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Summary: GARCH models are useful to estimate the volatility of financial return series. Histori-
cally the innovation distribution of a GARCH model was assumed to be standard normal but recent
research emphasizes the need for more general distributions allowing both asymmetry (skewness)
and kurtosis in the innovation distribution to obtain better fitting models. A number of authors have
proposed models which are special cases of the class of normal mean variance mixtures. We intro-
duce a general framework within which this class of innovation distributions may be discussed. This
entails writing the innovation term as a standardised combination of two variables, namely a nor-
mally distributed term and a mixing variable, each with its own interpretation. We list the existing
models that fit into this framework and compare the corresponding innovation distributions, finding
that they tend to be quite similar. This is confirmed by an empirical illustration which fits the models
to the monthly excess returns series of the US stocks. The illustration finds further support for the
ICAPM model of Merton, thus supporting recent results of Lanne and Saikonnen (2006).

1. Introduction

The success of GARCH models in describing the volatility of financial time series is amply demon-
strated by the huge growth in the literature on these models (see surveys by Bollerslev, Chou and
Kroner, 1992; Bollerslev, Engle and Nelson, 1994; Li, Ling and McAleer, 2002; Engle, 2002; En-
gle, 2003). Traditionally these models are fitted to data by means of quasi-maximum likelihood, i.e.
the innovation distribution is assumed to be a standard normal distribution and maximum likelihood
estimation is carried out. Although consistent estimates of the parameters result from this proce-
dure (Bollerslev and Wooldridge, 1992), it is presently well known that the normality assumption is
often unrealistic. An innovation distribution with heavier tails than the normal, as well as possible
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asymmetry, often provides a better description and therefore would lead to more efficient estima-
tion results. Approaching possible alternatives to the normal distribution from an empirical point of
view, many authors have suggested heavier tailed distributions: among others, the t-distribution
(Bollerslev, 1987), variations of the t-distribution (Jondeau and Rockinger, 2003), the variance
gamma (Madan and Seneta, 1990) the general error distribution (Nelson, 1991), the NIG-distribution
(Barndorff-Nielsen, 1997; Andersson, 2001; Jensen and Lunde, 2001; Stentoft, 2003; Venter and
de Jongh, 2004), the z-distribution (Lanne and Saikkonen, 2004) and discrete mixtures of normal
distributions (Alexander and Lazar, 2004). Many of these choices are related to the mixture-of-
distributions-hypothesis (MDH) of Clark (1973) according to which a suitable variance mixture of
normal distributions is appropriate for the innovation distribution. This aspect is emphasized in the
work of Forsberg (2002) who used the notion of realized volatility (Andersen, Bollerslev, Diebold
and Labys, 2000; Andersson, 2001; Andersen, Bollerslev, Diebold and Ebens, 2001a; Andersen,
Bollerslev, Diebold and Labys, 2001b; Andersen, Bollerslev, Diebold and Labys, 2003) to guide in
the selection of a mixing distribution. They find that the distribution of realized volatility scaled by a
GARCH type volatility estimate is well approximated by an Inverse Gaussian (IG) distribution. As a
consequence, the NIG distribution should be particularly appropriate for the innovation distribution.
This result elucidates the findings of Venter and de Jongh (2004) that using the NIG distribution in
this context often leads to more efficient estimation of model parameters and related quantities such
as volatility and risk measures.

In this paper we formulate a fairly general family of normal mean variance mixture (NMVM)
distributions that may be used. In Section 2 we discuss GARCH models in which the innovation
term is a standardized form of the random variable

√
WZ + βW , with Z standard normally dis-

tributed independently from W , a positive mixing variable which can be interpreted as an impact
possibly arising from news noise effects. Section 3 reviews six special choices for the distribution
of W that have been selected in the existing literature; these are the Inverse Gaussian (IG), Inverse
gamma (IGam), gamma, log-normal (LN), discrete mixtures and infinite convolutions of exponential
distributions. We compare these mixing distributions and the corresponding NMVM distributions
and find that they can often approximate each other quite closely. This suggests that it would not
matter much in practice which particular mixing distribution is selected: the mixing concept is what
yields better modelling, not the particular implementation of this idea. This suggestion is confirmed
empirically in Section 4 where we illustrate the NMVM models in terms of the monthly excess re-
turns of US stocks. The GARCH specification used in this illustration follows that of Lanne and
Saikkonen (2006) where strong evidence in support of the intertemporal capital asset pricing model
(ICAPM) of Merton (1973) is provided. Our illustration adds further support to ICAPM in that the
result is robust with respect to specification of the innovation distribution used in the GARCH model.
Section 5 closes with a summary and an indication of further research issues.

2. NMVM GARCH models for return series

Let Y1,Y2, . . . denote the returns of a financial instrument over successive time periods. A GARCH
model to describe the return series takes the form

Yn = µn +
√

hnXn, for n = 1,2, . . . (1)
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where µn represents an expected (or structural) component, hn is the volatility and Xn the innovation
over period n. It is assumed that µn and hn are at most dependent on the past information set
Fn−1(i.e. the σ -field generated by Y1,Y2, . . . ,Yn−1 or a larger data set available at time n− 1). The
specific choices to be used here will be indicated later. The focus in this paper is on the choice of
the distribution of the innovations Xn in the model. To make µn and hn identifiable, we assume that
EXn = 0 and Var(Xn) = 1 so that µn = E[Yn |Fn−1 ] and hn = Var[Yn |Fn−1 ]. We suppose that the
Xn’s are independent of Fn−1 and also independent and identically distributed (i.i.d.). The common
distribution of the innovations is often assumed to be N(0,1) in which case Equation (1) may be
written as

Yn = µn +
√

hnZn, (2)

where Z1,Z2, . . . are i.i.d. N(0,1). If this model is fitted and corresponding residuals are calculated
and tested against the normality assumption by a normal QQ-plot or a normal probability integral
transform (PIT) plot, it often appears that an innovation distribution with heavier tails and possibly
also asymmetry is required to get a better fit (Forsberg, 2002; Lanne and Saikkonen, 2004). Among
others, the t-distribution and variations of the t-distribution have been used for this purpose; see
e.g., Bollerslev (1987), Jondeau and Rockinger (2003). Recently a number of authors have argued
in favour of using the NIG distribution for this purpose; see e.g., Andersson (2001), Jensen and
Lunde (2001), Venter and de Jongh (2004), Forsberg (2002) and especially the paper of Forsberg
and Bollerslev (2002). Lanne and Saikkonen (2004) use the z-distributions while Madan and Seneta
(1990) favour the use of the “variance gamma” distribution. These are all special members of the
class of normal mean variance mixture (NMVM) distributions. This suggests that the NMVM class
be considered in somewhat greater generality as models for the innovation distribution of a GARCH
model and we do so in this paper.

Let Z1,Z2, . . . be i.i.d. N(0,1) as above and let W1,W2, . . . be positive i.i.d. with common density
g independent of Z1,Z2, . . .. Then we assume that

Xn = (
√

WnZn +β (Wn−EWn))

/
[EWn +β

2Var(Wn)]
1
2 . (3)

The random part of Xn is given by
√

WnZn +βWn which has an NMVM distribution with Wn as
the mixing variable. The distribution is negatively skewed if the parameter β is negative which often
happens in practice, as will be illustrated in our example below. Subtraction of βEWn in Equation

(3) ensures that EXn = 0 and scaling by the divisor [EWn +β 2Var(Wn)]
1
2 ensures that Var(Xn) = 1

as required above. Replacing Wn by cW̃n with c > 0 and β by β̃

/√
c we can express Xn in the form

Xn = (
√

W̃nZn + β̃ (W̃n−EW̃n))

/
[EW̃n + β̃ 2Var(W̃n)]

1
2 . This shows that we need a scale restriction

on the distribution of the Wn’s in order to make β identifiable, which we implement by assuming
henceforth that EWn = 1. We shall write γ2 = 1+β 2Var(Wn) so that Equation (3) may be written as

Xn = (
√

WnZn +β (Wn−1))
/

γ. (4)

Clearly the conditional distribution of Xn given Wn is N(β (Wn−1)
/

γ,Wn
/

γ2) so that the density
of Xn is given by

f (x) =
∫

∞

0

γ√
w

ϕ

(
γx+β −βw)√

w

)
dG(w), (5)
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with ϕ the standard normal density and G the distribution function of Wn. This explicitly shows
that the density of the innovations Xn is in the NMVM class. We refer to model Equation (1) with
innovation Xn given by Equation (4) as a NMVM-GARCH model. Note that when the variance of Wn

approaches zero, the distribution of Wn becomes degenerate on 1 and Equation (5) simply becomes
the N(0,1) density.

Given past information (so that µn and hn are fixed) the innovation part of the return over the
n-th period is driven by two variables, namely Zn and Wn. We think of Zn as “normal trading noise”
in the sense that it represents the total of many individually small shocks originating from the give
and take in the trading process and resulting in Zn being normally distributed (by the central limit
theorem). We think of Wn as a “news noise impact” factor in the sense that it represents the effects
of important news (analyst reports and ratings, company actions, etc.) that appear after the end of
the (n−1)-th period. These effects may change the overall tone of trading during the present (n-th)
period, compared to what it would be if only data available up to the end of the previous period was
taken into account. Notice that in addition to E[Yn |Fn−1 ] = µn and Var[Yn |Fn−1 ] = hn we have

E[Yn |Fn−1,Wn ] = µn +
√

hnβ (Wn−1)
/

γ and Var[Yn |Fn−1,Wn ] = hnWn
/

γ
2. (6)

Thus over period n, the outcome Wn > 1 corresponds to “bad news” in the sense that the condi-
tional expected return is reduced to a lower level (accepting that β < 0). At the same time, condi-
tional volatility increases compared to what it would be in the case where the news noise impact Wn

has its average value of 1. Similarly the outcome Wn < 1 corresponds to “good news” in the sense
that the conditional expected return is enhanced and the conditional volatility is reduced. While µn

and hn are the expected return and volatility (conditional on past data only), Equation (6) also points
to a different expected return and a different volatility (conditional on past data as well as the market
tone set by news noise) that may be operating over the period, depending on the value of Wn that
actually realizes during that period. Of course, with only the returns Yn observed, we do not have
direct information on the Wn’s (nor on the Zn’s).

To fit a NMVM-GARCH model we need its log-likelihood function. This may be written as

N

∑
n=1

{
log f

(
(Yn−µn)

/√
hn

)
− 1

2 loghn

}
, (7)

where N is the total number of periods for which data is available. To proceed we must choose the
mixing distribution G and then apply Equation (5) to calculate f . The next section lists a number of
special cases and indicates how to handle these issues for each one.

3. Special NMVM innovation distributions

Normal inverse Gaussian (NIG) distributions

According to Jorgensen (1982) the density of the generalised inverse Gaussian (GIG) distribu-
tion may be written as g(w) =

(
δ2
/

δ1
)λ wλ−1 exp[− 1

2 (δ
2
1 w−1 +δ 2

2 w)]
/

2Kλ (δ1δ2) where δ1,δ2 > 0
and Kλ is the modified Bessel function of third order. If W has this distribution, then EW =

δ1Kλ+1(δ1δ2)
/

δ2Kλ (δ1δ2). The special choice λ = − 1
2 yields the inverse Gaussian distribution,
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for which EW = δ1K1/2(δ1δ2)
/

δ2K−1/2(δ1δ2) = δ1
/

δ2. To make EW = 1 we take δ1 = δ2 = ψ > 0,
obtaining what we call the “unit inverse Gaussian” distribution (abbreviated to UIG(ψ)), having
density

gUIG(ψ)(w) =
1

2K1/2(ψ
2)

w−3/2 exp
[
−1

2
ψ

2(w−1 +w)
]

= ψ exp(ψ2)√
2π

w−3/2 exp
[
−1

2
ψ

2(w−1 +w)
]
, for w > 0. (8)

If W is UIG(ψ)-distributed then Var(W ) = 1
/

ψ2 and for this choice of g we have γ2 = 1+
β 2
/

ψ2. The density of X in this case is given by

f (x) =
γψ

π

(
β 2 +ψ2

(γx+β )2 +ψ2

) 1
2

eψ2+β (γx+β )K1

(√
β 2 +ψ2

√
(γx+β )2 +ψ2

)
. (9)

This can be derived from the fact that GIG densities integrate to 1. The density in Equation
(9) may be called the “standard normal inverse Gaussian” distribution with parameters β and ψ

(abbreviated SNIG(β ,ψ)). The general class of four parameter NIG distributions, as discussed
e.g. in Barndorff-Nielsen (1997), can be obtained from the SNIG(β ,ψ) distribution by trans-
lation and scale changes. It can be shown that if X is SNIG(β ,ψ) distributed then cX + d is
NIG(ψγ2

/
c,βγ

/
c,d−cβ

/
γ,cψ

/
γ) distributed. Computation of the corresponding likelihood func-

tion requires access to routines that can handle Bessel functions; fortunately these are widely avail-
able in standard software packages.

Normal inverse gamma and t distributions

If W is inverse gamma distributed with parameters r and λ , then it has the density

g(w) = λ
rw−(r+1) e−λ/w

/
Γ(r)

and we find EW = λ
/
(r−1) (here we are assuming that r > 1, since otherwise this expectation does

not exist). Hence the requirement EW = 1 forces the choice r = λ +1. With this choice we get the
“unit inverse gamma” distribution (abbreviated UIGam(λ )) with density

gUIGam(λ )(w) =
λ λ+1w−(λ+2)e−λ /w

Γ(λ +1)
, w > 0. (10)

It is easy to show that Var(W ) = 1
/
(λ −1) where we must assume that λ > 1 to get a finite

variance. For this choice of g in Equation (5) and for the special case β = 0 we obtain the innovation
density

f (x) =
∫

∞

0

1√
w

ϕ(
x√
w
)gUIGam(λ )(w)dw =

Γ(λ + 3
2 )√

2π
√

λΓ(λ +1)
(1+

x2

2λ
)−(λ+

3
2 ). (11)
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This is a scaled t2λ+2-density with unit variance. More generally, with β 6= 0 we get a skewed
form of the t-densities given by

f (x) =
∫

∞

0

γ√
w

ϕ

(
γx+β −βw√

w

)
gUIGam(λ )(w)dw

=

√
2
π

γλ λ+1

Γ(λ +1)

(
|β |√

(γx+β )2 +2λ

)λ+
3
2

eβ (γx+β )K
λ+

3
2

(
|β |
√
(γx+β )2 +2λ

)
(12)

where now γ2 = 1+β 2
/
(λ −1). Again this follows from the GIG density integrating to 1. Various

skewed forms of the t distributions have been proposed (Jondeau and Rockinger, 2003) but as far as
we know Equation (12) has not been discussed before. It reverts to the symmetric t2λ+2 in the limit
when β → 0. We refer to it by a more descriptive name as the “standard normal inverse gamma”
distribution with parameters β and λ (abbreviated SNIGam(β ,λ )).

Normal gamma distributions

If W is gamma distributed with parameters r and ζ , it has the density g(w) = ζ rwr−1e−ζ w
/

Γ(r) and

EW = r
/

ζ . Hence the requirement EW = 1 forces the choice r = ζ leading to the “unit gamma”
distribution (abbreviated UGam(ζ )) with density

gUGam(ζ )(w) =
ζ ζ wζ−1e−ζ w

Γ(ζ )
, w > 0. (13)

In this case Var(W ) = 1
/

ζ and γ2 = 1+β 2
/

ζ . With this choice of g in Equation (5) we get the
innovation density

f (x) =
∫

∞

0

γ√
w

ϕ

(
γx+β −βw√

w

)
gUGam(ζ )(w)dw

=

√
2
π

γζ ζ

Γ(ζ )

(
|γx+β |√
β 2 +2ζ

)ζ− 1
2

eβ (γx+β )K
ζ− 1

2

(
|γx+β |

√
β 2 +2ζ

)
. (14)

Again this follows from the GIG density integrating to 1. The special case β = 0 amounts to
the “variance gamma” distribution, extensively discussed by Madan and Seneta (1990). We refer to
Equation (14) as the “standard normal gamma” distribution with parameters β and ζ (abbreviated
SNGam(β ,ζ )) which is in line with the naming conventions applied so far.

Normal log-normal distributions

If U is N(0,1) distributed then W = exp(τU− 1
2 τ2) has a “unit log-normal” (ULN(τ)) distribution in

the sense that it is log-normally distributed with EW = 1 for all values of τ . We can restrict τ to τ ≥ 0
since if τ < 0 we may replace U by −U and write W = exp(τ(−U)− 1

2 τ2) =exp((−τ)U − 1
2 τ2).

In this case Var(W ) = exp(τ2)−1. The distribution in Equation (5) with g the ULN(τ)density may
be called the “standard normal log-normal” (abbreviated SNLN(β ,τ)) distribution. In this case it
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does not seem possible to write the integral in Equation (5) in a more explicit form and one has to
resort to numerical methods to compute it. When writing Equation (5) in the form

f (x) =
∫

∞

−∞

γ√
w(u)

ϕ

(
γx+β −βw(u))√

w(u)

)
ϕ(u)du, where w(u) = exp(τu− 1

2 τ
2), (15)

the Gauss-Hermite quadrature method given by Liu and Pierce (1994) is quite effective. In fact we
cross-checked this method by applying it to the integrals in Equations (12) and (14) and comparing
the results to the explicit expressions available in those cases and always found excellent agreement.

z distributions

The z(a,b,c,d) distribution has density function

f (x) =
1

cB(a,b)

{
exp[(x−d)

/
c]
}a{

1+ exp[(x−d)
/

c]
}a+b , with a,b,c > 0, (16)

where B(a,b) is the beta function; see e.g. Lanne and Saikkonen (2004) who use it as the innova-
tion density in GARCH models. Using arguments similar to those in Barndorff-Nielsen, Kent and
Sorensen (1982), it can be shown that if α = ∑

∞
k=0 2

/
(a+ k)(b+ k), β = 1

2
√

α(a−b) and

W =
1
α

∞

∑
k=0

2
(a+ k)(b+ k)

Vk, (17)

with V0,V1, . . . i.i.d. exponentially distributed with expectation 1, then X = (
√

WZ +β (W −1))
/

γ

is z(a,b,1
/√

αγ,−β
/

γ) distributed. Thus in this case W is an infinite convolution of exponen-
tial distributions and the corresponding model is in the NMVM class. In this case Var(W ) =(
4
/

α2
)

∑
∞
k=0 1

/
(a+ k)2(b+ k)2 and as above γ2 = 1+ β 2Var(W ). We can also parameterise the

distributions in terms of the parameters α and β , which is useful in view of the special role that
β plays in our exposition. The equations above express α and β in terms of a and b. Con-
versely, for given values of α and β , we can write b = a− 2β

/√
α , then solve the equation α =

∑
∞
k=0 2

/
(a+ k)(a−2β

/√
α + k) for a = a(α,β ) and finally set b = b(α,β ) = a(α,β )− 2β

/√
α .

An expression for the density of W can be obtained as in Barndorff-Nielsen et al. (1982), but we
omit it here since we have the advantageous situation that the density of the z distribution can be
computed directly from Equation (16).

Discrete normal mixtures

Each of the special cases above used continuous mixing distributions. In a related but different
GARCH model context, Alexander and Lazar (2004) use discrete mixing distributions. In our con-
text, many choices of discrete mixing distributions are possible but we restrict attention to the fol-
lowing three point choice. Take

W =


1−w1, with probability p1

1, with probability 1− p1− p2

1+w2, with probability p2

(18)
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with the restrictions 0 < w1 < 1, w2 > 0 and p1w1 = p2w2 (to ensure that EW = 1). Then Var(W ) =

p1w2
1 + p2w2

2 and γ2 = 1+β 2(p1w2
1 + p2w2

2). From this result we obtain the innovation density

f (x) =
γ p1√
1−w1

ϕ

(
γx+βw1√

1−w1

)
+ γ(1− p1− p2)ϕ (γx)+

γ p2√
1+w2

ϕ

(
γx−βw2√

1+w2

)
. (19)

We refer to this as the “standard normal discrete” (abbreviated SND(β ,w1,w2, p1, p2)) distri-
bution. The outcome W = 1−w1 (resp. W = 1+w2) may be referred to as a “good news” (resp.
“bad news”) period and the outcome W = 1 is a “neutral news” period. This is a simple family
to deal with from a computational point of view, although it has one more free parameter than the
other models considered. Furthermore, the implied assumption that only certain specific news noise
impact severities are possible may be unrealistic in many cases.

Comparisons of the distributions

The distribution of the Wn’s was unitized to have expectation 1. However, since their variances
depend on the remaining parameter(s), one way to compare them is to choose these parameter(s)
such that they have the same variances. In the UIG(ψ), UIGam(λ ), UGam(ζ ) and ULN(τ) cases,
the distribution of Wn depends only on one parameter and not on the skewness inducing parameter
β of the normal mixing formula. The equations

1
ψ2 =

1
λ −1

=
1
ζ
= exp(τ2)−1 (20)

ensure that the variances of these distributions are the same. However, it is more relevant to compare
the NMVM distributions resulting from using these mixing distributions for Wn since it need not
be the case that equalizing the variances would lead to the mixtures approximating each other well.
Relative entropy (Soofi and Retzer, 2002) may be used to make a more relevant comparison. The
entropy

∫
∞

−∞
log{ fSNIG(β ,ψ)(x)

/
fSNIGam(β ,λ )(x)} fSNIG(β ,ψ)(x)dx measures the distance between the

SNIG(β ,ψ) and SNIGam(β ,λ ) distributions. For a given ψ we can choose λ = λ (ψ) to minimize
this entropy (keeping β fixed). The choice λ = λ (ψ) may be interpreted as the MLE of λ when the
UIGam(λ ) distribution is fitted to an infinite sample of observations from a SNIG(β ,ψ) distribution.
Similar entropy minimizing choices ζ (ψ), τ(ψ) and {w1(ψ),w2(ψ), p1(ψ), p2(ψ)}may be defined
to approximate the SNIG(β ,ψ) by the SNGam(β ,ς), SNLN(β ,τ) and SND(β ,w1,w2, p1, p2) dis-
tributions respectively. As an illustration we used the SNIG(−0.5,2) distribution and found numer-
ically that SNIGam(−0.5, 4.8423), SNGam(−0.5, 4.2306), SNLN(−0.5, 0.4734) and SND(−0.5,
0.5595, 1.2399, 0.2492, 0.1125) are the corresponding entropy minimizers. The case of the z dis-
tribution is somewhat more involved since it depends on both parameters a and b. It thus indirectly
involves the mean mixing parameter β via the relationship β = 1

2
√

α(a− b). In this case we can
minimize the entropy over both a and b to obtain the best approximation among the z-densities to
any one of the others. For the SNIG(−0.5,2) distribution the choices a = 1.2664 and b = 2.0369
(with α = 1.6962, β =−0.5016) yield the best entropy approximation among the z-densities.

Figure 1 shows the graphs of the SNIG(−0.5,2) together with the best approximations from the
other five densities. Figure 2 compares the logs of these densities. Evidently in both graphs the
densities are so nearly equal as to be graphically indistinguishable, even far out in the tails. Similar
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results hold at other parameter choices of the parameters. All numerical results were done with SAS
using Proc NLP for numerical optimisation work.

Figure 1: SNIG(−0.5,2) density and its best entropy approximations.

Figure 2: Logs of the SNIG(−0.5,2) density and its best entropy approximations.

4. Empirical illustration

In this section we illustrate the NMVM models by applying them to the monthly excess returns
series of US stocks (downloaded from the website2 of Kenneth French). The model specifications

2 The series Mkt-Rf in the file F-F_Research_Data_Factors.txt at http://mba.tuck.dartmouth.edu/pages/

faculty/ken.french/data_library.html
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used here are motivated by a similar application in Lanne and Saikkonen (2006). According to the
intertemporal capital asset pricing model (ICAPM) of Merton (1973) conditional expected excess
return should be proportional to the conditional excess volatility, i.e. we should have µn = δhn

with δ > 0. Lanne and Saikkonen (2004, 2006) and also Ghysels, Santa-Clara and Valkanov (2005)
review this theory and the extensive literature that examined the empirical support of the anticipated
ICAPM relation. Prior to their work, relatively unconvincing empirical support for the ICAPM was
reported in the literature. Ghysels et al. (2005) introduce a new type of volatility estimator, referred
to as the MIDAS estimator. In principle NMVM innovation distributions can be applied in the
MIDAS context as well, but we do not pursue this here. Instead we follow only the GARCH work of
Lanne and Saikkonen (2006), who fit an NMVM-GARCH model with the symmetric t-distribution
for the innovations using the specifications µn = δ0 + δhn, hn = α0 +α1(Yn−1− µn−1)

2 +β1hn−1.
They find that inclusion of the unnecessary intercept δ0 in the specification of µn makes estimation
of δ highly inaccurate and forms part of the reason why support for the ICAPM was often not found
in empirical work. With the specification µn = δhn their estimate of δ is positive and significantly
different from zero, confirming the ICAPM relation. They obtain this result for the series over the
period 1928:1 to 2000:12 as well as over the sub-periods 1928:1 to 1963:12 and 1964:1 to 2000:12.
We repeated their analysis under all choices of the NMVM innovation densities and found that their
results continue to hold in all cases.

To save space we report here only the results for the ICAPM model over the second sub-period
1964:1 to 2006:11. We used all six NMVM innovation densities as well as the symmetric t choice
for comparison purposes. Table 1 shows the corresponding MLEs (and their asymptotic standard
errors) of the proportionality parameter δ and the GARCH parameters and Table 2 shows the MLEs
of the skewness mixing parameter β and the parameters of the various innovation distributions.

Table 1: MLEs of the ICAPM and GARCH parameters of NMVM models for the US monthly
excess returns series.

Model δ α0×104 α1 β1

SNIG 3.2411
(1.0927)

0.9139
(0.3617)

0.0986
(0.0228)

0.8549
(0.0268)

SNIGam 3.2867
(1.0817)

0.9167
(0.3720

0.1002
(0.0234)

0.8538
(0.0275)

SNGam 3.2437
(1.0940)

0.9365
(0.3614)

0.0978
(0.0224)

0.8542
(0.0267)

SNLN 3.2578
(1.0863)

0.9223
(0.3647)

0.0989
(0.0228)

0.8542
(0.0271)

Sz 3.2314
(1.0753)

0.8600
(0.3648)

0.0965
(0.0230)

0.8598
(0.0291)

SND 3.3299
(1.0406)

1.1200
(0.4775)

0.1018
(0.0280)

0.8432
(0.0330)

t(v) 3.9259
(0.9926)

0.1080
(0.3990)

0.1053
(0.0237)

0.8419
(0.0270)
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Table 2: MLEs of the innovation distribution parameters of NMVM models for the US monthly
excess returns series.

Model β Other parameters
SNIG -0.5581 (0.2137) ψ: 1.7324 (0.3706)
SNIGam -0.5787 (0.22673) λ : 3.9678 (1.6968)
SNGam -0.5948 (0.1872) ζ : 3.1659 (1.0330)
SNLN -0.5647 (0.2106) τ: 0.5386 (0.1001)
Sz -0.5729 (0.1585) α: 2.3179 (0.3240)
SND -0.7366 (0.3415) w1: 0.8982 (0.1141) w2: 2.5045 (1.3201)

p1: 0.0936 (0.0609) p2: 0.0336 (0.0251)
t(v) 0 v:7.4786 (2.3254)

It is clear that the estimates of the GARCH parameters are all very similar across the different
innovation distributions, as anticipated, and also agree quite well with the values of Lanne and
Saikkonen (2006) for their second sub-period. The estimates of δ for the first six innovation densities
(which allow for possible skewness) are also very similar and somewhat smaller than that of the
symmetric t – which is again very close to that of Lanne and Saikkonen (2006). These estimates
are about three times their standard errors and the p-values for testing that δ = 0 are less than 0.01,
giving good support for the ICAPM theory. They are also in line with the results reported by Lanne
and Saikkonen (2006) for the symmetric t. The estimates of β are also quite similar, except for the
case of the SND model, which seems somewhat more negative. However, the differences do not
appear excessive when taking the standard errors into account. The p-values of these estimates are
of the order of 0.03 and less, suggesting that innovation distributions with negative skewness are
required.

The estimates of the other parameters can be compared using the variance or entropy techniques
discussed in the previous section. For example, taking the SNIG parameter values ψ = 1.7324 as
given, the closest SNLN entropy approximation has τ = 0.5373 which corresponds closely with
the entry in the SNLN line in Table 2. This also happens for the other cases in the table, except
for SND where the correspondence is poor. Perhaps the differences between the discrete mixture
and the continuous mixtures are simply too large from a finite sample point of view to expect close
agreement in that case.

Figure 3 shows PIT plots for the innovation residuals corresponding to the six NMVM models.
To obtain these we first substitute the parameter estimates into the expressions for µn and hn to
obtain their estimates µ̂n and ĥn, compute the residuals X̂n = (Yn− µ̂n)

/√
ĥn and their probability

integral transforms (PITs) PITn =
∫ X̂n
−∞

f̂ (x)dx with f̂ the relevant estimated innovation density, then
order them into PIT(1) < · · ·< PIT(N) and finally draw a scatter plot of the pairs (n

/
(N +1),PIT(n)).

In all cases the PIT plots (virtually indistinguishable on the graph) closely follow the equi-angular
line corresponding to the uniform distribution, indicating excellent fits of the models, irrespective of
which particular choice of the mixing distribution is implemented. Formal tests of fit can be done
by applying tests of normality to the series Φ−1(PITn). Shapiro-Wilk W -tests of this form have
p-values of the order of 0.4, confirming the quality of the fits.
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Figure 3: PIT plots of the residuals of the NMVM models.

In summary, the illustration shows that the five NMVM innovation distributions based on con-
tinuous mixing distributions tend to produce closely similar results. This is often also the case with
the sixth distribution where the mixing distribution is discrete. The results of this illustration are
themselves also of considerable interest, in the sense that only few instances of empirical support for
the ICAPM theory have been reported in the literature so far. Here the recent positive contributions
of Lanne and Saikkonen (2004, 2006) are shown to be robust with respect to the choice of innovation
distribution used in the volatility model.

5. Summary and concluding remarks

Well-fitting GARCH models for financial series often require both skewed and heavy-tailed inno-
vation distributions. This can be achieved by normal mean and variance mixture distributions. The
literature already contains a number of proposals for this purpose. In this paper we presented a
systematic and unified NMVM-GARCH framework and reviewed and compared the specific inno-
vation distributions that have been used. Our experience based on the illustrations in Section 4 (as
well as on other examples and simulation studies not reported here) suggest that the five NMVM
innovation distributions based on continuous mixing distributions virtually always produce closely
similar results. This is encouraging in the sense that it is the underlying phenomenon we are trying
to model that is important, more so than the specific mathematical forms used in the process. As
such the results should be stable when these forms are varied over reasonably possible alternatives.

A number of questions call for further research. Firstly, as the results are stable under the differ-
ent mixing distribution choices, is a type of semi-parametric approach possible in which we do not
need to make a specific parametric choice for the mixing distribution? Secondly, what information
about the periodic news-noise impact factors Wn can be inferred from the observed returns? In prin-
ciple it is possible to write down expressions for filtering estimators of the form E[Wn |Y1, . . . ,Yn] ,
but they tend to be inaccurate in that it is largely the single observation Yn that plays a role in the esti-
mation of Wn. However, additional data over each period is often available. For example, in addition
to the closing values, open, high and low values are also available for many other financial series. In
principle the use of this additional data should lead to more accurate modelling and estimation. An
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approach towards doing this for the case of a somewhat different but related form of the NIG inno-
vation distribution is given in Venter, de Jongh and Griebenow (2005). Another instance is the case
of daily returns, where intra-day data may be available in addition to the daily returns. An analogous
approach towards dealing with this case is discussed in Venter, de Jongh and Griebenow (2006). We
intend to extend this work to incorporate the approach of the present paper and its applications.
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