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Summary: The main goal of this paper is to propose a measure which quantifies the instability of
estimates over a range of chosen values of some other parameter. The measure is used to identify a
region where the estimates are considered "stable". Methods for identifying stable regions are then
developed. These methods are applied to threshold selection in an extreme value analysis context,
where the perturbed Pareto distribution is fitted to observed relative excesses. As a result a more
accurate estimator of the extreme value index is obtained. As a further application the instability
measure is employed in second order parameter estimation, which leads to an adjustment of an
existing estimator, having desirable properties as far as its role in threshold selection is concerned,
as well as improved estimation of the second order parameter for large samples.

1. Introduction

In extreme value theory (EVT) the emphasis is on describing the tail of the underlying distribution.
In this paper the focus will be on the right tail of the underlying distribution, which is assumed to be
heavy-tailed.

A distribution is heavy-tailed if and only if its right tail function is regularly varying (de Haan
and Ferreira, 2006). The definition is given below. See for instance Geluk, de Haan, Resnick and
Stărică (1997).

Definition 1 Let X be a random variable with distribution function F concentrated on [0,∞) and
tail function F = 1−F. F is said to be regularly varying with index −1/γ , γ > 0, if

lim
t→∞

F(tx)
F(t)

= x−
1
γ (1)

for all x > 0.

The right hand side of 1 can be recognised as the tail function of the Pareto distribution. (It is
defined for x≥ 1 in case of the Pareto distribution.)

AMS: 60G70, 62F10
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The parameter γ is called the extreme value index (EVI). A positive EVI indicates a heavy
right tail. The EVI is the crucial parameter, since accurate estimation of the EVI leads to accurate
inferences concerning extreme quantiles. In this paper attention will only be given to EVI estimation.
Once the methodology concerning the estimation of the EVI has been established, the extension to
inferences concerning extreme quantiles is standard for maximum likelihood estimation (MLE).
Refer for instance to Coles (2001).

Assume a sequence of independent, identically distributed random variables X1,X2, ...,Xn with
common heavy-tailed distribution F , concentrated on [0,∞). Denote the corresponding order statis-
tics by X1,n ≤ X2,n ≤ ·· · ≤ Xn,n. Let k denote the number of observations exceeding a positive
threshold t. The relation between t and k will be taken as t = Xn−k,n. If the random variable X has
distribution F , and Z is defined as the relative (or multiplicative) excess above the threshold t, then
Z = X/t given X ≥ t. For j = 1,2, ...,k, define Z j = Xi/t conditional on Xi > t, where i is the index
of the j-th excess, with Z j ≥ 1.

Let F t be the tail function of Z. Then, applying Definition 1, it follows that

F t (z) = P(X/t > z|X ≥ t) = P(X > tz|X ≥ t) = P(X > tz)/P(X ≥ t) = F(tz)/F(t)→ z−1/γ

as t→ ∞ for all z > 0 (and in particular for z≥ 1), where γ > 0.
In words this result states that the distribution of the relative excesses from a heavy-tailed distri-

bution is approximately Pareto, if the threshold is large.
The most natural way to estimate the EVI for relative excesses Z1,Z2, ...,Zk is to fit the Pareto

distribution by means of maximum likelihood estimation. It is easy to show that this yields Hk,n :=
1
k ∑

k
i=1 logZi, which is the famous Hill estimator of the EVI (Hill, 1975). Note that the formula for

the Hill estimator is derived as one would an MLE, but strictly speaking the variables Z1,Z2, ...,Zk

are not independent.
The Hill estimator performs poorly as far as accuracy of estimation is concerned, since the es-

timate is extremely sensitive to the choice of k. For small k the estimates have low bias, but large
variance. This is because the threshold is large enough for the first order approximation (Pareto
distribution) to be valid, but the number of observations k on which the estimate is based, is small.
Conversely large values of k lead to low variance, but large bias.

A variety of methods for choosing the threshold (or k) has been proposed in the literature, for
instance the method by Drees and Kaufmann (1998), the method by Guillou and Hall (2001), and
the method by Beirlant, Goegebeur, Segers and Teugels (2004), the last of which is based on the
minimisation of the estimated asymptotic mean square error. Despite the improvements in estimation
of the EVI brought about by these threshold selection methods, the Hill estimator still performs
unsatisfactorily.

A proposed solution to the bias problem associated with the Hill estimator is to consider a bias-
reduced estimator, obtained in this instance by fitting the perturbed Pareto distribution (PPD) to the
excesses, instead of the (strict) Pareto as in the case of the Hill estimator. The motivation behind this
approach is to obtain a larger range of values of k for which the bias is relatively low.

In the above setting, being able to objectively determine such a range of values of k for which
the estimator is “stable” will not only be more scientific, but will also enable comparison of these
methods by means of simulation studies. A method for quantifying the stability (or rather instability)



QUANTIFICATION OF ESTIMATION INSTABILITY 37

of estimates over a range of values of k is developed in this paper. The stable region is then defined
as the region for which the instability measure yields the lowest value.

Even though the concept is only illustrated in the context of EVT, the same measure can be used
in any application where the stability of estimates needs to be quantified over a range of some other
parameter. Examples of such situations are mentioned in the concluding remarks at the end of the
paper.

The purpose of this paper is to define a measure which quantifies the instability of estimates and
applying this measure to develop a method of threshold selection when fitting the PPD to relative
excesses. Note that the purpose is not an exhaustive comparative study of all estimators of the first
and second order parameters or of all threshold selection methods.

The next section reviews some results from the literature. The necessity of bias-reduced esti-
mators is demonstrated by considering the properties of the Hill estimator for a specific sample.
Fitting the PPD to the excesses instead of the Pareto yields a second order generalisation of the Hill
estimator. Some computational aspects are also highlighted.

In Section 3 the proposed instability measure is defined. It is then described how the instability
measure can be used to locate stable regions (sets of consecutive estimates which yield a low value
of the instability measure). Once a stable region has been identified, the EVI is estimated as the
mean of the estimates over the stable region, leading to the concept of an implied threshold. Section
4 discusses six candidate external estimators of the second order parameter. The choice of this
estimator crucially affects the accuracy of the resulting EVI estimation. In Section 5 a simulation
study design is proposed which is applicable to any study of estimators of a positive EVI. This
design is then applied to assess the performance of the second order parameter estimators, reducing
the number of candidate external estimators to three. In Section 6 it is shown how the proposed EVI
estimators are constructed. This section also includes the results of a simulation study comparing the
performance of these estimators, including some results illustrating the effect of adaptive threshold
selection for the Hill estimator. Some concluding remarks appear at the end of the paper.

2. Second order estimation

Consider a second order regular variation condition on the right tail function. Refer for instance to
Geluk et al. (1997).

Definition 2 A regularly varying tail function F is said to be second order regularly varying with
first order index −1/γ , γ > 0, and second order index ρ/γ , ρ ≤ 0, if a function A(t) exists which
tends to 0 and is ultimately of constant sign as t→ ∞, such that

lim
t→∞

(
F(tx)
F(t)

− x−1/γ

)
(A(t))−1 = H(x)

for all x > 0, where H(x) = dx−1/γ logx if ρ = 0 and H(x) = dx−1/γ xρ/γ−1
ρ/γ

if ρ < 0, with −∞ < d <

∞.

In this definition, γ is still the EVI (also called the first order parameter) and ρ is called the
second order parameter.
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Note that Geluk et al. (1997) specify that d 6= 0. de Haan and Ferreira (2006) also specify d 6= 0.
This restriction is not applied in Beirlant et al. (2004).

Whether or not d may be zero is of theoretical rather than practical significance. Theoretically
we should have d 6= 0, since if d = 0, ρ is undefined, and consequently the second order index is also
undefined. The advantage of allowing d to be zero is that the Pareto distribution can be included as
a special case. For the Pareto distribution F(tx)/F (t) = x−1/γ , and therefore d = 0.

For all practical purposes one can assume that all heavy-tailed distributions of interest are first
and second order regularly varying. Following limiting arguments similar to those shown above for
the first order case, one can show that the second order condition implies that the relative excesses
approximately follow the perturbed Pareto distribution (PPD), if the threshold is large. The definition
of the PPD follows.

Definition 3 A random variable X is said to be distributed perturbed Pareto with parameters γ , ρ

and c, denoted X ~ PPD(γ,ρ,c), when

F (x) = (1− c)x−1/γ + cx−(1−ρ)/γ ,

where x ≥1, γ > 0, ρ < 0 and ρ−1 ≤ c≤ 1.

The restriction ρ−1 ≤ c≤ 1 ensures that the density function f (x)≥ 0 for all x≥ 1. The Pareto
distribution is a special case of the PPD when c = 0 (in which case ρ is not zero, but undefined).

The EVI γ is a parameter of the PPD which can be estimated using MLE, resulting in a second
order generalisation of the Hill estimator.

Figure 1 below shows results pertaining to a sample of size n = 200 observations simulated from
a Burr(β = 1,γ = 0.5,ρ =−0.7) distribution. (Refer to Section 5 for more detail concerning the Burr
distribution.) In the first graph the Hill estimates of the EVI were calculated for k = 1,2, . . . ,150. In
the second graph the PPD was fitted to k multiplicative excesses by means of MLE. The resulting
estimates of the parameter γ (the EVI) is shown for k = 1,2, . . . ,150.

The horizontal dashed line indicates the true value of the EVI, namely 0.5.
The first graph of Figure 1 clearly illustrates the sensitivity of the Hill estimate with respect to

the choice of k. It is evident from the second graph that a larger value of k (and larger range of k
values) can be used when fitting the PPD. This illustrates the typical (desired) effect of a bias-reduced
estimator.

Some computational remarks are in order with respect to the MLEs of the PPD parameters.
The first concerns the estimation of ρ . One option is not to estimate ρ at all, but to fix it at

some value, usually −1. See for instance Beirlant et al. (2004) and Dierckx (2000). The second
option is to estimate ρ simultaneously with the other two parameters, γ and c. The third option,
called external estimation of the second order parameter, entails using some existing estimator of
ρ , substituting the value of ρ in Definition 3 by its estimated value ρ̂ , and estimating the remaining
two parameters using MLE.

The first option was popular before estimators of ρ existed which perform well. In the simulation
studies which were carried out, the estimator of the EVI which performed best was obtained by
external estimation of ρ . This is in line with theoretical results which state that external estimation
of ρ leads to a smaller asymptotic variance in reduced bias estimators. See for instance Gomes,
Figueiredo and Neves (2012). The choice of estimator of ρ will receive attention in later sections.
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Figure 1: Comparison of first and second order estimates.

The second issue is the computational restrictions on the range of the parameter c. From ex-
tensive simulations it was found that applying the restriction c≤ 0.5 substantially improves the EVI
estimation accuracy. This restriction also makes sense from a theoretical point of view. For 0≤ c≤ 1
the PPD survivor function is the weighted sum of a first order component x−1/γ , and a second order
component x−(1−ρ)/γ . When c > 0.5 there is a greater weight on the second order component than
on the first, which is not desirable.

3. An instability measure to determine regions of stable EVI
estimates

Considering the second graph of Figure 1, one can see that values of k between 40 and 80 (roughly)
would yield the most accurate estimates of the EVI. This is the region where the estimates are the
most stable. What is meant by “stable” in this context is also clear: one needs to identify a region
where the estimates do not vary excessively (low variance), and where the slope is more or less zero
(no systematic change in bias). In summary, a region which optimises the variance-bias trade-off
needs to be identified.

The proposed measure quantifies the instability of a quantity y with respect to chosen values of
another quantity x.

Definition 4 For m ≥ 2, let y1,y2, ...,ym denote the observed values of a quantity y corresponding
to chosen values x1,x2, ...,xm of another quantity x, respectively.

The instability of y with respect to x is defined as

ϑ
2 = σ

2 +b2,
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where σ2 is the sample variance of the y values, and b is the slope of the simple least squares
regression line of y on x.

In the context of threshold selection in EVT, {yi} is the set of estimated EVIs, and {xi} a set of
values corresponding to the respective choices of k. The interpretation of ϑ 2 is similar to that of an
MSE, namely that it is, in the sense described above, the sum of the variance and the square of the
(change in) bias.

Applying the instability measure for the purpose of threshold selection, the assumption is made
that the x values are equally spaced. Prior to calculating the instability measure, the x and y values
are also normalised in such a way that the measure ensures location and scale invariance with respect
to both the original x values and the original y values.

The chosen x values x1 < x2 < ... < xm can be normalised by calculating (xi− x1)/(xm− x1) for
i = 1,2, . . . ,m. If the original x values are equally spaced and m is large, these values are close to
x∗i = i/m. The latter is not only used for the sake of simplicity, but performs better in practice. The
reason is that it penalises small values of m. For instance, if m = 2 the formula (xi− x1)/(xm− x1)

yields adjusted values of 0 and 1, whereas the formula i/m yields x∗1 = 0.5 and x∗2 = 1, effectively
doubling the value of the slope b, leading to larger value of ϑ 2.

The observed y values are normalised by calculating y∗i = yi/y, where y denotes the mean of the
y values.

Attention will now be given to procedures for identifying stable regions in the context of thresh-
old selection in EVT. Consider again the second graph of Figure 1. To determine the most stable
region in the set of estimates, a smoother plot than that of the right side of Figure 1 is required.

One method which works particularly well in practice is not to calculate the EVI estimates at all
possible values of k (namely 1,2,...,n−1), but rather only at k = 5%, 10%, . . . , 95% of n (rounded
to the nearest integer). This leads to 19 estimates of the EVI, denoted in this context by y1, ..., y19.
The term region refers to a set of consecutive values of y. For instance, the set {y3,y4, ...,y9} is a
region of length 7.

The accuracy of EVI estimation is significantly improved by applying two procedures before
applying methods of stable region selection. The first procedure rounds the values y1, ...,y19 to the
nearest 5% of their mean to avoid insignificant fluctuations from having an effect when applying
Algorithm 3.2 below. Specifically, the first procedure is the following:

Algorithm 3.1

factor := round(100 × (0.05 × y))/100 Remark: 5% of mean rounded to two decimals

if factor = 0 then factor := 0.01

{y1, ...,y19} := factor × round({y1, ...,y19}/factor)

The idea behind the second procedure is to remove completely from consideration the region
of estimates where the bias becomes significant. This entails reducing the set of {y1, ...,y19} to
{y1, ...,ym}, where m < 19 if the original set contains non-decreasing values from some index on-
wards. Specifically, the algorithm is the following:
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Algorithm 3.2
y20 := 2× y19 Remark: Definition of y20 required in final while loop
m := 19
while (ym ≥ ym−1) and (ym−1 ≥ ym−2) and (m > 2)

m := m−1
end
while (ym = ym−1) and (m < 19) Remark: One increase is retained

m := m+1
end
while (ym = ym+1) and (m < 19)

m := m+1
end

An example of the application of Algorithm 3.2 will be given below. The methods for selecting
an optimal (stable) region follow.

Method 0 only applies algorithms 3.1 and 3.2, regarding the remaining m values {y1, ...,ym} as
the optimal region. No use is made of the instability measure.

For the sake of simplicity it will be assumed in the explanations below that m is still 19 after the
application of Algorithm 3.2.

Method 1 entails fixing the region length. For a region length of 12, for example, ϑ 2 is calculated
for regions {y1, ...,y12}, {y2, ...,y13}, up to {y8, ...,y19}. The region for which ϑ 2 is a minimum, is
regarded as the optimal region. If Algorithm 3.2 yields a value of m which is smaller than the region
length, the region length is set to m. In other words, if the set of estimates which remains after
applying Algorithm 3.2 has fewer elements than the specified region length, the stable region is
simply taken as {y1, ...,ym}.

Method 2 involves trimming the region. First ϑ 2 is calculated over the entire region {y1, ...,y19}.
Then either the first or the last value in the region is omitted, depending on which reduction of the
region decreases ϑ 2 by the largest amount. This process is repeated until neither top nor bottom
trimming of the region decreases the instability ϑ 2.

Method 3 fixes the upper limit of the region and trims the region from the left. For an upper limit
of 6, for example, ϑ 2 is calculated for {y1, ...,y6}, {y2, ...,y6}, up to {y5,y6}, and the region yielding
the lowest ϑ 2 is regarded as the optimal region.

Simulation studies were carried out on all three methods (and for all possible parameters of
each), across all sample sizes and distributions. The results indicated that algorithms 3.1 and 3.2
should always be applied (as mentioned earlier), and that two methods outperform the others on all
counts, namely methods 0 and 3.

Simulation studies were carried out to obtain rules to decide between the methods, and to deter-
mine what the choice of upper limit should be in the case of Method 3. These and other issues are
addressed in Section 6.

Once the stable region has been identified, the estimate of the EVI is taken as the mean of the
original EVI estimates over the stable region, i.e. before applying the rounding of Algorithm 3.1.

As an example, consider again the Burr sample used earlier.
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Figure 2: Stable region and EVI estimate for the Burr sample.

Figure 2 is the same as the right side of Figure 1, except that the estimates are calculated at
larger intervals of k, namely k = 10,20, . . . ,150. The plot therefore shows the values y1, ...,y15. The
vertical lines in Figure 2 indicate the optimal region which was found to be k = 30, . . . ,60. The
dashed line indicates the final EVI estimate of 0.4727.

After rounding the values by using Algorithm 3.1, Algorithm 3.2 was applied. The first while
loop in the algorithm yielded m= 8 (corresponding to k = 80). The second while loop yielded m= 9.
Even though bias reduced estimation is applied, there is often a point from where the estimates
increase steadily or, more specifically, are non-decreasing as a function of k. This point is at k =

100. The values corresponding to k = 100,110, . . . ,190 are excluded before applying stable region
methods 1, 2 or 3. The increase from k = 80 to k = 90 is regarded as variation, and not taken as the
start of the region where the bias is regarded as significant.

Method 3 with an upper limit of 6 was applied to the remaining region {y1, ...,y9}, yielding
{y3, ...,y6}, corresponding to k = 30, . . . ,60.

From this point onwards the original values y3, ...,y6 (without the rounding of Algorithm 3.1) are
used. The estimated EVI for this sample is calculated as the mean of y3, ...,y6, which is 0.4727.

The EVI in the optimal region which is closest to the final estimate of the EVI indicates the
choice of threshold. In the example above, the single estimate in the set {y3, ...,y6} closest to 0.4727
is y5 = 0.4731. This indicates a threshold of k = 50. The term implied threshold will be used to refer
to the threshold selected in this manner. The resulting 50 excesses constitute the observations which
will be used to construct confidence intervals, etc. In the concluding remarks more will be said of
how to proceed from this point onwards, in the context of a specific financial application.



QUANTIFICATION OF ESTIMATION INSTABILITY 43

4. External estimation of the second order parameter

Attention will now be given to the exact method of obtaining the set of EVI estimates at a specified
range of values of k. In Section 2 the need for external estimation of ρ was pointed out. In this
section six estimators of ρ will be investigated as candidates for the external estimation of ρ when
fitting the PPD to relative excesses using MLE. The first four estimators are those considered by
Gomes and Martins (2002), all of which are easy to implement, both in terms of programming and
computation time. The fifth estimator is one proposed by Gomes and Martins (2001). This estimator
is chosen since it lends itself to the application of the instability measure, which yields an adjusted
version of the estimator.

The first two estimators are

ρ̂1 :=−

∣∣∣∣∣log

∣∣∣∣∣1/M(1)
n
([

n0.9
])
−1/M(1)

n
([

n0.5
])

1/M(1)
n ([n0.95])−1/M(1)

n ([n0.5])

∣∣∣∣∣/log

[
n0.9
]

[n0.95]

∣∣∣∣∣
by Hall and Welsh (1985), and

ρ̂2 :=− 1
log2

∣∣∣∣∣∣∣log

∣∣∣∣∣∣∣
M(2)

n

([
n

2logn

])
−2
(

M(1)
n

([
n

2logn

]))2

M(2)
n

([
n

logn

])
−2
(

M(1)
n

([
n

logn

]))2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

by Peng (1998), where

M( j)
n (k) :=

1
k

k

∑
i=1

(
log

Xn−i+1,n

Xn−k,n

) j

, j ≥ 1.

Note that M(1)
n (k) is the Hill estimator. M(2)

n (k) was introduced by Dekkers, Einmahl and de Haan
(1989).

The following two estimators of ρ are special cases of a class of estimators proposed by Fraga
Alves, Gomes and de Haan (2003). They are

ρ̂3 :=−

∣∣∣∣∣∣
3
(

T (0)
n (k1)−1

)
T (0)

n (k1)−3

∣∣∣∣∣∣
and

ρ̂4 :=−

∣∣∣∣∣∣
3
(

T (1)
n (k1)−1

)
T (1)

n (k1)−3

∣∣∣∣∣∣ ,
where k1 = min(n−1, [2n/log logn]), and

T (τ)
n (k) :=



(
M(1)

n (k)
)τ

−
(

M(1)
n (k)/2

)τ/2

(
M(2)

n (k)/2
)τ/2
−
(

M(3)
n (k)/6

)τ/3 if τ > 0

log
(

M(1)
n (k)

)
− 1

2 log
(

M(2)
n (k)/2

)
1
2 log

(
M(2)

n (k)/2
)
− 1

3 log
(

M(3)
n (k)/6

) if τ = 0

.

The estimator proposed by Gomes and Martins (2001) will be denoted by ρ̂5. The instability measure
will be incorporated, leading to an adjusted estimator ρ̂∗5 . Only the procedure to calculate ρ̂5 will be
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stated here, together with some computational issues. For a full discussion of the estimator, refer to
Gomes and Martins (2001).

Given a set of n positive, ordered observations x1,n ≤ x2,n ≤ ... ≤ xn,n assumed to be from a
second order regularly varying distribution, define the following functions:

• For given choices of α and k, let γ̂
(α)
n (k) = m(α)

n (k)
Γ(α+1)(Hk,n)

α−1 , where Hk,n denotes the Hill esti-

mator, based on k excesses.

• For given choices of α , in and jn, let χ(α, in, jn) be the sample median of γ̂
(α)
n (k) for in ≤ k≤

jn.

• For given choices of α , in and jn, let Σ(α, in, jn) =∑
jn
k=in

(
γ̂
(α)
n (k)−χ(α, in, jn)

)2
.

The procedure for estimating ρ is as follows:

1. Choose in and jn which specify a range of k such that the estimates γ̂
(α)
n (k) are “stable” for

in ≤ k ≤ jn.

2. Obtain an estimate of α as α̂ = argminα Σ(α, in, jn).

3. Estimate ρ by ρ̂ as the solution of (1− ρ̂)α̂−1 (1+ ρ̂ (α̂−2)) = 1. The restriction α̂ ≥ 2
applies. In particular, the value of α̂ = 2.09272 corresponds to ρ̂ = −10, and α̂ = 15.02746
to ρ̂ = −0.01. Computationally, let ρ̂ = −10, if 2 ≤ α̂ ≤ 2.09272 , and ρ̂ = −0.01, if α̂ ≥
15.02746. For 2.09272 < α̂ < 15.02746, ρ̂ is solved numerically.

Simulations showed that Σ(α, in, jn) as a function of α will typically have one of three shapes.
The first shape (not shown) sees Σ(α, in, jn) decreasing as α increases. In such a case take α̂ = 15,
yielding ρ̂ =−0.01.

The second and third typical shapes are shown in the following graphs:

Figure 3: Typical behaviours of Σ(α, in, jn) as a function of α .



QUANTIFICATION OF ESTIMATION INSTABILITY 45

In the case of the first graph of Figure 3 the value of Σ(α, in, jn) at α = 2 is not regarded as
a local minimum. Take α̂ = 15, yielding ρ̂ = −0.01. The second graph of Figure 3 shows the
situation where the local minimum of Σ(α, in, jn) needs to be determined numerically. Note that
γ̂
(α)
n (k)→ 0 (and consequently Σ(α, in, jn)→ 0) as α → ∞, and that ρ̂ = 0 is always a (trivial)

solution of (1− ρ̂)α̂−1 (1+ ρ̂ (α̂−2)) = 1.
Gomes and Martins (2001) chose in = 500 and jn = 900 for a Fréchet sample of size n = 1000

in their simulation study. Simulations performed in this study confirm that in = 50% of n and jn =
90% of n is a good choice, robust over a wide variety of sample sizes and distributions as far as
performance is concerned. The estimator ρ̂5 will imply this choice of in and jn.

The adjusted estimator ρ̂∗5 chooses adaptively between three possible ranges which also covers
40% of the data, namely

1. in = 10% of n and jn = 50% of n,

2. in = 30% of n and jn = 70% of n, and

3. in = 50% of n and jn = 90% of n.

The procedure for the adjusted estimator is the following:

1. Determine α̂1, α̂2 and α̂3, corresponding to ranges 1, 2 and 3 above, respectively.

2. Determine three sets of estimates: a set of γ̂
(α̂1)
n (k) values, a set of γ̂

(α̂2)
n (k) values, and a set

of γ̂
(α̂3)
n (k) values, where k assumes all integer values in ranges 1, 2 and 3, respectively.

3. Calculate the instability measure for each of the three sets of estimates.

4. Let α̂ denote the estimated value of α which corresponds to the range associated with the
lowest instability measure.

5. Solve for ρ̂∗5 from
(
1− ρ̂∗5

)α̂−1 (1+ ρ̂∗5 (α̂−2)
)
= 1.

The performance of these six estimators will be evaluated in the next section.

5. Simulation study

In this section the aim is to provide an objective and comprehensive study design, which can be used
for all simulation studies concerning positive EVI estimation.

The families of distributions should be those for which the expressions for their respective EVIs
and second order parameters are known. The simulation study did not include observations sim-
ulated from the limiting distributions, for example the Pareto distribution, the generalised Pareto
distribution, the PPD and the generalised extreme value distribution.

A reasonable range for the EVI is from 0 to 1. The choice of the lower bound of ρ is not
straightforward. Seventeen papers focussing on the estimation of ρ were reviewed, of which only
seven show estimates of ρ for real (case study) data. Fraga Alves (2002) calculated estimates of ρ of
−1.9973,−0.4989 and−1.0609 for fire insurance claim data. Fraga Alves (2002) also shows graphs



46 T.L. BERNING

of various estimators over a wide range of values of k. From those graphs it seems as though−2 is the
lower limit for these estimates for that specific data set. Goegebeur and de Wet (2012) considered fire
insurance claim data, and arrived at a median estimate of ρ of approximately −1.2. Gomes, Caeiro
and Figueiredo (2004), estimated the value of ρ as −0.69 for exchange rate data. Gomes, Martins
and Neves (2007) obtained an estimate of −0.65, also for exchange rate data. Gomes, Henriques-
Rodrigues, Pereira and Pestana (2010) considered daily log-returns of indices and obtained ρ̂ =
−0.72 for the Dow Jones Industrial, and ρ̂ = −0.73 for the NASDAQ. Gomes et al. (2010) studied
males diagnosed with cancer of the tongue. Their data set yielded ρ̂ = −0.654. Gomes et al. (2012)
examined a data set consisting of number of hectares burnt during wildfires, and obtained an estimate
ρ̂ = −0.39.

For all the cases mentioned above, the estimates exceeded −2. This does not mean that it is
impossible to have ρ <−2 for real data, but−2 seems to be a reasonable lower bound. As far as the
upper limit is concerned, ρ = 0 should be included, since for some heavy-tailed distributions ρ = 0.

The resulting set of distributions is as follows:

• The Burr distribution with distribution function F (x) = 1−
(

β

β+xτ

)λ

, defined for x > 0, and
with β , τ and λ positive. This Burr type XII distribution is also called the Singh-Maddala dis-
tribution (Singh and Maddala, 1976). Since the EVI γ = 1/λτ and the second order parameter
ρ =−1/λ , the Burr can be reparameterised in terms of β , γ and ρ . The Burr distributions con-
sidered are the Burr(β = 1,γ = 0.25,ρ =−2), the Burr(β = 1,γ = 0.5,ρ =−2), the Burr(β =

1, γ = 1,ρ = −2), the Burr(β = 1,γ = 0.25,ρ = −0.5), the Burr(β = 1,γ = 0.5,ρ = −0.5)
and the Burr(β = 1,γ = 1,ρ =−0.5).

• The Fréchet distribution with distribution function F (x) = exp(−x−α), defined for x > 0, and
with α > 0. For the Fréchet γ = 1/α and ρ =−1. Three Fréchet distributions are considered
in this study, namely those with α = 1, α = 2 and α = 4, respectively.

• The student t distribution. Since a variable following the t distribution can assume negative
values, the distribution is inflected on the positive half-line. The resulting distribution func-

tion is F (x) =
2Γ( n+1

2 )√
nπΓ( n

2 )

∫ x
0

(
1+w2

n

)−( n+1
2 )

dw, defined for x ≥ 0, and with n > 0. For the |t|
distribution γ = 1/n and ρ = −2/n. The t distributions considered in this study are the |t1|,
|t2| and |t4| distributions.

• The loggamma distribution with distribution function F(x) = λ α

Γ(α)

∫ x
1 w−λ−1(logw)α−1dw, de-

fined for x > 1, and with λ and α positive. For the loggamma distribution γ = 1/λ and ρ = 0.
Since α = 1 yields the Pareto distribution, we take α = 2. Three loggamma distributions will
be considered, namely logΓ(λ = 1,α = 2), logΓ(λ = 2,α = 2) and logΓ(λ = 4,α = 2).

The above yields fifteen distributions from four families: five distributions with γ = 0.25, five with
γ = 0.5, five with γ = 1, four with ρ = −2, four with ρ = −1, four with ρ = −0.5, and three with
ρ = 0.

Sample sizes of n= 100, 200, 500, 1000, 2000 and 5000 will be considered. As measure of error,
the mean square error (MSE) will be used. In the tables which show results pertaining to estimators
of the EVI, the values of the MSEs will be multiplied by a factor of 1000 to ease comparison.
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All results shown in the following sections were based on 1000 samples from each combination
of distribution and sample size. The standard errors of the MSEs were obtained by calculating 10000
bootstrap repetitions of the MSE.

The simulation study design described above was applied to the estimators of the second order
parameter described in the previous section. Consistent with the results of Gomes and Martins
(2002) it was found that (1) ρ̂1 and ρ̂2 do not perform well, (2) ρ̂4 generally performs better than ρ̂3

for small values of ρ , and (3) ρ̂3 has the best performance overall (of the first four estimators).
The estimators ρ̂5 and ρ̂∗5 yield in general more accurate estimates than ρ̂3 for large values of ρ ,

and outperform ρ̂3 overall for n > 100. The best overall performer for 200 ≤ n ≤ 2000 is ρ̂5, and
ρ̂∗5 for n = 5000. More extensive simulations showed ρ̂∗5 to be the best overall performer for sample
sizes n = 10000, n = 20000 and n = 50000 as well.

Based on these results, only the estimators ρ̂3, ρ̂5 and ρ̂∗5 will be considered as candidates for the
external estimation of ρ .

6. The PPD maximum likelihood estimators

The simulation results referred to in this section were obtained by estimating the EVI by fitting the
PPD to relative excesses using MLE, after externally estimating the second order parameter by using
ρ̂3, ρ̂5 or ρ̂∗5 . The final result of this section is the construction of two estimators: one by applying ρ̂5

for EVI estimation and ρ̂∗5 for threshold selection, and one by applying ρ̂3 for both EVI estimation
and threshold selection. The second estimator is included to provide an alternative estimator which
is far easier to implement, and still yields good results.

The simulation study design of Section 5 was applied. For each of the estimators ρ̂3, ρ̂5 or
ρ̂∗5 the EVI was estimated at 19 values of k (5%, 10%, . . . , 95% of n) for 1000 samples from each
combination of sample size and distribution.

All possible combinations of threshold selection techniques were applied to the resulting esti-
mates: Method 1 with region lengths 2 to 19, Method 2, Method 3 with upper limits 2 to 19, each
with and without applying Algorithm 3.2. Note that Method 1 with region length 19 yields Method
0.

It was found that ρ̂5 consistently delivers the lowest MSE for the estimated EVI, even for sample
sizes n = 100 and n = 5000. This implies that even though an estimator of ρ yields the lowest MSE
in terms of estimation of ρ , it does not necessarily perform the best in terms of estimation of the EVI
when used as external estimator of ρ .

It was found that all methods across all combinations of sample size and distribution benefited
from the application of Algorithm 3.2. Furthermore, Method 3 consistently yielded the best results,
except for a couple of cases where Method 0 performed better.

The question of how to choose the optimal technique for a given sample size will now be ad-
dressed. The term technique denotes one of the 19 possibilities: Method 0 and Method 3 with each
of the upper limits 2, ...,19. Initially it was assumed that the choice of technique will depend on
the family of the underlying distribution, and specifically the respective EVI. The results showed
however that the optimal technique is for all practical purposes independent of the family of the
underlying distribution and the underlying EVI, and only a function of the underlying value of ρ .
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This information is used to develop an estimator which adaptively chooses the appropriate tech-
nique. The idea is to determine ρ̂ , and if ρ̂ < −1.5 to use the optimal technique for distributions
for which the underlying value of ρ is −2. If −1.5 ≤ ρ̂ < −0.75 use the optimal technique for
ρ = −1. If −0.75 ≤ ρ̂ < −0.25 use the optimal technique for ρ = −0.5. If ρ̂ > −0.25 use the
optimal technique for ρ = 0.

Another surprising result was that, even though ρ̂5 yields the lowest MSEs for EVI estimation,
ρ̂∗5 consistently performs better than ρ̂5 when choosing between the four categories mentioned in
the previous paragraph. The “best” estimator is achieved by using the value of ρ̂∗5 to decide which
technique to apply, and then applying the technique to the EVI estimates with ρ̂5 as external estima-
tor. The results in the table which follow are also shown for the estimator resulting from using ρ̂3

to choose between the four categories, and applying the appropriate technique to the EVI estimates
with ρ̂3 as external estimator.

Table 1: Optimal techniques for threshold selection.

ρ n ρ̂5,ρ̂∗5 ρ̂3 ρ n ρ̂5,ρ̂∗5 ρ̂3

-2 100 19 19 -0.5 100 5 5
-2 200 19 19 -0.5 200 5 5
-2 500 17 17 -0.5 500 5 5
-2 1000 17 17 -0.5 1000 5 5
-2 2000 15 15 -0.5 2000 4 4
-2 5000 14 14 -0.5 5000 3 2
-1 100 19 19 0 100 0 0
-1 200 18 18 0 200 0 0
-1 500 16 16 0 500 0 9
-1 1000 14 14 0 1000 9 9
-1 2000 12 12 0 2000 6 6
-1 5000 10 10 0 5000 3 3

The numbers in the ρ̂5,ρ̂∗5 and ρ̂3 columns refer to the upper limit for Method 3. A zero indi-
cates Method 0. As an example, suppose n = 5000 and ρ̂∗5 < −1.5. The appropriate technique is
therefore to be found in the section of the table where ρ =−2. Method 3 with an upper limit of 14
(corresponding to k = 70% of n) is applied to the EVI estimates obtained with ρ̂5.

The upper limits were chosen in a way that it is as robust as possible with respect to the choice
of external estimator, in this case only ρ̂3 and ρ̂5. No group MSE (average MSE for the group of
distributions with the same value of ρ) obtained using the table differed by more than two standard
errors from the actual observed minimum MSE. The two exceptions are underlined in Table 1. The
first exception is for ρ = −0.5 and n = 5000. For such a large sample size one must bear in mind
that there is a huge difference between k = 10% and k = 15% of n. The second exception sees ρ̂3

making a quicker transition than ρ̂5 from Method 0 to Method 3 (with an upper limit of 9) as the
sample size increases.

In summary, the procedure for the proposed estimator, which will be denoted by γ̂5, is as follows:
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1. Calculate ρ̂5 and ρ̂∗5 as described in Section 4.

2. Calculate 19 estimates of the EVI (at k = 5%, 10%, . . . , 95% of n) by fitting the PPD to the
relative excesses using MLE, keeping ρ fixed at ρ̂5 and maximising the log likelihood over
γ > 0 (EVI) and 1/ρ̂5 ≤ c≤ 0.5.

3. Choose the category for ρ . For ρ̂∗5 in (−∞,−1.5), choose ρ = −2, in [−1.5,−0.75), choose
ρ =−1, in [−0.75,−0.25), choose ρ =−0.5, and in [−0.25,0), choose ρ = 0.

4. Use the ρ̂5, ρ̂∗5 column of Table 1 to determine which technique to use.

5. Apply algorithms 3.1 and 3.2 to the 19 estimates, followed by the technique resulting from
Step 4 to determine the optimal region.

6. The estimate is calculated as the mean of the original estimates (not rounded) in the optimal
region.

The estimator γ̂3 is defined in the same way, except that both ρ̂5 and ρ̂∗5 are replaced by ρ̂3. This
estimator does not perform as well as γ̂5, but is considerably easier to program and computationally
much less intensive.

Below are tables containing simulation results comparing the performance of EVI estimators in
terms of MSE.

The effect of adaptive threshold selection was also investigated for the Hill estimator. The
three threshold selection methods considered were those mentioned in the introduction, namely the
method by Drees and Kaufmann (1998), the method by Guillou and Hall (2001), and the method
by Beirlant et al. (2004). The method by Drees and Kaufmann (1998), yielding the estimator de-
noted by γ̂Hill

DK , performed best overall and is the only method for which the results are shown. For a
discussion of these three adaptive threshold selection methods, please refer to the respective papers.

The alternative to adaptive threshold selection is to simply fix k at some value prior to estimation.
In this study the value of k was fixed at k0 = 2

√
n for the Hill estimator. This is the choice made by

Drees and Kaufmann (1998) to obtain their initial estimate γ̂Hill
0 = H2

√
n,n. The performance of γ̂Hill

0
is compared to that of γ̂Hill

DK .

The value of k0 = 2
√

n performs well as a default fixed choice of k for the Hill estimator, as can
be seen from the results below. A similar formula might be useful when fixing the value of k when
fitting the PPD. In the case of the PPD k/n should tend to zero slower than in the first order case. A
reasonable choice would be k0 = 2n2/3. It turns out that this choice closely models that which was
observed in the simulation studies. The estimator γ̂0 is defined as the estimate of the MLE of the
EVI obtained by fitting the PPD to k0 = 2n2/3 relative excesses, with ρ̂5 as external estimator of the
second order parameter.

The simulation study results are shown in the tables below. In each row the minimum value of
the MSE is underlined.
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Table 2: 1000×MSEs for estimates of the EVI for sample size n = 100.

Dist γ ρ γ̂Hill
0 γ̂Hill

DK γ̂0 γ̂3 γ̂5

Burr 0.25 -2 3.086 2.626 3.253 2.893 3.669
(0.144) (0.111) (0.124) (0.150) (0.157)

Burr 0.25 -0.5 19.493 19.356 10.039 14.340 8.349
(0.647) (0.744) (0.469) (0.614) (0.437)

Fréchet (4) 0.25 -1 3.299 3.376 3.196 2.787 3.746
(0.168) (0.356) (0.127) (0.158) (0.165)

|t4| 0.25 -0.5 36.255 30.310 20.352 15.796 10.818
(0.977) (1.053) (0.589) (0.769) (0.549)

logΓ(4,2) 0.25 0 8.890 10.348 4.726 6.129 4.319
(0.432) (1.342) (0.210) (0.282) (0.176)

Mean 0.25 14.205 13.203 8.313 8.389 6.180
(0.254) (0.380) (0.160) (0.209) (0.152)

Burr 0.5 -2 11.572 9.455 12.135 10.663 13.973
(0.560) (0.465) (0.473) (0.733) (0.614)

Burr 0.5 -0.5 73.088 74.419 36.679 54.358 31.727
(2.434) (2.647) (1.604) (2.316) (1.523)

Fréchet (2) 0.5 -1 14.676 13.405 14.912 13.479 16.562
(0.810) (0.622) (0.534) (0.692) (0.656)

|t2| 0.5 -1 24.513 27.493 12.968 24.968 25.179
(1.108) (1.163) (0.768) (1.106) (1.147)

logΓ(2,2) 0.5 0 36.270 38.995 21.113 27.481 19.343
(1.589) (2.234) (0.906) (1.255) (0.779)

Mean 0.5 32.024 32.754 19.562 26.190 21.357
(0.653) (0.747) (0.424) (0.606) (0.449)

Burr 1 -2 46.160 40.643 50.740 43.836 58.115
(2.220) (2.805) (1.936) (2.304) (2.485)

Burr 1 -0.5 296.088 293.840 138.417 192.518 118.216
(10.427) (10.573) (5.762) (7.391) (5.374)

Fréchet (1) 1 -1 58.165 65.676 51.091 49.477 59.510
(3.393) (6.556) (1.972) (2.589) (2.497)

|t1| 1 -2 53.228 47.448 57.310 54.341 72.719
(2.447) (2.142) (2.240) (2.690) (2.858)

logΓ(1,2) 1 0 138.476 161.175 79.031 97.364 67.987
(6.442) (9.671) (3.318) (4.003) (2.696)

Mean 1 118.423 121.756 75.318 87.507 75.309
(2.628) (3.230) (1.508) (1.896) (1.506)

Overall mean 54.884 55.904 34.397 40.695 34.282
(0.907) (1.112) (0.525) (0.667) (0.526)
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Table 3: 1000×MSEs for estimates of the EVI for sample size n = 200.

Dist γ ρ γ̂Hill
0 γ̂Hill

DK γ̂0 γ̂3 γ̂5

Burr 0.25 -2 2.339 1.429 2.212 1.530 1.973
(0.111) (0.064) (0.092) (0.083) (0.101)

Burr 0.25 -0.5 11.028 12.476 5.763 8.909 5.906
(0.394) (0.419) (0.274) (0.358) (0.293)

Fréchet (4) 0.25 -1 2.183 1.739 2.374 1.560 2.367
(0.101) (0.080) (0.099) (0.086) (0.105)

|t4| 0.25 -0.5 20.427 20.038 10.414 9.918 7.008
(0.570) (0.630) (0.315) (0.414) (0.291)

logΓ(4,2) 0.25 0 6.297 7.190 4.375 5.199 3.683
(0.268) (0.549) (0.168) (0.180) (0.128)

Mean 0.25 8.455 8.574 5.028 5.423 4.187
(0.152) (0.188) (0.094) (0.118) (0.091)

Burr 0.5 -2 8.745 5.270 8.617 6.072 8.549
(0.409) (0.247) (0.372) (0.327) (0.409)

Burr 0.5 -0.5 46.050 50.958 23.165 35.136 22.839
(1.671) (1.703) (1.072) (1.390) (1.071)

Fréchet (2) 0.5 -1 10.503 8.011 9.785 7.502 10.075
(0.509) (0.383) (0.383) (0.384) (0.440)

|t2| 0.5 -1 13.974 15.850 9.710 15.646 15.575
(0.708) (0.714) (0.738) (0.740) (0.738)

logΓ(2,2) 0.5 0 26.677 27.398 18.727 21.408 16.279
(1.093) (0.822) (0.716) (0.727) (0.604)

Mean 0.5 21.190 21.497 14.001 17.153 14.663
(0.443) (0.414) (0.316) (0.361) (0.311)

Burr 1 -2 36.532 22.108 33.994 24.887 33.816
(1.812) (1.023) (1.394) (1.355) (1.619)

Burr 1 -0.5 181.968 202.763 93.315 143.099 87.062
(6.034) (7.185) (3.992) (5.736) (3.972)

Fréchet (1) 1 -1 39.442 32.050 39.533 28.668 39.296
(2.016) (1.368) (1.588) (1.398) (1.759)

|t1| 1 -2 34.808 26.771 42.175 30.064 44.497
(2.058) (1.289) (1.909) (1.634) (2.002)

logΓ(1,2) 1 0 98.580 107.525 69.386 79.382 59.001
(4.368) (3.606) (2.628) (2.731) (2.130)

Mean 1 78.266 78.243 55.681 61.220 52.735
(1.638) (1.664) (1.113) (1.368) (1.096)

Overall mean 35.970 36.105 24.903 27.932 23.862
(0.568) (0.575) (0.387) (0.473) (0.381)
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Table 4: 1000×MSEs for estimates of the EVI for sample size n = 500.

Dist γ ρ γ̂Hill
0 γ̂Hill

DK γ̂0 γ̂3 γ̂5

Burr 0.25 -2 1.355 0.581 1.299 0.764 0.912
(0.061) (0.026) (0.057) (0.045) (0.053)

Burr 0.25 -0.5 5.926 7.746 2.795 4.411 3.050
(0.200) (0.232) (0.137) (0.176) (0.136)

Fréchet (4) 0.25 -1 1.433 0.854 1.522 0.872 1.232
(0.071) (0.037) (0.069) (0.049) (0.062)

|t4| 0.25 -0.5 10.815 11.716 5.005 6.064 3.918
(0.309) (0.357) (0.203) (0.250) (0.179)

logΓ(4,2) 0.25 0 4.530 5.406 3.551 4.278 3.077
(0.191) (0.134) (0.141) (0.116) (0.105)

Mean 0.25 4.812 5.260 2.835 3.278 2.438
(0.085) (0.090) (0.059) (0.067) (0.052)

Burr 0.5 -2 5.427 2.455 5.490 3.160 3.949
(0.260) (0.117) (0.266) (0.206) (0.234)

Burr 0.5 -0.5 24.800 30.077 12.066 18.161 12.854
(0.878) (0.969) (0.635) (0.726) (0.573)

Fréchet (2) 0.5 -1 6.002 3.704 6.362 3.769 4.888
(0.267) (0.149) (0.267) (0.199) (0.234)

|t2| 0.5 -1 7.675 8.255 6.591 8.505 8.604
(0.346) (0.314) (0.428) (0.432) (0.405)

logΓ(2,2) 0.5 0 18.454 22.668 15.466 17.604 13.109
(0.697) (0.522) (0.564) (0.452) (0.409)

Mean 0.5 12.472 13.432 9.195 10.240 8.681
(0.246) (0.232) (0.205) (0.200) (0.176)

Burr 1 -2 23.276 9.907 21.099 14.252 15.177
(1.049) (0.533) (0.901) (0.835) (0.896)

Burr 1 -0.5 103.445 116.008 49.345 74.587 49.197
(3.634) (3.886) (2.928) (2.950) (2.309)

Fréchet (1) 1 -1 22.443 17.245 24.628 15.934 20.271
(0.992) (0.760) (1.159) (0.831) (0.994)

|t1| 1 -2 22.916 20.853 30.080 15.524 20.996
(1.111) (9.036) (1.775) (0.842) (1.098)

logΓ(1,2) 1 0 73.957 87.196 59.608 68.296 51.872
(2.972) (2.149) (2.194) (1.818) (1.633)

Mean 1 49.207 50.242 36.952 37.719 31.503
(1.007) (2.022) (0.865) (0.751) (0.663)

Overall mean 22.164 22.978 16.327 17.079 14.207
(0.347) (0.679) (0.297) (0.260) (0.229)
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Table 5: 1000×MSEs for estimates of the EVI for sample size n = 1000.

Dist γ ρ γ̂Hill
0 γ̂Hill

DK γ̂0 γ̂3 γ̂5

Burr 0.25 -2 1.009 0.341 0.833 0.445 0.437
(0.045) (0.015) (0.034) (0.024) (0.023)

Burr 0.25 -0.5 4.176 5.690 1.828 2.908 1.972
(0.144) (0.151) (0.092) (0.111) (0.084)

Fréchet (4) 0.25 -1 0.974 0.527 0.994 0.510 0.687
(0.039) (0.022) (0.045) (0.027) (0.033)

|t4| 0.25 -0.5 6.640 8.049 2.534 3.911 2.248
(0.194) (0.217) (0.095) (0.139) (0.092)

logΓ(4,2) 0.25 0 3.200 4.717 2.886 3.476 2.718
(0.122) (0.085) (0.114) (0.081) (0.084)

Mean 0.25 3.200 3.865 1.815 2.250 1.612
(0.055) (0.056) (0.037) (0.040) (0.031)

Burr 0.5 -2 3.909 1.317 3.613 1.964 1.966
(0.175) (0.062) (0.191) (0.117) (0.114)

Burr 0.5 -0.5 16.367 21.214 8.016 11.766 8.401
(0.573) (0.646) (0.497) (0.483) (0.417)

Fréchet (2) 0.5 -1 4.032 2.479 4.111 2.137 2.848
(0.187) (0.100) (0.179) (0.108) (0.128)

|t2| 0.5 -1 4.948 5.330 5.454 5.028 5.093
(0.237) (0.206) (0.319) (0.268) (0.244)

logΓ(2,2) 0.5 0 14.281 19.911 11.880 14.414 11.461
(0.552) (0.378) (0.438) (0.344) (0.347)

Mean 0.5 8.707 10.050 6.615 7.062 5.954
(0.174) (0.157) (0.156) (0.134) (0.124)

Burr 1 -2 14.867 5.632 13.485 8.039 8.193
(0.636) (0.251) (0.560) (0.437) (0.479)

Burr 1 -0.5 60.773 74.966 28.898 43.199 30.549
(2.091) (2.424) (1.532) (1.700) (1.342)

Fréchet (1) 1 -1 16.287 9.833 17.703 9.077 12.514
(0.752) (0.378) (0.836) (0.485) (0.627)

|t1| 1 -2 15.082 5.984 20.733 8.443 9.886
(0.705) (0.277) (1.191) (0.507) (0.568)

logΓ(1,2) 1 0 54.459 78.858 48.269 57.814 46.241
(2.094) (1.538) (1.789) (1.368) (1.420)

Mean 1 32.294 35.055 25.818 25.314 21.477
(0.639) (0.584) (0.565) (0.467) (0.436)

Overall mean 14.734 16.323 11.416 11.542 9.681
(0.222) (0.202) (0.196) (0.162) (0.152)
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Table 6: 1000×MSEs for estimates of the EVI for sample size n = 2000.

Dist γ ρ γ̂Hill
0 γ̂Hill

DK γ̂0 γ̂3 γ̂5

Burr 0.25 -2 0.672 0.187 0.543 0.250 0.251
(0.028) (0.008) (0.022) (0.015) (0.015)

Burr 0.25 -0.5 2.748 4.195 1.294 2.089 1.231
(0.094) (0.102) (0.087) (0.075) (0.060)

Fréchet (4) 0.25 -1 0.679 0.333 0.711 0.361 0.424
(0.031) (0.013) (0.035) (0.019) (0.022)

|t4| 0.25 -0.5 4.596 5.877 1.476 2.999 1.471
(0.137) (0.146) (0.068) (0.097) (0.064)

logΓ(4,2) 0.25 0 2.720 4.399 2.393 2.857 2.361
(0.092) (0.062) (0.088) (0.061) (0.064)

Mean 0.25 2.283 2.998 1.283 1.711 1.148
(0.039) (0.038) (0.029) (0.028) (0.022)

Burr 0.5 -2 2.753 0.771 2.364 1.025 1.134
(0.125) (0.034) (0.109) (0.057) (0.073)

Burr 0.5 -0.5 10.218 14.722 4.498 7.940 4.770
(0.353) (0.426) (0.239) (0.292) (0.206)

Fréchet (2) 0.5 -1 3.110 1.505 2.895 1.583 1.814
(0.137) (0.056) (0.148) (0.081) (0.095)

|t2| 0.5 -1 3.432 3.309 4.507 2.832 3.475
(0.163) (0.125) (0.241) (0.131) (0.161)

logΓ(2,2) 0.5 0 10.146 18.076 9.624 11.292 9.239
(0.371) (0.282) (0.368) (0.262) (0.270)

Mean 0.5 5.932 7.677 4.778 4.934 4.087
(0.114) (0.106) (0.107) (0.085) (0.079)

Burr 1 -2 11.327 3.277 9.841 4.821 5.127
(0.511) (0.155) (0.465) (0.306) (0.361)

Burr 1 -0.5 41.164 50.202 19.393 30.540 19.035
(1.459) (1.606) (1.229) (1.158) (0.911)

Fréchet (1) 1 -1 11.635 6.621 11.756 6.362 7.553
(0.543) (0.237) (0.602) (0.361) (0.418)

|t1| 1 -2 12.535 3.900 16.609 6.132 7.106
(0.538) (0.201) (0.917) (0.374) (0.432)

logΓ(1,2) 1 0 43.365 73.104 38.197 47.759 38.903
(1.596) (1.144) (1.410) (1.008) (1.059)

Mean 1 24.005 27.421 19.159 19.123 15.545
(0.470) (0.400) (0.444) (0.330) (0.313)

Overall mean 10.740 12.699 8.407 8.589 6.926
(0.162) (0.139) (0.152) (0.114) (0.108)
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Table 7: 1000×MSEs for estimates of the EVI for sample size n = 5000.

Dist γ ρ γ̂Hill
0 γ̂Hill

DK γ̂0 γ̂3 γ̂5

Burr 0.25 -2 0.460 0.090 0.410 0.118 0.129
(0.020) (0.004) (0.025) (0.009) (0.010)

Burr 0.25 -0.5 1.670 2.808 0.692 1.168 0.627
(0.056) (0.061) (0.043) (0.046) (0.030)

Fréchet (4) 0.25 -1 0.441 0.198 0.446 0.182 0.205
(0.020) (0.008) (0.022) (0.009) (0.011)

|t4| 0.25 -0.5 2.444 3.621 0.611 1.532 0.671
(0.070) (0.083) (0.038) (0.062) (0.029)

logΓ(4,2) 0.25 0 2.260 3.862 2.047 2.337 2.044
(0.074) (0.044) (0.069) (0.047) (0.048)

Mean 0.25 1.455 2.116 0.841 1.067 0.735
(0.024) (0.023) (0.019) (0.018) (0.013)

Burr 0.5 -2 1.709 0.327 1.405 0.429 0.453
(0.073) (0.015) (0.067) (0.027) (0.029)

Burr 0.5 -0.5 5.938 8.981 2.895 4.236 2.561
(0.217) (0.252) (0.237) (0.193) (0.161)

Fréchet (2) 0.5 -1 1.808 0.922 1.805 0.790 0.866
(0.082) (0.033) (0.097) (0.041) (0.047)

|t2| 0.5 -1 1.725 1.629 3.190 1.512 2.002
(0.079) (0.064) (0.147) (0.058) (0.087)

logΓ(2,2) 0.5 0 7.999 15.302 7.392 9.006 7.793
(0.258) (0.186) (0.248) (0.188) (0.189)

Mean 0.5 3.836 5.432 3.337 3.195 2.735
(0.073) (0.064) (0.078) (0.056) (0.054)

Burr 1 -2 7.560 1.311 6.261 2.140 2.180
(0.338) (0.058) (0.261) (0.154) (0.159)

Burr 1 -0.5 24.769 31.584 10.124 16.946 9.408
(0.851) (0.914) (0.565) (0.682) (0.446)

Fréchet (1) 1 -1 7.302 3.358 7.388 3.184 3.695
(0.352) (0.123) (0.413) (0.160) (0.203)

|t1| 1 -2 6.657 1.632 9.254 2.341 2.582
(0.292) (0.073) (0.624) (0.130) (0.155)

logΓ(1,2) 1 0 33.432 59.177 30.625 35.967 31.001
(1.102) (0.782) (1.044) (0.719) (0.744)

Mean 1 15.944 19.412 12.730 12.116 9.773
(0.301) (0.243) (0.285) (0.205) (0.184)

Overall mean 7.078 8.987 5.636 5.459 4.415
(0.103) (0.084) (0.099) (0.071) (0.064)
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The following observations can be made:

1. All methods based on the fitting of the PPD perform significantly better than all methods based
on the Hill estimator. This indicates that the choice of first or second order model outweighs
all other concerns, at least for this limited number of estimators considered.

2. The threshold selection method by Drees and Kaufmann (1998) performs significantly worse
than fixing the threshold at 2

√
n, despite the fact that it is the best performing method of the

three methods considered for the Hill estimator. The only exception is the distributions with
an EVI of 0.25, for samples of size n = 100. This might be an indication that, if an estimator
performs extremely poorly, the very underlying mechanics of an adaptive threshold selection
method are undermined by the instability of the estimator. In such a case a reasonable choice
of a fixed threshold may perform better on average.

3. The estimator γ̂0 outperforms γ̂3 consistently, except when the sample size and underlying EVI
is large. In particular γ̂3 performed better than γ̂0 for n = 1000 and n = 2000 for the group with
an EVI of 1, and for n = 5000 for groups with EVI 0.5 and 1. The fact that the estimator γ̂0

outperforms γ̂3 in general shows that threshold selection is of secondary importance relative
to the choice of external estimator.

4. The estimator γ̂5 has the best average performance for each combination of EVI group and
sample size. The only two exceptions are the groups with EVI 0.5, for sample sizes of both
n = 100 and n = 200, where the estimator of choice was γ̂0.

Overall the results suggest that the most important contributing factors to the accuracy of esti-
mation of the EVI are, in decreasing order of importance, the following:

1. Whether a first or second order model is fitted to the relative excesses.

2. The method of parameter estimation, for a given threshold. This refers to the choice of external
estimator of the second order parameter, as well as to limits on the ranges of the parameters.

3. The method of threshold selection.

Concluding remarks
Frequently a situation is encountered where an estimator of the parameter of interest depends

on the choice of some nuisance parameter. More often than not suboptimal ranges of the nuisance
parameter exist, within which the estimates of the parameter of interest are extremely sensitive to
the slightest change in the value of the nuisance parameter. Failure to avoid these problem ranges
may have severe adverse effects on estimation accuracy. This paper proposes a new approach to
circumnavigate this problem to a large extent by defining a measure which quantifies the instability
of an observed quantity over a range of chosen values of another parameter.

Two applications of the proposed approach were considered, both in an extreme value analysis
context. One application was to refine the second order parameter estimator proposed by Gomes
and Martins (2001), by using the instability measure to distinguish between possible ranges of esti-
mates. An improvement in the accuracy of second order parameter estimation was obtained for large
samples, specifically when the sample size exceeds 5000. More importantly, the adjusted estimator



QUANTIFICATION OF ESTIMATION INSTABILITY 57

performed better in the ability to choose between different threshold selection techniques, based on
the range of the underlying value of ρ .

The main application of the instability measure involved threshold selection when estimating the
EVI by fitting the PPD to relative excesses. This was accomplished by determining a region where
the EVI estimates can be regarded as most stable. It led to the construction of the estimator γ̂5, which
shows significant improvement on the corresponding estimator which uses a fixed threshold.

The rest of the discussion will focus on some possible applications of the results presented in
this paper. Financial risk managers need to estimate, inter alia, the value at risk (VaR) of portfolios,
which is the level below which the future portfolio will drop with a specified small probability. EVT
is used to calculate the maximum (extreme) losses that can occur in a given time period. Consider
again the results at the end of Section 3, where it was found that for a data set of size n = 200 the
EVI was estimated as 0.4727, yielding an implied threshold of k = 50. The estimated value of ρ

(determined externally), as well as the MLEs of γ and c when fitting the PPD to the 50 excesses,
yields a fitted model for observations exceeding the threshold. Estimated values of extreme quantiles
can be obtained from this model for a given small exceedance probability. If the data represented
insurance claims, for example, the corresponding extreme claim amount can be estimated. The
accuracy of this estimated claim amount depends heavily on the accuracy of the estimated EVI. The
techniques presented in this paper improve on EVI estimation by proposing an improved method of
threshold selection.

There are also several possible areas of application of the instability measure outside the realm of
EVT. Generally the variance is used as a measure of stability. The main advantage of the proposed
instability measure is that it also takes into account the slope of the estimates over the specified
region. It therefore does not only detect high variability but also systematic change.

The following are some examples of possible areas of application. Many applications are simply
assessing stability of estimates over time, where there is no nuisance parameter which has to be
chosen.

• In statistical process control (SPC), both the variance and mean of a production process need
to be in-control for the process to run effectively. The instability measure can be applied here
as an additional measure which needs to be in-control. Alternatively, some threshold can be
decided upon which, if exceeded by the instability measure, can be used to flag the possibility
of future out-of-control signals.

• The amount of health data measured on each individual is expected to increase exponentially
in the near future with the availability of applications on electronic hand-held devices which
record these data automatically. A similar concept to that of the application of the measure in
SPC can be applied here to give early warning signals if measurements pertaining to health
are becoming unstable.

• Stacy, Guarino, Reckase and Wooldridge (2013) investigate in their working paper the effect
of student characteristics on the value-added estimates of teachers. The purpose of these esti-
mates is to evaluate teacher performance, but inter-year instability of estimates is a problem.
The problem is partially solved by taking into account in the regression model various vari-
ables which explain the variance in the teachers’ performance, and also by calculating moving
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averages. However, the authors warn that care should be taken when applying these measures.
In this setting the proposed instability measure can easily be applied to a large data base in
order to identify estimates which are unstable over time. The measure also takes systematic
change into account. The cases with the most extreme instability can be identified timeously
and objectively. Investigating these cases can lead to new insights as to the causes of unstable
performance estimates. These insights can be used to assist with policy decisions, or to help
identify additional variables which should be included in the model.
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