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Summary: Singular spectrum analysis is a powerful non-parametric time series method that ap-
plies singular value decomposition to a Hankel structured matrix. The method can handle complex
time series structures that include combinations of polynomials, sinusoids and exponentials. Outlier
maps combined with robust principal component analysis is considered and shown to compare very
favourably with existing time series methods to identify an additive time series outlier. The well-
known airline time series as well as a South African tourism time series are used to illustrate the
usefulness of the methodology.

1. Introduction

Singular Spectrum Analysis (SSA) is a powerful non-parametric time series method which origi-
nated in the field of Physics (Takens, 1981; Broomhead and King, 1986). A thorough introduction to
SSA theory and methods can be consulted in Golyandina, Nekrutkin and Zhigljavsky (2001). More
recent advances in the field of SSA are considered in Golyandina and Zhigljavsky (2013).

SSA methodology unfolds a time series {yt}N
t=1 into the column vectors of a Hankel structured

matrix

XL×(N−L+1) = (xi j)
L,N−L+1
i, j=1 =



y1 y2 · · · yN−L+1

y2 y3 · · · yN−L+2

y3 y4
... yN−L+3

...
...

. . .
...

yL yL+1 · · · yN


. (1)
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It is clear that anti-diagonal elements of secondary diagonals in this matrix are equal and is also
strategic to time series outlier detection in the SSA context. The matrix has been coined the trajec-
tory matrix in SSA literature and places a univariate time series into a multivariate framework. The
dimension L into which the column vectors are unfolded is called the window length (embedding
dimension in Physics literature) and restricted by the choice 2 ≤ L ≤ f loor [(N +1)/2]. Additive
outliers can unduly influence forecasts, if they form part of the vectors employed by recurrent- or
vector forecasting techniques described in Golyandina et al. (2001). Not only can outliers cause
problems when forecasting, but their presence can cause bias in any form of model based bootstrap
method employed in the SSA context. Employing bootstrap methods for forecast confidence inter-
vals comes to mind in this regard. It makes sense that any outlier identification method in the SSA
context can assist to guard against these possible issues and motivates methods developed as part of
this research.

Buchstaber (1994) showed that time series sampled from the following broad class of functions
with an additive property can be dealt with by SSA, viz.

y(t) = ∑
K
k=1 pk(t)exp(αkt)sin(2πϖkt +φk) (2)

where pk(t) indicate polynomials.
Golyandina et al. (2001) elaborated upon the above contribution that SSA can actually handle a

much broader class of functions in the form of finite difference equations or so-called linear recurrent
formulae (LRF) of the form

yt+r = ∑
r
k=1 akyt+r−k, 1≤ t ≤ N− r (3)

where a1, ...,ar are coefficients and r is the rank (structure) of the time series. SSA can evidently
handle a wide variety of time series structure which can include trend with/without seasonality.
According to Golyandina et al. (2001) the column vectors of the trajectory matrix all lie on a single
linear subspace of rank r if a noise-free signal series of rank r governed by an LRF, as described
above, is observed. Noise contaminated time series causes the column vectors of the trajectory
matrix not to lie on a single linear subspace and methods are proposed by Golyandina et al. (2001)
to reconstruct an approximate signal series. This is where SVD (as part of Basic SSA) or PCA (as
part of centred SSA) can be applied to extract singular- or eingenvectors from the noise contaminated
Hankel structured trajectory matrix to produce a signal series and forecasts.

According to basic SSA methodology (Golyandina et al., 2001) the Hankel structured trajectory
matrix can be reproduced by adding rank 1 elementary matrices, i.e. XL×(N−L+1) = (X1 +X2 +

...+Xr). The latter is actually the spectral decomposition of a matrix, i.e. XL×(N−L+1) = ∑
r
i=1 Xi =

∑
r
i=1
√

λiuivT
i , where SSA derives the nomenclature from. Note that any given elementary matrix

can be reconstructed using Xi =
√

λiuivT
i for i = 1, ...,r . Here r denotes the rank of the trajectory

matrix and in effect the time series. Eigenvalues are extracted from the non-centered square matrix
XXT , which results in eigentriples (λi,ui,vi) for i = 1, ...,L where λ1 ≥ λ2 ≥ ... ≥ λL ≥ 0 are the
ordered (in decreasing order of magnitude) eigenvalues and (ui,vi) the orthonormal singular vectors.
Note that uT

i u j = 0 for i 6= j since the singular vectors are mutually orthogonal and the same holds
true that vT

i v j = 0 for i 6= j . It is clear that SSA has only two parameters, i.e. the window length
(L) and number of leading eigenvectors (r) .
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Given the above schema, a single additive time series outlier positioned at time t = t∗(1≤ t∗≤N)

will be present in a number of consecutive column vectors (1 ≤ ... ≤ n∗ � n = N−L+ 1) of the
trajectory matrix. It is not difficult to show that, once consecutive column vectors in the Hankel
structured trajectory matrix have been identified as outlying by some multivariate statistical method
that the position of the additive time series outlier will be given by

t∗ =


o(i1−1)+L−1 i f argmax

1≤i1<i2≤n∗
∑

i2
i=i1

Ii(o(i)−o(i−1)) = L−1

o(i2) i f argmax
1≤i1<i2≤n∗

∑
i2
i=i1

Ii(o(i)−o(i−1))< L−1 and 2≤ o(i2) < L

o(i1−1)+L−1 i f argmax
1≤i1<i2≤n∗

∑
i2
i=i1

Ii(o(i)−o(i−1))< L−1 and o(i2) > (N−2L+3)

(4)
where

• n∗, such that (1≤ ...≤ n∗� n = N−L+1) , is the number of column vectors identified by some
statistical method as outlying;

• on∗×1 =(o(1), ...,o(n∗))T is a column vector with elements consisting of the ordered index values of
column vectors in the trajectory matrix, which were identified as outlying by some statistical
method;

• Ii(o(i)−o(i−1)) =

{
1 i f o(i)−o(i−1) = 1
0 otherwise;

• i1 and i2 (where 1 ≤ i1 < i2 ≤ n∗) are the first and last index positions in on∗×1 for which the
sum over the above indicator function is maximized. The purpose is to locate the maximum
number of consecutive column vectors identified as outlying.

Since the column vectors of the trajectory matrix in (1) places a time series governed by an LRF
into a multivariate setting, this paper proposes that multivariate statistical methods which identify
multivariate outliers can be combined with (4) to identify a single additive time series outlier when
applying SSA methodology. It must be noted that methods have been devised for change-point
detection in SSA (Moskvina and Zhigljavsky, 2003), but that the methodology described here is
solely responsible for the detection of an additive time series outlier.

2. Outlier maps and Robust Principal Component Analysis
(ROBPCA)

Outlier maps were introduced by Hubert, Rousseeuw and Vanden Branden (2005) as a diagnostic
plot assisting multivariate outlier identification in Principal Component Analysis (PCA). The method
has not been applied in the SSA context to date, even though PCA can be applied in SSA to extract
time series structures. Three types of multivariate outliers can be identified in multivariate datasets
in the PCA context according to Hubert et al. (2005), viz. good leverage points (points 5 and 6,
cf. Figure 1), orthogonal outliers (points 3 and 4, cf. Figure 1) and bad leverage points (points 1
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and 2, cf. Figure 1). Here we suppose that multivariate observations can be arranged in a matrix
Xnxp, with n denoting the number of observations and p the number of variables measured on each
observation. In Figure 1, below, the plane represents a two-dimensional PCA subspace and scatter
points the observed multivariate data scatter.

Figure 1: PCA outlier types.

Effectively, an outlier map (Hubert et al., 2005) constitutes a two-dimensional plot of the or-
thogonal distance (ODi) against score distance (SDi), which is calculated for each individual p-
dimensional multivariate observation. When applying classic PCA (CPCA), these measures are
calculated using

ODi =
∥∥∥xi− µ̂

x
−Pp,kPT

p,k(xi− µ̂
x
)
∥∥∥ (5)

and

SDi =
√
(xi− µ̂

x
)T Pp,kL−1

k,k PT
p,k(xi− µ̂

x
) (6)

where µ
x

represents the estimated mean vector of the multivariate dataset, Pp,k a matrix con-
sisting of the leading k PCA loadings and Lk×k a diagonal matrix with elements the eigenvalues
based on the covariance matrix of the multivariate dataset. It is clear that the score distance is a
typical statistical distance measure as described in Johnson and Wichern (2007). It is clear in (6)
that (xi− µ̂

x
)T Pp,k is the i-th principal component and that the diagonal elements of Lk×k are the

respective variances of the principal components. An example of an outlier map constructed using
the multivariate data scatter with p = 3 and k = 2 in Figure 1, is illustrated in Figure2, below. The
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Figure 2: Example of an outlier map.

horizontal axis in Figure 2, above, indicates that the score distance was calculated using 2 leading
vectors or PCs.

Hubert et al. (2005) suggest two cut-off limits, each respectively for the orthogonal- and score
distances to assist in identifying multivariate outliers in the PCA context. The cut-off limit cSD =√

χ2
k;0.975, which is the square root of the 97.5th percentile of the chi-square distribution, is applied

to calculated score distances. In case of the orthogonal distances, the cut-off limit cOD = (µ̂MCD +

σ̂MCDz0.975)
3/2 is applied. In the latter case µ̂MCD and ˆσMCD respectively represents the minimum

covariance determinant (MCD) estimator of the univariate score distance location and spread, and
z0.975 denotes the 97.5th percentile of a Gaussian distribution. Figure 2, above, illustrates in which
quadrant of the outlier map each of the mentioned three types of outliers are identified.

In order to apply the notion of an outlier map in the SSA context, slight changes are required
in the above formulae’s notation. In the SSA context the column vectors of the trajectory matrix
represent multivariate observations and hence n = N−L+1 and p = L. The number of leading PCA
loadings to use will be either k = r or k = r− 1, depending on the time series structure. Applying
PCA in the SSA context (referred to as centred SSA in Golyandina et al., 2001), instead of SVD to
the trajectory matrix (referred to as Basic SSA in Golyandina et al. (2001)), affects the choice of the
leading eigenvectors. The interested reader is referred to Golyandina et al. (2001) to gain clarity in
this regard. From this point on forward all reference to outlier maps will be in the context of the
trajectory matrix, formed as part of SSA methodology.

Verboven and Hubert (2005) developed a software package in MATLAB, called LIBRA (LiBrary
for Robust Analysis), which can readily be used to construct outlier maps. The package can be
downloaded from the website https://wis.kuleuven.be/stat/robust/LIBRA. The package
makes distinction in different approaches used to calculate the orthogonal- and score distances as
formulated in (5) and (6). When applying Classic PCA (CPCA) the measures used in calculating
the aforementioned formulae uses the usual non-robust PCA extracted from the centered trajectory
matrix. The LIBRA package can also apply Robust Principal Component Analysis (ROBPCA) as
described in Hubert et al. (2005) and Hubert, Rousseeuw and Van Aelst (2008). The ROBPCA
method employs projection pursuit combined with estimation of robust covariance matrices. The
interested reader can consult the relevant literature in this regard to gain insight into the methodology
applied. In case of ROBPCA the robust center (µ̂

x
) of the trajectory matrix, MCD loadings in Lk×k

https://wis.kuleuven.be/stat/robust/LIBRA
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and robust scatter measures are employed. The ROBPCA routine in the LIBRA package also allows
the user to specify the fraction of outliers to resist as part of the robust calculations. Throughout this
research the selection was set at 90 percent.

The motivation for employing outlier maps in the SSA context stems from the fact that PCA can
also be used to extract time series structure of an approximating signal series governed by an LRF of
rank r from an observed noise contaminate time series. Another motivation stems from the fact that
the column vectors of a noise-free time series governed by an LRF of known rank lies on the same
subspace, which can be found by applying centred SSA (Golyandina et al., 2001). Hence, instead of
focusing on the time series itself and additive outlier at a single position, the focus may be shifted
to the Hankel structured matrix. By extracting the principal components from the Hankel structured
matrix, as applied by the outlier map methodology, we are in fact extracting the ’structure’ of the
time series in the form of principal components and we can also form the projection matrix of the
PCA subspace. By projecting the column vectors of the Hankel structured trajectory matrix onto a
linear subspace of chosen rank ( k) and taking the necessary distance norm from this approximating
subspace, we are in fact taking the signal structure into account when calculating the distance of
the trajectory matrix column vectors to the subspace governed by rank k (i.e. the signal structure).
This results in using the orthogonal distance to this approximating subspace and coincidentally is
measured along the vertical axes of the outlier map. It is the Hankel structure of the trajectory matrix
combined with SVD or PCA that makes SSA an appealing method to use. The use of the multivariate
distance component of the outlier map, coined the score distance, is perhaps more difficult to justify
in the SSA context. Literature in the SSA context does not exist with regards to the distributional
properties of the column vectors in the trajectory matrix. It is, however, a well-known fact that
PCA is a distribution-free method. Hence, the statistical distance employed in the outlier maps uses
the notion of a statistical distance in the context of the principal components. It can only be noted
here that empirical evidence in the form of Monte Carlo simulations, which are presented as part of
this study, using outlier maps indicated that it worked very well in identifying additive time series
outliers in simulated time series governed by an LRF of known rank. The outlier map also makes it
possible to test whether column vectors in the trajectory matrix are possibly one of three outlier types
identified, in terms of the PCA subspace, or close to the PCA subspace. In the ensuing section we
consider an example of a real-life time series where SSA is combined with the notion of an outlier
map and it will be clear that the method actually works very well.

2.1. Example of outlier maps combined with ROBPCA

In this section the usefulness of outlier maps in the SSA context is illustrated. The well-known time
series consisting of air-passenger miles flown by passengers within the USA between the periods
January 1960 and December 1977, as sourced from Cryer (1986), is entertained. The time series is
illustrated in Figure 3, below.

The airline time series exhibits a number of interesting structural issues, which include increasing
variance and structural changes over time. Tsay (1988) identified an additive outlier in the log-
transformed time series at time t = 14 when a SARIMA model was fitted. We will, for the purpose
of illustration, only consider the log-transformed time series over the period January 1960 up to
February 1964 as illustrated in Figure 4, below.
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Figure 3: Airline passenger miles flown in USA (January 1960 to December 1977).

Figure 4: Log-transformed airline passenger miles flown in USA (January 1960 to February 1964).

ROBPCA was employed in constructing the outlier map in Figure 5, based on the trajectory
matrix formed using the log-transformed time series. The window length was set at L = 5 and the
leading k = 4 PCAs were used. An additive time series outlier was identified at position t = 14.
Double encircled cross hairs in the outlier map (cf. Figure 5) represent consecutive column vectors
in the trajectory matrix identified as outlying. Single circled cross hairs indicate other column vectors
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Figure 5: Outlier map (top graph using ROBPCA) and position of identified additive time series
outlier (lower graph).

in the trajectory matrix which were also identified as outlying.
Solely studying orthogonal distances as outlier identification method in SSA has its drawbacks,

as is clearly indicated by the outlier map in Figure 5. Only a single outlying column vector in
the trajectory matrix would be identified and hence the time series outlier would not be identified.
According to the outlier map there are 6 outliers of which 5 are classified as good leverage points
(GLP). Additional identification of these outlying column vectors makes it possible to correctly
identify the additive time series outlier using the outlier map.

Table 1, below, illustrates how the algorithm proposed in (4) identified the position of the outlier,
after the outlier map identified column vectors (10,11,12,13,14,38) as outlying. Note that the
choice i1 = 2 and i2 = 5 maximized the sum over the indicator function, i.e. ∑

5
i=2 Ii(o(i)−o(i−1)) = 4,

and the time series outlier was identified at t∗ = o(i1−1)+L−1 = 10+5−1 = 14.

Table 1: Example applying outlier identification algorithm.

i 1 2 (i1) 3 4 5 (i2) 6

o(i) and outlier type 10 (GLP) 11 (GLP) 12 (OO) 13 (GLP) 14 (GLP) 38 (GLP)

Ii(o(i)−o(i−1)) 0 1 1 1 1 0
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2.2. Example of outlier map combined with ROBPCA and convex hull peel-
ing

It was experienced that the cut-off limits applied to outlier maps (Hubert et al., 2005) not always
identified all the consecutive outlying column vectors in a trajectory matrix via use of the outlier
map methodology, albeit in a small fraction of cases and especially for heavy noise contaminated
series. Monte Carlo simulated results in the next section of this article will clearly substantiate the
latter observation.

An example of the above mentioned situation is illustrated in Figure 6, below. In this example the
first N = 50 log-transformed airline time series observations were unfolded into a trajectory matrix
using window length L = 7 and the leading k = 4 PCA factor loadings in the ROBPCA approach to
identify outlying column vectors. It is clear from inspection of Figure 6 that the ROBPCA procedure
and proposed cut-off limits only identified 6 consecutive outlying column vectors, i.e. double circled
cross hair points outside the cut-off limits indicated by the horizontal line (cOD) and vertical line
(cSD).

A procedure is proposed here, whereby bivariate convex hull peeling (CVHP) is applied in con-
junction with the cut-off limits to identify additional potential outlying column vectors in the tra-
jectory matrix using the outlier map. The convex hulls are clearly indicated in Figure 6, below. It
is clear that the approach identified an additional 4 column vectors which had large orthogonal dis-
tances and/or large score distances. One of these candidates, indicated by a double circled cross hair
on the outer convex hull, was part of consecutive outlying column vectors in the trajectory matrix
that would correctly identify the time series outlier at time t = 14.

Figure 6: Outlier map (using ROBPCA + CVHP) and position of identified additive time series
outlier.

Literature on the application of convex hull theory can be found in numerous published papers in
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the field of Statistics. Efron (1965) applied convex hulls to the study of random points. Bebbington
(1978) considered the use of convex hulls in the trimming of bivariate data as robust estimation of
the correlation coefficient. More recent advances that employ convex hull peeling to multivariate
datasets can be found in Porzio and Ragozini (2000).

The algorithmic approach of applying bivariate convex hull peeling in conjunction with the limits
in the outlier maps, as proposed in this article, can be listed as follows:

STEP 1: Identify outlying column vectors using limits proposed by Hubert et al. (2005) in the
outlier map;

STEP 2: Remove the outlying column vectors identified in STEP 1 from the outlier map and
construct the bivariate convex hull based on the remainder of points in the outlier map;

STEP 3: Flag column vectors which are on the convex hull where ODi is greater than the 80-th
percentile of the orthogonal distances used to construct the convex hull in this step, or where SDi is
greater than the 80-th percentile of the score distances used to construct the convex hull in this step;

STEP 4: Remove the column vectors identified in STEP 3 from the outlier map and again apply
the methodology described in STEP 3. This implies that the depth of data peeling applied were two
iterations of the CVHP approach.

Monte Carlo simulations comparing the above algorithm approach will be studied in the ensuing
section.

On a note regarding the choice of convex hull peeling, it can be reasoned that another approach
would simply involve changing the percentile used in the score distance cut-off limit, e.g. changing
χ2

k;0.975 to χ2
k;0.90. This approach would clearly just shift the cut-off limit left towards the mass of

points in the outlier map and possibly identify points with a high score distance, but low orthogonal
distance as possible outlying column vectors. The same would hold true for changing z0.975 in the
limit applied to the orthogonal distances (cOD). Even by changing both percentiles used in the limits
proposed by Hubert et al. (2005) would merely result in shifting the limits closer to the mass of
points in the outlier map and possibly identifying too many candidates that are clearly not outlying.
The CVHP approach is proposed here for its simplicity and fact that it concentrates on the most
extreme points in the outlier map, which were not also identified as outlying candidates.

Surely other approaches to the use of CVHP in the current context can be utilised and is an
open research question. This paper will, however, by use of Monte Carlo simulations in the ensuing
section clearly illustrate that CPCA and ROBPCA are very attractive methods for identifying outliers
and that the addition of CVHP is a mere possible alternative which compares very favourably in the
case of highly noise contaminated simulated time series.

3. Monte Carlo simulations

Monte Carlo simulations were conducted to compare the proposed outlier identification approaches,
viz. using classic PCA and outlier maps (denoted by CPCA), using robust PCA and outlier maps
(denoted by ROBPCA), using classic PCA combined with the CVHP technique and outlier maps
(denoted by CPCA+CVHP) and, finally, using robust PCA and combining CVHP with the outlier
maps (denoted by ROBPCA+CVHP).
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Two hundred rank r = 6 series of the form yt = (300+ 1.98t)+ 100(1− 0.12(sin(2πt/12)+
1.17(sin(2πt/6))))+ εt , where εt ∼ uni f orm[−a,a] and a ∈ [1,10,25] were simulated. The latter
choice of noise made it possible to control noise-to- signal ratios better. Let the simulated time series
be noted by {yt}144,200

t,i=1 . An additive time series outlier of magnitude δt = 75 was then introduced to
each of the time series observations, i.e. forming y∗t,i = yt,i+δt where t = 1, ...,144 and i = 1, ...,200.
Each of the proposed outlier detection methods were then applied to the same simulated time series
with an additive time series outlier added, in order to perform outlier identification. The percentage
of outliers correctly identified in each simulated time series of length N = 144 was then calculated.
Hence, there would be 200 such accuracy percentages, each per Monte Carlo simulated time series.
Outlier identification at each stage was performed using k = 5 leading PCA loadings and window
lengths in the range L ∈ [7,28] . Adjacent boxplots for the proposed outlier methods, based on the
percentage accuracy for the 200 simulated series, with simulated noise choices a = 1 and a = 10
can be consulted in Figures 7 and 8. Not all the Monte Carlo results are graphically reported here to
conserve space.

It is clear from the simulation results that breakdown of the outlier detection methods occur
beyond a certain choice of the window length(L) . This is due to the well-known curse of dimen-
sionality plaguing multivariate data when attempting outlier detection. Rousseeuw and Van Zomeren
(1990) suggest, as rule of thumb, that there be at least five observations per dimension. Hence, a
restriction (N− L+ 1)/L > 5 (or simply L < f loor[(N + 1)/6]) needs to be placed on the choice
of window length when performing outlier detection in the SSA context. Since the simulated time
series were all of length N = 144 this amounts to a restriction of L < 24 , which is clearly beyond
which breakdown of the multivariate outlier detection methods were observed. It was generally
found that the accuracy of the proposed outlier detection methods decreased for larger choices of L.
Accuracy of the CPCA and ROBPCA methods are fairly similar for time series with not too much
noise contamination (a ∈ [1,10]). The ROBPCA method was more accurate as noise contamination
in the time series increased. In the case of heavy noise contamination (a= 25), the ROBPCA+CVHP
method performed best. Finally, even if the structure of the time series was miss-specified and k = 6
leading eigenvectors used, the mentioned findings still held true.

A number of valuable conclusions can be reached from the simulation studies. First and fore-
most, that a suitable choice of window length (L) can be made in the range k < L < f loor[(N+1)/6]
and preferable be a small choice. Next, that the use of CPCA or ROBPCA be limited to time series
with little noise contamination. In case heavy noise contamination being present in a time series,
that ROBPCA+CVHP be employed. The combination of CPCA+CVHP did not produce results on
par with other methods compared and is not recommended.
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Figure 7: Monte Carlo simulation results (uni f orm[−1,1],δt = 75,k = 5).

Figure 8: Monte Carlo simulation results (uni f orm[−10,10],δt = 75,k = 5).

4. Application to South African tourism time series

The proposed outlier identification methodology will now be applied to a South African tourism
time series that has been studied by De Klerk (2014). The time series T110444, which was obtained
from Statistics South Africa, will be studied for time series outliers prevalent therein. The series
consists of the monthly foreign travellers from Switzerland to South Africa. We will only consider
the period June 1998 to April 2013. It is evident from a time series plot (cf. Figure 9, below) that the
time series exhibits trend, monthly seasonality and a few other harmonic oscillatory patterns. From
closer visual inspection of the time series it is evident that outliers are present at positions t = 3 and
t = 92.
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Figure 9: Monthly arrivals of foreign travellers to South Africa from Switzerland [June 1998 to
April 2013].

4.1. Outlier identification using SAS/ETS software

The PROC ARIMA procedure in SAS/ETS software was used to both model and identify outliers
present in the tourism time series. Only the first N = 100 observations were considered for the
purpose of time series modeling and outlier identification.

A SARIMA(0,1,1)12 (with no intercept) model was fitted to the log-transformed time series.
The fitted model was of the form (1−B12)(1− 0.57132B12)ln(yt) = zt where B denotes the usual
backshift operator. A 12th order difference was applied to the time series due to the monthly seasonal
variation. The procedure was instructed to identify a maximum of 2 outliers in the time series.

Figure 10: Additive outliers identified by PROC ARIMA in monthly arrivals of foreign travellers to
South Africa from Switzerland [June 1998 to April 2013] .

It is clear from Figure10, above, that the ARIMA procedure identified additive time series out-
liers at positions t∗ = 3 and t∗ = 92.
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4.2. Outlier identification using SSA combined with outlier maps

De Klerk (2014) illustrated how the leading 12 left singular vectors described the structure of the log-
transformed South African tourism time series. As part of the approach followed, SVD was directly
applied to the Hankel structured trajectory matrix, which was formed using the log-transformed
series. In the current example the k = 11 leading PCA loadings were used to perform outlier identi-
fication.

In order to compare the accuracy of outlier identification using CPCA, ROBPCA and ROBPCA+CVHP
time series lengths in the range N ∈ [88, ...,100] and window lengths in the range L∈ [12,13,14] were
employed.

Table 2: Position of outliers identified using CPCA, ROBPCA and ROBPCA+CVHP using k = 11 .

CPCA ROBPCA ROBPCA+
CVHP

L L L
12 13 14 12 13 14 12 13 14

88 3 3 3 3 3 3 3
89 3 3 3 3 3 3
90 3 3 3 3 3 3 3 3
91 3 3 3 3 3 3 3 3
92 3 3 3 3 3 3 3
93 92 92 3 92 3 3 3

N 94 92 92 92 92 92 92 3 3 3
95 92 92 92 92 92 92 92 92 92
96 92 92 92 92 92 92 92 92
97 92 92 92 92 92 92 92 92 92
98 92 92 92 92 92 92 92 92 92
99 92 92 92 92 92 92 92 92 92

100 92 92 92 92 92 92 92 92 92

Golyandina et al. (2001) actually recommends that a window length as an integer multiple of the
major seasonal periodicity, which is 12 in this time series, be used to extract the signal as best pos-
sible. The choice of window length (L) is, however, restricted here to the range k < L < [(N +1)/6]
due to curse of dimensionality which was illustrated in the Monte Carlo simulations. Hence, the
choice of window length was restricted to 12 ≤ L ≤ 14. Table 2, above, summarizes the position
(t∗) in the time series where the aforementioned outlier identification approaches identified an ad-
ditive outlier for the particular combination of time series- and window length. Perusing through
the table, it is clear that ROBPCA+CVHP identified an additive outlier at when the first N = 88
log-transformed time series observations were used combined with the choice k = 11 leading eigen-
vectors and window length L = 12. It is clear from the results that the ROBPCA+CVHP approach
accurately identified the outlier at t∗ = 3 for time series lengths in the range N ∈ [88, ...,94] when
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a window length in the range L ∈ [12,13] was used. The time series outlier present at t∗ = 92 is
much larger in magnitude than the one at t∗ = 3 and explains why the ROBPCA+CVHP approach
identifies t∗ = 92 for time series lengths in the range N ∈ [95, ...,100]. It also seems, for this partic-
ular example, that the ROBPCA+CVHP approach was most accurate in identifying an additive time
series outlier for different time series- and window lengths.

5. Concluding remarks

Singular spectrum analysis and four methods employing outlier maps were considered in this paper
to identify an additive time series outlier. At present the methodology is designed to deal with a
single additive time series outlier. The procedures were compared using Monte Carlo simulations
and it was evident that CPCA and ROBPCA worked very well in case time series had slight noise
contamination. ROBPCA and ROBPCA+CVHP seem to perform best for time series with higher
levels of noise contamination. As a rule of thumb the choice of window length is restricted to
k+ 1 ≤ L ≤ f loor([N + 1]/6), in which case the upper bound results due to the inherent curse of
dimensionality plaguing multivariate outlier detection methods. The method proposed in this paper
was also compared to outlier identification methods available in commercial software using much
more advanced time series techniques. The methods proposed in this paper compared on par with
regards to accuracy in identifying an additive outlier.
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