0.2536
1.5 || 1| 0.9994 | 0.9973 | 0.9861 | 0.9486 0.4737 0.2438
1.6 || 1] 0.9995 | 0.9978 | 0.9875 | 0.9550 0.4804 0.2279
1.7 || 1] 0.9984 | 0.9980 | 0.9883 | 0.9588 0.4810 0.2038
1.8 || 1] 0.9996 | 0.9971 | 0.9903 | 0.9636 0.4690 0.1674
1.9 || 1] 0.9997 | 0.9987 | 0.9922 | 0.9658 0.4261 0.1117
2.0 || 1] 0.9998 | 0.9992 | 0.9951 | 0.9830 | 3.6E—11 | 2.17E—11

decrease. This is not surprising, as we noted earlier, and shows that ¥ controls the trade-off between
robustness and efficiency. In the case where the user is interested in retaining both asymptotic
properties of these estimators, we recommend choosing positive values of 7y that are less or equal to
0.05. We note that the asymptotic efficiencies for values of y greater than 0.05 decrease significantly.
These results show that the MDPDE:s for ¥y < 0.05 are robust and simultaneously highly efficient as
estimators of the shape parameter o.
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6. Performance of the MDPDEs of o in Monte Carlo simula-
tions

We conducted a variety of Monte Carlo type simulations to provide empirical evidence on the MD-
PDEs’ efficiency, robustness, consistency and asymptotic normality. The sample sizes in our simu-
lations were ranging from n = 10 to n = 1000.

We compared the performance of the MDPDESs with other existing estimators such as the Quan-
tile, Empirical Characteristic Function (ECF), Fractional Lower Order Moment (FLOM) and Log-
Moment estimators both in uncontaminated (Section 6.3) and contaminated (Section 6.4) models.

6.1. Numerical issues related to the MDPDESs

To simulate alpha-stable random variables we used the most popular and efficient Chambers-Mallows-
Stuck (CMS) method, c.f. Chambers, Mallows and Stuck (1976) and Weron (1996). The MDPD
methodology requires finding a root of equation (5) using an iterative algorithm starting with an
initial guess for the root. Our extensive preliminary simulations showed that the final value of the
estimator of « is not significantly affected by the choice of the initial values. Therefore we used the
Quantile method to generate the starting values for all our simulations and data analysis presented
in the paper.

It is interesting to note that small values of y (Y < 0.2) required significantly less time to compute
the estimators. We also observed that the computational time increases substantially as the value of
Y gets closer to 1. Based on simulations carried out, we suggest using a fixed value of Y less than
0.05. This provides a good compromise between robustness and efficiency as noted in Table 1 and
also remains relatively fast.

6.2. Performance of the MDPDEs of o for small sample sizes

To get a glimpse into a speed of convergence of properties the MDPDEs of « to the limiting values
we performed for @ = 0.1 and o0 = 0.7 simulations of N = 500 samples of sizes n = 10,20, 25,50, 100,
200,250, respectively. For each sample we calculated the MDPDE of .. The averages, medians and
the corresponding measures of deviations: mean absolute deviation (Mean A Dev), median abso-
lute deviation (Median A Dev) and standard deviation (Standard Dev) are reported in Table 2. To
facilitate comparison across sample sizes the reported in Table 2 measures of spread have been stan-
dardized by multiplying by the square root of the sample size y/n. The obtained results show very
good behavior of the MDPDE of & even for extremely small sample sizes like n = 20.

6.3. Comparison of the MDPDEs of o with other existing estimators in the
case of uncontaminated model

We simulated 150 samples each of size n = 1000. For each sample, we obtained estimators of o us-
ing the MDPD method and, for the sake of comparison, by evaluating four other selected estimators:
ECF, Quantile, FLOM and Log-Moment estimators. We fixed ¥ = 0.01 for the MDPD approach.
The results of these simulation are summarized in Table 3.
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Table 2: Performance of the MDPDEs of « for small sample sizes and y = 0.01. The measures of
spread have been standardized here by multiplying by the square root of the sample size /n.

a=0.1

n 10 20 25 50 100 200 250
Average 0.1129 | 0.1051 | 0.1044 | 0.1023 | 0.1010 | 0.1007 | 0.1005
Median 0.1071 | 0.1018 | 0.1019 | 0.1010 | 0.1006 | 0.1000 | 0.1002
Mean A Dev 0.0753 | 0.0686 | 0.0677 | 0.0668 | 0.0620 | 0.0657 | 0.0645
Median A Dev || 0.0584 | 0.0531 | 0.0559 | 0.0604 | 0.0537 | 0.0525 | 0.0540
Standard Dev 0.0967 | 0.0890 | 0.0865 | 0.0828 | 0.0789 | 0.0823 | 0.0799
a=0.7

n 10 20 25 50 100 200 250
Average 0.8044 | 0.7480 | 0.7344 | 0.7170 | 0.7124 | 0.7028 | 0.7046
Median 0.7106 | 0.7123 | 0.7039 | 0.7047 | 0.7054 | 0.7024 | 0.7015
Mean A Dev 0.7834 | 0.6825 | 0.6516 | 0.5788 | 0.6433 | 0.5892 | 0.6015
Median A Dev || 0.4723 | 0.5268 | 0.4679 | 0.4371 | 0.5594 | 0.5049 | 0.5269
Standard Dev 1.1076 | 0.8994 | 0.8874 | 0.7607 | 0.7984 | 0.7356 | 0.7491

Table 3: The mean estimators of & based 150 samples each of size n = 1000 using different estima-
The parenthesis show the mean absolute deviations for these estimators.

tion techniques.

o\Method MDPDE ECF QUANTILE FLOM LOG MOMENTS
0.1 0.099895 (0.0025) | 0.109613 (0.0084) | 0.557741 (0.0219) | 0.114831 (0.0054) | 0.100031 (0.0038)
0.2 0.201195 (0.0043) | 0.192562 (0.0109) | 0.585209 (0.0091) | 0.168696 (0.0116) | 0.167026 (0.0076)
03 0.300572 (0.0073) | 0.290332 (0.0125) | 0.577200 (0.0049) | 0.277101 (0.0160) | 0.283993 (0.0120)
04 0.400349 (0.0097) | 0.401523 (0.0145) | 0.590919 (0.0031) | 0.368809 (0.0203) | 0.365289 (0.0162)
0.5 0.500778 (0.0120) | 0.477735(0.0195) | 0.584516(0.0023) | 0.504140 (0.0264) | 0.485576 (0.0209)
0.6 0.601665 (0.0158) | 0.563039 (0.0226) | 0.592018 (0.0207) | 0.588951 (0.0318) | 0.590621 (0.0258)
0.7 0.704305 (0.0194) | 0.710061 (0.0252) | 0.744606 (0.0271) | 0.783938 (0.0396) | 0.734887 (0.0323)
0.8 0.803472 (0.0227) | 0.696219 (0.0266) | 0.778418 (0.0277) | 0.731437 (0.0477) | 0.692154 (0.0376)
0.9 0.902889 (0.0242) | 0.885927 (0.0284) | 0.854224 (0.0356) | 0.881350 (0.0571) | 0.929367 (0.0476)
1.0 1.003325 (0.0280) | 1.036830 (0.0341) | 0.999243 (0.0332) | 1.023626 (0.0642) | 1.015373 (0.0548)
1.1 1.103277 (0.0308) | 1.161730 (0.0328) | 1.154472(0.0390) | 1.208372 (0.0840) | 1.178021 (0.0697)
1.2 1.203009 (0.0332) | 1.162077 (0.0368) | 1.186217 (0.0414) | 1.027965 (0.0931) | 1.238859 (0.0808)
1.3 1.302350 (0.0357) | 1.283592(0.0359) | 1.219519 (0.0416) | 1.165643 (0.1229) | 1.156782 (0.0942)
1.4 1.401837 (0.0375) | 1.414603 (0.0396) | 1.413116(0.0455) | 1.335447 (0.1366) | 1.283951 (0.1126)
1.5 1.501344 (0.0383) | 1.497591 (0.0413) | 1.465904 (0.0514) | 1.600245 (0.1712) | 1.354119 (0.1326)
1.6 1.600250 (0.0377) | 1533427 (0.0423) | 1.480808 (0.0559) | 1.875616(0.2003) | 1.410342 (0.1553)
1.7 1.698957 (0.0360) | 1.704310 (0.0392) | 1.707026 (0.0643) | 1.640730 (0.2561) | 1.935429 (0.1670)
1.8 1799019 (0.0342) | 1.795019 (0.0386) | 1.782433 (0.0768) | 1.543741(0.4942) | 1.800046 (0.2158)
1.9 1.899767 (0.0280) | 1.902605 (0.0309) | 1.814127 (0.0709) | 2.086989 (0.3334) | 2.059261 (0.2477)
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The observed relative absolute bias for o in the case of MDPDEs is definitely the lowest com-
pared to the ECF, Quantile, FLOM and Log-Moment estimators. In particular, for o¢ < 0.7, the
Quantile method performs extremely poorly compared to the other methods and we refer to Section
6 of Kangogo (2012) for more details. Weron (2001) also discussed the high bias of the loglog linear
regression and Hill estimators of the index & and the implied confusing consequences for Market
modeling in Finances.

6.4. Comparison of the robustness of the MDPDEs of o with other existing
estimators in the contaminated case

The robustness of the MDPDEs of o can be investigated by observing how much these estimators
change in the case of a slightly misspecified model. Clearly, a robust estimator should not be too
much perturbed by the contaminating observations in the model. In our simulations, the distribution
of these contaminating observations has been assumed to be known.

We investigated finite sample behavior of the MDPDEs of « at the contaminated model. We
considered a mixture of two distributions both of which belong to the family of symmetric alpha-
stable distributions. The benchmark distribution model is denoted by S¢, and the contaminating
distribution by S¢, , where Sy stands for the probability distribution of a random variable Z given by
formula (2). The mixture distribution model can be formulated as

(1—€)Sq, + €Sq (12)

where € was chosen from the set € € {0.01,0.025,0.05,0.1}.

LetM (SO‘0 ,Sq, €) stand for the mixture model given by formula (12). Choosing o and ¢; that
are close to each other implies that also the two distributions lie in a vicinity of each other. We
considered the following two mixture models:

M1: M(So2(1,0,0),80.1(1,0,0),€) and M2: M(Sys(1,0,0),504(1,0,0),€).

We performed simulation studies for M1 and M2 to compare the robustness of the MDPDEs of
a with the robustness of the other four estimators. We generated 500 contaminated samples each of
size n = 200 with varying proportions of contamination € € {0.01,0.025,0.05,0.1}. Based on these
500 samples, we computed using the five different estimation methods the mean absolute biases of
the estimators of  for the two mixture models. The results are shown in Figures 2(a) and 2(b)
respectively. The proportions of contamination are presented on the horizontal axis and the mean
absolute biases of the considered estimators are shown on the vertical axes. The MDPD estimators,
the ECF, the FLOM, the Quantiles and the Log-Moment are represented by a star, square, diamond,
circle and plus signs, respectively.

In the considered mixture models, the mean absolute biases of the MDPDESs of ¢ are the smallest
compared to the other methods of estimation. In the case of Model M1, the Quantile estimator
behaves very poorly. This is not surprising, as we noted earlier, that the Quantile method works
reasonably well only for values of o > 0.7. The ECF does better than FLOM, Quantiles and the Log
Moments for Models M1 and M2.

To show how sensitive are the MDPDE:s in the contaminated models to the tuning parameter y
and to the contaminating parameter € we produce in Table 4 the mean estimators of the MDPDEs of
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a for the reported two mixture models. The parentheses show the mean absolute deviation for these
estimators. Similar conclusions can also be drawn for other mixture models which, for brevity, are
not reported here.

Table 4: The mean estimators of the MDPDEs of o for mixture models M1 =
M(Sp2(1,0,0),80.1(1,0,0),¢) and M2 = M(Sp5(1,0,0),504(1,0,0),€). The parentheses show the

mean absolute deviation for these estimators.

Model \ Y 0.01 \ 0.02 \ 0.05 \ 0.1
€=10.01
M1 0.1988 (0.0093) | 0.1987 (0.0098) | 0.2004 (0.0110) | 0.1994 (0.0122)
M2 0.4999 (0.0270) | 0.5000 (0.0283) | 0.5027 (0.0311) | 0.5002 (0.0318)
€ =10.025
M1 0.1955 (0.0096) | 0.1957 (0.0100) | 0.1958 (0.0113) | 0.1947 (0.0118)
M2 0.4972 (0.0285) | 0.4985 (0.0275) | 0.4979 (0.0297) | 0.4980 (0.0312)
£ =0.05
M1 0.1900 (0.0099) | 0.1900 (0.0100) | 0.1902 (0.0113) | 0.1909 (0.0125)
M2 0.4952 (0.0284) | 0.4936 (0.0270) | 0.4967 (0.0290) | 0.4964 (0.0306)
e=0.1
M1 0.1797 (0.0095) | 0.1809 (0.0109) | 0.1805 (0.0116) | 0.1778 (0.0139)
M2 0.4884 (0.0281) | 0.4888 (0.0287) | 0.4902 (0.0297) | 0.4920 (0.0321)

6.5. Dependence of the MDPDEs of & on the tuning parameter y

Under the assumption that the considered model is correct, we conducted a simulation study to
investigate how the MDPDEs of « depend on the tuning parameter y. This study also gives some
insight into the empirical measure of efficiency for the MDPDEs of . As in the uncontaminated
case before, we generated 500 samples each of size n = 200 from the S,. For each value of ¥ in
the set {0.01,0.02,0.05,0.1,0.5,1.0} we evaluated the MDPDEs &, and reported in Table 5 their
empirical means, empirical Standard Deviations (SD) and the square roots of the Mean Squared
Errors (RMSEs).

As expected, the small values of y produced the smallest RMSEs and the estimated RMSEs
increase as Y increase towards 1 for all chosen values of o. We conclude that fixed positive values
of ¥ < 0.05 gave a reasonable compromise between robustness and efficiency. Let us note that
these results are in agreement with the theoretical results on the efficiency of the MDPDE:s, reported
in Table 1. The results presented in Table 5 show that the size 500 of the considered samples is
sufficient for the theoretical asymptotic properties to dominate and allow us to conclude about the
excellent performance of these estimators.

6.6. Concluding remarks from the simulation results

Our simulation results confirm that when the assumed symmetric alpha-stable model is uncontam-
inated, then the MDPDEs of « are highly efficient and at the same time they retain the robustness
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Mixture model 1: M(So,z' SD,l’E)
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Figure 2: Mean absolute biases of the estimators of & obtained using different methods from mixture
models with varying proportions of contaminations €. For the MDPD method y = 0.01.
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Table 5: Theoretical asymptotic standard deviations (SD) and square roots of mean square errors
(RMSE) of the MDPDES of o computed for different values of 7.

y=001 y=002 y=005 y=01 y=05 y=10

@500 0.2006 0.2016 0.2013 0.2016  0.2032  0.2027
SD 0.0114 0.0118 0.0130 0.0156  0.0183  0.0199
RMSE 0.0114 0.0120 0.0131 0.0157 0.0185 0.0200

@500 0.5008 0.5029 0.5000 0.5033 0.5011  0.5033
SD 0.0329 0.0352 0.0371 0.0423  0.0371  0.0423
RMSE 0.0329 0.0353 0.0371 0.0425 0.0371  0.0425

Ois00 0.8040 0.8025 0.8013 0.8059 0.7942  0.8102
SD 0.0604 0.0583 0.0625 0.0670  0.1010  0.1217
RMSE 0.0605 0.0584 0.0625 0.0672  0.1011  0.1222

500 1.2102 1.2147 1.2155 1.2015 1.1986  1.2129
SD 0.0934 0.0952 0.0910 0.0968 0.1408 0.1893
RMSE 0.0940 0.0963 0.0923 0.0968  0.1408  0.1898

500 1.5041 1.5097 1.5054 1.5082  1.4937  1.4951
SD 0.1029 0.1041 0.0980 0.1059 0.1485 0.2098
RMSE 0.1030 0.1045 0.0981 0.1062  0.1487  0.2098

bsoo 17980  1.8041  1.8076 1.8011  1.7923  1.7531
SD  0.0896  0.0889  0.0925 0.0981 0.1285 0.2106
RMSE  0.0896  0.0890  0.0928 0.0981 0.1287 02157
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properties. Our simulations based on mixture models also confirm that these estimators are robust.
The proportions of the contaminations we used were from the set € = {0.01,0.025,0.05,0.1}. For
the obtained MDPDEs of «, the reported mean absolute biases were relatively small.

The MDPDE:s perform particularly well in comparison with the four existing estimators when
the chosen value of 7 is less than 0.05. We found serious problems related to numerical convergence
for some of the methods we considered like the FLOM and the Quantile methods. A good example
of this type of problems is the method based on quantiles where for o < 0.7, the method breaks
down. It remains an open question what the breakdown points are for the considered five estimation
methods in the case of stable distributions.

Time needed for evaluation of the MDPDEs of o depends significantly on the parameter o of the
stable distribution from which the sample was generated and varies from several seconds to a few
minutes. The bottle neck is in the precise numerical evaluation of the alpha-stable probability density
function and its derivatives appearing in equation (5). The region in the vicinity of the value of o = 1
and also at some regions in the vicinity of x = 0 are particularly difficult and time consuming. We
refer to Section 2 of Kangogo (2012) for more details and discussion of the implemented numerical
methods.

A complete set of Matlab programs developed and used in this project is available upon request
from the authors.

7. Conclusions

We have introduced and explored MDPDE, a new efficient and robust estimator of the shape param-
eter of alpha-stable distributions. We found that these MDPDEs exhibit high efficiency and good
robustness properties for small .

Our simulation studies reported in Section 6 provide a strong support to our theoretical findings.
In the case of samples contaminated with probability distributions having heavier tails, the MD-
PDEs showed significantly lower mean absolute biases compared to ECF, Quantile, FLOM and Log
Moments.
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