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Summary: This paper presents an extension of the classical compound Poisson risk model
in which the inter-claim time arrivals and the claim amounts are structurally dependent. We
derive the corresponding asymptotic tail probabilities for the discounted aggregate claims
in a finite insurance contract under constant force of interest. The dependence assumption
between the inter-claim times and the claim amounts is well suited for insurance contracts
during extreme and catastrophic events. Based on the existing literature, we use heavy-
tailed distributions for the discounted aggregate claims and derive the extreme value at
risk (minimum capital requirement). Our results, based on a case study of ten million
simulations, show that the independence assumption between the inter-claim times and the
claim amounts lead to underestimating the minimum capital requirement proposed by the
regulatory authorities.

1. Introduction

The distribution of the discounted aggregate renewal sums is crucial for risk modelling.
Its applications spread across various fields such as actuarial science, credit risk manage-
ment, and health economics. The moments of this distribution are often generated to have a

1 Corresponding author.

AMS: 62G32, 62F99, 62E20



206 ADÉKAMBI & MWAMBA

glimpse of the expected average claim amounts, the inter-claim time arrivals, their volatil-
ity as well as the ruin probability. Under constant force of interest rate, the classical and
compound Poisson risk models always assume that the inter-claim time arrivals and the
forthcoming claim amount are two independent random variables.
In the literature, the asymptotic tail probability of the discounted aggregate claim process
over a finite time horizon is obtained under the assumption of independence between the
inter-claim time arrivals and the forthcoming claim amount. The asymptotic tail probabil-
ity based risk models are more suitable in situations where the inter-claim time arrivals are
very small and the magnitude of the claim amount increasingly large. This situation occurs
in insurance contracts involving earthquakes, catastrophic events, financial crises etc. The
traditional Poisson risk model often fails to generate accurate risk measures without the use
of asymptotic tail probabilities. Tang (2005, 2007) and Wang (2008) derive asymptotic tail
probability results of the discounted aggregate claim process over a finite time horizon for
both the classical compound Poisson and the renewal risk models.

Similar studies that assume independence between the inter-claim time arrivals and the
forthcoming claim amount include Taylor (1979), Delbaen and Haezendonck (1987), Wa-
ters (1989), Sundt and Teugels (1995), Cai (2002) and Yuen, Wang and Wu (2006) who
not only assumed independence between inter-claim time arrivals; but also have derived the
asymptotic tail probabilities associated with free interest risk model. In addition, Boogaert,
Haezendonck and Delbaen (1988), Willmot (1989), Léveillé and Garrido (2001a, 2001b)
Léveillé, Garrido and Wang (2009), Léveillé and Adékambi (2011, 2012) have not only
assumed the independence between the inter-claim time arrivals and the claim amount, but
also derived the generalization of the moments of the aggregate renewal sums.

Although the independence assumption appears to be custom in risk theory, it has re-
cently been subjected to severe criticism due to the fact that it does not provide reliable
estimates under extreme events; for examples see Boudreault, Cossette, Landriault and
Marceau (2006) and Zhang and Yang (2011). Thus, the use of dependent risk models
have exhibited some positive interests in the literature. Albrecher and Boxma (2004, 2005)
develop a dependent risk model in which they assume that the inter-claim arrivals and the
forthcoming claim amount are governed by a semi-Markov process. Further to that, Al-
brecher and Teugels (2006) model the dependence between the inter-claim arrivals and the
forthcoming claim amount by making use of a random walk model. Their results are more
elaborate as they model this dependence using a copula and derive exponential estimates of
ruin probabilities in finite and infinite time horizons.

This paper attempts to assess the impact of the dependence between the inter-claim time
arrivals and the forthcoming claim amount by also making use of copulas and deriving the
asymptotic tail probabilities. The closest study to ours is that of Asimit and Badescu (2010)
who consider in a constant force of interest environment a heavy tailed distribution of the
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discounted aggregate claim in which the dependence structure is modelled using copulas.
They derive the asymptotic tail probabilities, the asymptotic finite time ruin probabilities,
as well as asymptotic approximations for some common risk measures associated with the
discounted aggregate claims distribution.

This paper has not only generalized the results of Asimit and Badescu (2010) but also
presents a general case where the distribution of both the inter-claim time arrivals and the
claim amount can be of any form. To our best knowledge, this is the first study of its kinds
to obtain general results allowing the inter-claim time arrivals and the claim amount to have
any theoretical distribution. Our model inputs are set as follows:

1. The claim counting processes {N(t), t ≥ 0} and {Nd(t), t ≥ 0} form respectively an
ordinary and a delayed renewal process and, for k ∈ N = {1,2,3, ...}

• the positive claim occurrence times is given by {Tk,k ∈ N},

• the positive claim inter-arrival times are given by Wk = Tk−Tk−1,k ∈ N, T0 = 0.

2. The claim severities {Xk,k ∈ N} are such that

• {Xk,k ∈N} are independent and identically distributed random variables (i.i.d.).
{Xk,Wk,k ∈ N−{1} is independent of {X1,W1}.

3. The aggregate discounted value at time 0 of the claims severity over a finite time
horizon (0, t] yields respectively, for the ordinary and the delayed renewal case,

Sδδδ (t) =
N(t)

∑
k=1

e−k Xk, Sd
δδδ
(t) =

Nd(t)

∑
k=1

e−k Xk, t ≥ 0

where Sδδδ (t) = Sd
δδδ
(t) = 0 if N(t) = Nd(t) = 0 and δ is the constant force of interest.

The remainder of the paper is organized as follows. Section 2 describes in more details
the type of dependence structure used in the study and an overview of well-known results.
Section 3 provides the asymptotic forms of the tail of the probability distribution of the dis-
counted aggregate claims and their corresponding finite time ruin probabilities. In Section
4, we derive asymptotic formulas for several risk measures associated with the discounted
aggregate claim distribution. Numerical illustrations are given at the end of this section.

2. Preliminaries

Assumptions 2.1 The bivariate random vectors (Wi,Xi), i = 1,2, · · · are mutually inde-
pendent and identically distributed. Moreover, there exists a positive and locally bounded
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function g( ) such that the relation

Pr
(
X1 > x|W1 = w

)
∼ Pr

(
X1 > x

)
g(w)

holds uniformly for all w ∈ (0,T ] as x→ ∞ where T is the time horizon.
Here uniformly is understood as

lim
x→∞

sup
w∈(0,T ]

∣∣∣∣Pr
(
Xi > x|Wi = w

)
Pr
(
X1 > x

)
g(w)

−1
∣∣∣∣.

The motivation behind the above assumption is given by the fact that under its premises
we can study in a unified way a wide class of dependence structures given in terms of a
copula. A two-dimensional copula is a bivariate distribution function defined on [0,1]2

with uniformly distributed marginals. Due to Sklar’s Theorem (Sklar, 1959), if G is a joint
density function with continuous marginals G1 and G2, there exists a unique copula, C,
given by

C
(
G1(x),G2(y)

)
= G(x,y) ∈ Domain(G).

Similarly, the survival copula is defined as the copula relative to the joint survival func-
tion and is given by

Ĉ(u,v) = u+ v−1+C(1−u,1− v), (u,v) ∈ [0,1]2.

A more formal definition and examples of copulas are given in Nelsen (1999). Provided
that Ĉ2(u,v) =

∂Ĉ(u,v)
∂v , (u,v) ∈ [0,1]2 exists, Assumption 2.1 can be rewritten as

lim
u↓0

sup
v∈[e−λT ,1)

∣∣∣∣Ĉ(u,v)
uh(v)

−1
∣∣∣∣= 0,

where h(v) = g
(
− logv

λ

)
. An example of a copula that satisfies Assumption 2.1 is given

below:

Example 1 Ali-Mikhail-Haq

C(u,v) =
uv

1−φ(1−u)(1− v)
,

with g(w) = 1+φ(1−2e−λw).

There are many characterizations of heavy-tailed distributions, but one of the most pop-
ular families is the class ℘ of subexponential distributions. By definition, a non-negative
random variable X with density function F belongs to ℘ and we write F ∈℘ if

lim
x→∞

Pr
(
X1 +X2 > x

)
Pr
(
X > x

) = 2,
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where X1 and X2 are independent copies of X . A well-known subclass of ℘ is the set of
regularly varying density functions with parameter α denoted by RV−α . By definition, a
density function F belongs to RV−α family of distribution such that a random variable X
belongs to RV−α if

lim
x→∞

Pr
(
X > xy

)
Pr
(
X > x

) = y−α , α > 0.

For more details on heavy-tailed distributions, we refer the reader to Bingham, Goldie
and Teugels (1987) and Embrechts, Klüppelberg and Mikosch (1997).

Lemma 2.1 Consider an ordinary or a delayed renewal counting process, such as given in
Section 1. Then, for 0 = x0 < x1 < x2 < ... < xk ≤ t, i0 = 0,1 = i1 < i2 < ... < ik ≤ n and
1≤ k ≤ n, the conditional joint density probability functions of Ti1 ,Ti2 , ...,Tik

∣∣N(t) = n and
Ti1 ,Ti2 , ...,Tik

∣∣Nd(t) = n are given, for the renewal case, by:

f
Ti1 ,Ti2 ,...,Tik

∣∣N(t)

(
x1,x2, ...,xk|n

)
=

P
(
N(t− xk) = n− ik

)
∏

k
j=1 fTi j−Ti j−1

(
x j− x j−1

)
P
(
N(t) = n

) , (1)

and, for the delayed case, by:

f
Ti1 ,Ti2 ,...,Tik

∣∣Nd(t)

(
x1,x2, ...,xk|n

)
=

P
(
N(t− xk) = n− ik

)
∏

k
j=1 fTi j−Ti j−1

(
x j− x j−1

)
P
(
Nd(t) = n

) ,

where Ti j , i0 = 0,1 = i1 < i2 < ... < i j ≤ n denotes the i th
j claim occurrence time. For the

proof, see Léveillé and Adékambi (2012). For the particular case where Wi Exponential(λ ),
called the homogeneous Poisson process, the probability density function of the inter-claim
times, W = (W1, ...,Wn), conditioned on the number of events by time t is

f
W1,W2,...,Wk

∣∣N(t)=n

(
x1,x2, ...,xk|n

)
=

n!
tn ,

on Dn :=
{(

W1, ...,Wn
)
∈ (0, t)n : ∑

n
i=1Wi < t

}
.

Lemma 2.2 Let X ,Y1,Y2, ... be a sequence of independent non-negative random variables,
with G the density function of X , G ∈℘ . In addition, it is assumed that there exists a
constant M such that Pr

(
Y1 > x

)
≤ MPr

(
X > x

)
holds for all x > 0 and any i = 1,2, ....

Then, for any ε > 0 there exists a constant A < ∞ such that

Sn := sup
x>0

Pr
(

∑
n
i=1Yi > x

)
Pr
(
X > x

) ≤ A(1+ ε)n,

holds for any integer n. For the proof, see Asimit and Badescu (2010).
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3. Main results

Lemma 2.2 will now help us to state the main result for the model without interest.

Theorem 3.1 Consider the model without interest (δ = 0 ) compound renewal model such
that F ∈℘ . If Assumption 2.1 is satisfied for any t ∈ (0,T ], where T is the time horizon,
then

Pr
(
S0(T )> x

)
∼ K0(T )Pr

(
X1 > x

)
, x→ ∞,

where

K0(T ) =
∞

∑
i=1

∫ T

0

∫ T

w1

...
∫ T

wn−1

ng(w1)Pr
(
N(T −wn) = 0

) n

∏
j=1

fWj (w j−w j−1)dw.

Proof. By conditioning on the number of claims and inter-claim times by time T and using
Equation (1), the cumulative distribution functions of S0(T ) follows the integrals equations

Pr
(
S0(T )> x

)
=

∞

∑
n=1

Pr
(
N(T ) = n

)∫
Dn

Pr
( n

∑
k=1

Xk > x|W = w,N(T ) = n
)

Pr
(
W = w|N(T ) = n

)
dw.

From Lemma 2.1 we have,

fW1,W2,...,Wn|N(T )=n(w1,w2, ...,wn|n) =
Pr
(
N(T −wn) = 0

)
∏

n
j=1 fW j

(
w j−w j−1

)
dw

Pr
(
N(T ) = n

) .

Then,

Pr
(
S0(T )> x

)
=

∞

∑
n=1

Pr
(
N(T ) = n

)∫
Dn

Pr
( n

∑
k=1

Xk > x|W = w,N(T ) = n
)

×
Pr
(
N(T −wn) = 0

)
∏

n
j=1 fWj

(
w j−w j−1

)
Pr
(
N(T ) = n

) dw

=
∞

∑
n=1

∫
Dn

Pr
( n

∑
k=1

Xk > x|W = w
)

Pr
(
N(T −wn) = 0

) n

∏
j=1

fWj

(
w j−w j−1

)
.

(2)

Using the fact that Xi|Wi = wi are independent and F ∈℘, we can apply Lemma 2.2. This
is true, since Assumption 2.1 implies that there exists some constant M > 0 such that for all
x > 0 and w ∈ (0,T ]

Pr
(
X1 > x|W1 = w1

)
≤MPr

(
X1 > x

)
.
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Due to Lemma 2.1, it follows that for any ε > 0 there exists A > 0 such that

Pr
( n

∑
k=1

Xk > x|W = w
)
≤ A(1+ ε)nPr

(
X1 > x

)
holds uniformly for all x > 0, w ∈ (0,T ]n and n = 1,2, . . . . Furthermore,

∞

∑
n=1

Pr
(
N(T ) = n

)∫
Dn

Pr
( n

∑
k=1

Xk > x|W = w,N(T ) = n
)

Pr
(
W = w|N(T ) = n

)
dw

≤
∞

∑
n=1

Pr
(
N(T ) = n

)∫
Dn

A(1+ ε)nPr
(
W = w|N(T ) = n

)
dw

≤
∞

∑
n=1

Pr
(
N(T ) = n

)
A(1+ ε)n = APN(T )(1+ ε)< ∞

since PN(t) exists for any t > 0. This allows us to apply the Dominated Convergence Theo-
rem in Equation (2) which, together with Assumption 2.1, Theorem 3.1 from Cline (1986)
and the relation in Equation (1), yield

lim
x→∞

Pr
(
S0(T )> x

)
Pr
(
X1 > x

) =K0(T ) =
∞

∑
n=1

∫
Dn

n

∑
k=1

g(wk)Pr
(
N(T−wn) = 0

) n

∏
j=1

fWj

(
w j−w j−1

)
dw.

(3)
�

Example 2
When fW1(t) = λ1e−λ t , fWj(t) = λe−λ t , j = 2,3, . . . we have

K0(T ) =
λ ?2e−λ1T

λ1

∫ T

0
g(w)

(
eλ ?T − eλ ?w1

)
dw

+λe−λ ?T
{

1+
λ ?

λ1

}∫ T

0
g(w)(1+λ (T −w))e−λwdw. (4)

Proof.

K0(T ) =
∞

∑
n=1

∫
Dn

n

∑
k=1

g(wk)Pr
(
N(T −wn) = 0

) n

∏
j=1

fW j

(
w j−w j−1

)
dw

=
∞

∑
n=1

∫ T

0

∫ T

w1

. . .
∫ T

wn−1

ng(w1)Pr
(
N(T −wn) = 0

) n

∏
j=1

fW j

(
w j−w j−1

)
dw (5)

Pr
(
N(T −wn) = 0

) n

∏
j=1

fWj

(
w j−w j−1

)
=e−λ1(T−wn)λ1e−λ1w1λe−λ (w2−w1) . . .λe−λ (wn−1−wn−2)λe−λ (wn−wn−1)

=λ1λ
n−1e−λ1T e−(λ1−λ )w1e−(λ−λ1)wn . (6)
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Replacing the left hand side of Equation (6) in (5), we have

K0(T ) =
∞

∑
n=1

∫ T

0

∫ T

w1

. . .
∫ T

wn−1

ng(w1)λ1λ
n−1e−λ1T e−(λ1−λ )w1e−(λ−λ1)wndw1 . . .dwn

=λ1e−λ1T
∞

∑
n=1

nλ
n−1

∫ T

0
g(w1)e−(λ1−λ )w1dw1

∫ T

w1

. . .
∫ T

wn−1

e−(λ−λ1)wndw2. . .dwn.

Rescaling, let λ ? = λ1−λ , we then have

K0(T ) =λ1e−λ1T
∞

∑
n=1

nλ
n−1

∫ T

0

∫ T

w1

. . .
∫ T

wn−1

g(w1)e−(λ1−λ )w1e−(λ−λ1)wndw1. . .dwn

=λ1e−λ1T
∞

∑
n=1

n
∫ T

0
λ

n−1g(w1)e−λ ?w1dw1

∫ T

w1

. . .
∫ T

wn−1

eλ ?wndw2. . .dwn. (7)

�
Result 3.1

∫ T

w1

. . .
∫ T

wn−1

eλ ?wndw2. . .dwn

=
n−1

∑
j=2

(−1) jeλ ?T

λ ?( j−1)

∫ T

w1

. . .
∫ T

wn−1

dw2. . .dwn− j+1 +(−1)n
(

eλ ?T − eλ ?w1

λ ?( j−1)

)

=
n−2

∑
j=1

(−1) j+1eλ ?T

λ ? j

∫ T

w1

...
∫ T

wn− j−1

dw2. . .dwn− j +(−1)n
(

eλ ?T − eλ ?w1

λ ?( j−1)

)
.

Proof. When n = 2, we have∫ T

w1

eλ ?wndw2 =

(
eλ ?T − eλ ?w1

λ ?

)
.

The result is then true for n = 2.
We have:∫ T

w1

· · ·
∫ T

wn−1

eλ ?wndw2. . .dwn =
eλ ?T

λ ?

∫ T

w1

· · ·
∫ T

wn−2

dw2. . .dwn−1

− 1
λ ?

∫ T

w1

· · ·
∫ T

wn−2

eλ ?wn−1dw2. . .dwn−1. (8)

Let say the result is true for n−1, then∫ T

w1

· · ·
∫ T

wn−2

eλ ?wn−1dw2 · · ·dwn−1 =
n−3

∑
j=1

(−1) j+1eλ ?T

λ ? j

∫ T

w1

· · ·
∫ T

wn− j−1

dw2 · · ·dwn− j−1

+(−1)n−1

(
eλ ?T − eλ ?w1

λ ?(n−2)

)
. (9)
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Replacing Equation (9) in (8), we have:

eλ ?T

λ ?

∫ T

w1

· · ·
∫ T

wn−2

dw2 · · ·dwn−1−
1

λ ?

∫ T

w1

· · ·
∫ T

wn−2

eλ ?wn−1dw2 · · ·dwn−1

=
eλ ?T

λ ?

∫ T

w1

. . .
∫ T

wn−2

dw2 · · ·dwn−1−
1

λ ?

[
n−3

∑
j=1

(−1) j+1eλ ?T

λ ? j

∫ T

w1

· · ·
∫ T

wn− j−1

dw2 · · ·dwn− j−1

+(−1)n−1

(
eλ ?T − eλ ?w1

λ ?(n−2)

)]

=
eλ ?T

λ ?

∫ T

w1

. . .
∫ T

wn−2

dw2 · · ·dwn−1 +
n−3

∑
j=1

(−1) jeλ ?T

λ ?( j+1)

∫ T

w1

. . .
∫ T

wn− j−2

dw2 · · ·dwn− j−1

+(−1)n

(
eλ ?T − eλ ?w1

λ ?(n−1)

)

=
eλ ?T

λ ?

∫ T

w1

· · ·
∫ T

wn−2

dw2 · · ·dwn−1

+
n−2

∑
k=2

(−1)(k−1)eλ ?T

λ ?k

∫ T

w1

· · ·
∫ T

wn−k−1

dw2 · · ·dwn−k +(−1)n

(
eλ ?T − eλ ?w1

λ ?(n−1)

)

eλ ?T

λ ?

∫ T

w1

· · ·
∫ T

wn−2

dw2 · · ·dwn−1 =
n−2

∑
k=1

(−1)(k−1)eλ ?T

λ ?k

∫ T

w1

· · ·
∫ T

wn−k−1

dw2 · · ·dwn−k

+(−1)n

(
eλ ?T − eλ ?w1

λ ?(n−1)

)
. (10)

We also have ∫ T

w1

· · ·
∫ T

wm−1

dw2 · · ·dwm =
(T −w1)

m−1

(m−1)!
(11)

which can be proved easily. Replacing Equation (11) in (10), we have:

∫ T

w1

. . .
∫ T

wn−1

eλ ?wndw2. . .dwn

=
n−2

∑
k=1

(−1)k−1eλ ?T

λ ?k

∫ T

w1

. . .
∫ T

wn−k−1

dw2. . .dwn−k +(−1)n
(

eλ ?T − eλ ?w1

λ ?(n−1)

)

=
n−2

∑
k=1

(−1)k−1eλ ?T

λ ?k
(T −w1)

n−k−1

(n− k−1)!
+(−1)n

(
eλ ?T − eλ ?w1

λ ?(n−1)

)
. (12)
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Replacing Equation (12) in (7)

K0(T ) =λ1e−λ1T
∞

∑
n=1

n
∫ T

0
λ

n−1g(w1)e−λ ?w1dw1

∫ T

w1

. . .
∫ T

wn−1

eλ ?wndw2. . .dwn

=λ1e−λ1T
∞

∑
n=1

n
∫ T

0
λ

n−1g(w1)

[ n−2

∑
k=1

(−1)k−1eλ ?T

λ ?k
(T −w1)

n−k−1

(n− k−1)!

+(−1)n
(

eλ ?T − eλ ?w1

λ ?(n−1)

)]
dw1

=−λ1e−λ1T
∞

∑
n=1

n
∫ T

0
λ

n−1g(w1)
(
eλ ?T − eλ ?w1

)(−λ

λ ?

)n−1

dw1

+λ1e−λT
∞

∑
n=1

∫ T

0
λ

k
λ
?(−k)(−1)k−1g(w1)

∞

∑
n=k+1

nλ
n−k−1 (T −w1)

n−k−1

(n− k−1)!
dw1

=
λ1e−λ1T(
1+ λ

λ ?

)2

∫ T

0
g(w1)

(
eλ ?T − eλ ?w1

)
dw1−λ1e−λ1T

∫ T

0
g(w1)

{
1+λ (T −w1)+ k

}

× eλ (T−w1)dw1

∞

∑
n=1

(
− λ

λ ?

)k

=
λ1e−λ1T(
1+ λ

λ ?

)2

∫ T

0
g(w1)

(
eλ ?T − eλ ?w1

)
dw1

+
λ

λ ?+λ
λ1eλ ?T

∫ T

0
g(w1)(1+λ (T −w1))e−λw1dw1

+
λλ ?(

λ ?+λ
)2 λ1eλ ?T

∫ T

0
g(w1)(1+λ (T −w1))e−λw1dw1

=
λ1λ ?2e−λ1T(

λ ?+λ
)2

∫ T

0
g(w1)

(
eλ ?T − eλ ?w1

)
dw1

+
λ

λ ?+λ
λ1eλ ?T

{
1+

λ ?

λ ?+λ

}∫ T

0
g(w1)(1+λ (T −w1))e−λw1dw1

=
λ ?2e−λ1T

λ1

∫ T

0
g(w)

(
eλ ?T − eλ ?w1

)
dw

+λe−λ ?T
{

1+
λ ?

λ1

}∫ T

0
g(w)(1+λ (T −w))e−λwdw

which proves the result of Equation (4). �

When λ1 = λ meaning λ ?= 0 and taking the limit of the above expression when λ ?→ 0,
we recover the result of Asimit and Badescu (2010).
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Theorem 3.2 Consider the compound renewal model with constant force of interest (δ > 0)
such that F ∈ RV−∞ . If Assumption 2.1 is satisfied for any t ∈ (0,T ], then

Pr
(
Sδ (T )> x

)
∼ Kδ Pr(X > x), x→ ∞,

where

Kδ =
∞

∑
n=1

∫
Dn

n

∑
i=1

g(wi)e−αδ ∑
i
j=1 w j Pr

(
N(T −w−n) = 0

) n

∏
j=1

fWj

(
w j−w j−1

)
dw.

When fW1(t) = λ1e−λ1T , fWj(t) = λe−λT , j = 1,2, . . ., we have

Kδ = λ1e−λ1T
∞

∑
n=1

λ
n−1

∫ T

0

∫ T

w1

. . .
∫ T

wn−1

i

∑
j=1

w je−(λ1−λ )w1e−(λ−λ1)wndw1. . .dwn.

When λ ? = λ1−λ = 0, we find the result of Asimit and Badescu (2010).
Proof. Using the same argument as in the proof for Theorem 3.1, we have

Pr
(
Sδ (T )> x

)
=

∞

∑
n=1

Pr
(
N(T ) = n

)∫
Dn

Pr
( n

∑
i=1

Xieδ ∑
i
j=1 w j > x|W = w,N(T ) = n

)
×

Pr
(
N(T −wn) = 0

)
∏

n
j=1 fWj(w j−w j−1)

Pr
(
N(T ) = n

)
=

∞

∑
n=1

∫
Dn

Pr
( n

∑
i=1

Xieδ ∑
i
j=1 w j > x|W = w

) n

∏
j=1

fWj(w j−w j−1)dw. (13)

Note that

Pr
( n

∑
i=1

Xieδ ∑
i
j=1 w j > x|W = w

)
≤ Pr

( n

∑
i=1

Xi > x|W = w
)
.

The above inequality will allow us to apply Lemma 2.2 in a similar manner as in the proof of
Theorem 3.1. Applying the Dominance Convergence Theorem in Equation (13) completes
the proof. �

3.1. Ruin probability

The calculation of the exact value of the probability of ruin remains an extremely complex
problem. For rather simple cases of the collective risk model, exact formulas and approx-
imations were found for the probability of ruin, see Panjer and Willmot (1992). However
when one incorporates in the collective risk model, the effect of the force of interest, calcu-
lations become more difficult. In the case of the discounted compound Poisson risk model, a
differential equation was obtained for the probability of ruin and a solution was even found
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when the claims amount follows an exponential distribution. For more details, see Sundt
and Teugels (1995).

The probability of ruin can also be calculated if we know the distribution of our risk pro-
cess. Expressions obtained by Léveillé et al. (2009) for the distribution of the discounted
renewal aggregate sums, allow us to affirm that it will be very difficult to find an explicit
expression of the probability of ruin within the framework defined by the previous authors.
For those reasons, authors such as Cai (2002) suggest upper bounds to estimate the proba-
bility of ruin.

In this section, our intention is to extend the work of Asimit and Badescu (2010). Con-
sider the compound renewal risk model with constant force of interest, for which the evolu-
tion of the surplus Uδ (t) is given by

Uδ (t) = xeδ t +Cδ (t)− eδ tSδ (t),

where x is the initial capital and Cδ (t) =
∫ t

0 e(t−s)dC(s) represents the accumulated amount
of premiums at time t. We let {C(s)}s≥0 with C(0) = 0 be a non-decreasing and right
continuous stochastic process, denoting the total amount of premiums accumulated to time
s . Furthermore, we define the time to ruin as

τ(x) = inf
{

t > 0 : Uδ (t)< 0|Uδ (0) = x
}

and the associated finite time ruin probability by

ψδ (x;T ) = Pr
(
τ(x)≤ T

)
. (14)

Clearly,

Pr
(
Sδ (T )> x+ e−δTCδ (T )

)
≤ ψδ (x;T )≤ Pr

(
Sδ (T )> x

)
(15)

holds for δ ≥ 0 . Since we can use the long-tailed property of subexponential distributions
(Embrechts et al., 1997) in Equation (15), this leads to the following corollary of Theorems
3.1 and 3.2.

Corollary 3.1 Consider the compound renewal risk model with constant interest rate such
that Assumption 2.1 is satisfied for any t ∈ (0,T ].

In addition if Cδ (T )< ∞, then

1. if δ = 0 and F ∈℘, then ψ0(x;T )∼ K0Pr(X1 > x), x→ ∞,

2. if F ∈ RV∞, then ψδ (x;T )∼ Kδ Pr(X1 > x), x→ ∞.
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Proof. ψδ (x;T ), the insurer’s probability of ruin, which is the probability that the dis-
counted aggregate claim process paid out over a finite time horizon (0,T ] exceeds the dis-
counted value of the premium received and the insurer’s initial capital . So clearly,

ψδ (x;T )≤ Pr
(
Sδ (T )> x

)
and

lim
x→∞

ψδ (x;T )≤ lim
x→∞

Pr
(
Sδ (T )> x

)
∼ lim

x→∞
Kδ Pr(X1 > x), x→ ∞.

�

4. Risk Management

The European Solvency II project lay down some new regulatory requirements that every
insurance company inside the European Union will have to fulfil. In addition, several other
countries outside the European Union (e.g. Canada, Columbia or Mexico) are likely to
use similar principles2. Insurance companies are required to compute the minimum capital
requirement as proposed by the regulatory authorities. The 1-year 99.5% Value at risk
(VaR) is the most used measure of such capital requirement. In this section of the paper, we
compute the minimum capital requirement using the internal model approach over a 50-year
horizon for delayed exponentially distributed inter-claim times and Weibull claim amount
distributions. We use Equation (4) in Section 4.2. This section mimics Asimit and Badescu
(2010) approach and presents a simulated results for illustration purposes.

4.1. Risk Measures

The VaR at a confidence level of p for a loss variable L is the p-quantile, defined as (Jorion,
2001):

VaRp(L) = inf
{

x ∈ R : Pr(L > x)≤ 1− p
}
.

Theoretically speaking, VaR is the alpha quantile of the distribution of the discounted
aggregate sum of claims. Using Theorems 3.1 and 3.2, this quantile can be expressed as:

VaR1−p
(
Sδ (T )

)
∼VaR1−p/Kδ

(X1), for p ↓ 0 ,

provided that the density function of Sδ (T ) is continuous close enough in the right tail. It is
important to notice that VaR and ruin probability give the same asymptotic results. Both risk

2 In South Africa, insurance companies are required by the regulators to compute the minimum capital require-
ment based on the SAM (Solvency Assessment and management); a regulatory framework that is similar to the
Solvency II used in European Union countries.
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measures fail to incorporate the severity of the extreme events. Asimit and Badescu (2010)
show that the Expected Shortfall (ES) of a loss variable with continuous density function,
at a confidence level p, represents the average loss in the worst 100×p% cases, and is given
by:

ESp
(
Sδ (T )

)
∼ α

α−1
VaRp

(
Sδ (T )

)
, p ↑ 1.

We will be using the same asymptotic result for the ES of the discounted aggregate loss
as in Asimit and Badescu (2010).

A density function F is in the maximum domain of attraction of a non-degenerate den-
sity function G, written as F ∈MDA(G), if

lim
x→∞

Fn(anx+bn) = G(x),

where an > 0 and bn > 0 are real numbers. The connection between ES and VaR of the
discounted aggregate loss, for high confidence levels, for the case that is given by

ESp
(
S0(T )

)
∼VaRp

(
S0(T )

)
, p ↑ 1,

provided that α > 1.
For the proof, see Theorem 3.1 of Alink, Löwe and Wüthrich (2005).

4.2. Numerical results

In this numerical example reported in Tables 1 and 2, we determine the minimum capital
requirement as the 99.5th quantile (VaR 99.5 % ) of the distribution of discounted aggregate
sums and show how the dependence assumption affects significantly the overall results.
For that purpose, we assume that the inter-claim time arrivals are exponentially distributed
whereas the forthcoming claim amounts have a Weibull distribution given by:

FX1(x) = 1− exp
(
− x1/τ

)
, x≥ 0, τ > 1.

We then model the dependence structure between the inter-claim times and the claim
amounts by making use of the Ali-Mikhail-Haq copula (see Example 1) with parameter
values θ equal to -0.9, -0.5, 0, 0.5 and 0.9. Notice that the risk model corresponds to the
case where the claim amounts and the inter-claim times are independent. The asymptotic
constant of Theorem 3.1 is in that case given by:

K0(θ) =
λ ?2e−λ1T

λ1

[
(1+θ)

(
Teλ ?T − eλ ?T −1

λ1

)
+2θ

(
1− e−λT

λ
− eλ ?T − e−λT

λ1

)]
+

(
1+

λ ?

λ1

)
e−λ ?T

(
λT +

θ

2
(
e−2λT −1

))
.
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When λ1 = λ , we find the result of Asimit and Badescu (2010). Each analysis consists
of 10,000,000 simulations of the delayed Poisson risk process with respectively fW1(t) =
e−t , fWj(t) = 1/4e−t/6, j = 2,3, . . . and time horizon T = 50 . This choice of parameters
is arbitrary. We have performed simulation studies for other parameter settings and have
found that the conclusion remains the same as the one obtained for this particular choice.
For each simulation study, the values of Pr

(
S0(t) > x

)
are calculated empirically for a

threshold x such that Pr(X1 > x) is 5×10−4, 10−4, and 5×10−5 , respectively. The choice
of these tail probabilities follows Asimit and Badescu (2010). We assume different values
for Spearman’s correlation coefficients, ρ and analyse their impact on the VaR measure.
Note that for this particular dependence structure, the correlation coefficient varies between
(−0.27, 0.48) (Nelsen, 1999).

Table 1: Estimated probability ratios Pr
(
S0(T )> x

)
/K0Pr

(
X1 > x

)
.

x θ =−0.9 θ =−0.5 θ = 0 θ = 0.5 θ = 0.9
τ = 6

F−1
X1
(5×10−4) 1.1513 1.1566 1.1677 1.1738 1.1792

F−1
X1
(10−4) 1.0659 1.0746 1.0739 1.0731 1.0757

F−1
X1
(5×10−5) 1.0577 1.0604 1.0731 1.0696 1.0749

τ = 8

F−1
X1
(5×10−4) 1.0404 1.0487 1.0511 1.0567 1.0617

F−1
X1
(10−4) 1.0201 1.0228 1.0297 1.0302 1.0338

F−1
X1
(5×10−5) 1.0121 1.0189 1.0289 1.0275 1.0308

τ = 10

F−1
X1
(5×10−4) 1.0131 1.0166 1.0196 1.0240 1.0287

F−1
X1
(10−4) 1.0047 1.0090 1.0150 1.0144 1.0181

F−1
X1
(5×10−5) 1.0159 1.0089 1.0195 1.0173 1.0210

Table 2: VaR99,5%
[
S0(50)

]
for Weibull claim amounts and Ali-Mikhail-Haq copula.

ρ =−0.2 ρ =−0.1 ρ = 0 ρ =+0.3 ρ =+0.4
τ = 6 373937 370081 366716 361316 357397
τ = 8 2.6940004 ×

107
2.6570247 ×
107

2.6248602 ×
107

2.5734561 ×
107

2.5363002 ×
107

τ = 10 1.9408728 ×
109

1.9076315 ×
109

1.8788094 ×
109

1.8329303 ×
109

1.7999101 ×
109
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5. Discussion

From Table 2, two observations are worth being mentioned - the first is that negative correla-
tion induces significantly larger capital requirements (as measured by the VaR) than positive
correlations. Secondly, when the level of dependence increases sufficiently; the minimum
capital requirement increases as well. Furthermore, even in the case where we assume inde-
pendence between the inter-claim times and the claim amounts; the resulting minimum cap-
ital requirement still increases exponentially. These findings show that the minimum capital
requirements obtained under the independence assumption might be misleading, especially
during catastrophic and extreme events. We therefore recommend that the regulatory au-
thorities set a threshold minimum capital requirement based on the dependence assumption
in order to curb the risk of solvency associated with low level of capital observed in many
insurance firms during major events such as the Hurricane Katrina, Tsunami earthquake,
financial crises, epidemic disease etc. For further research in this field, we intend to prove
that the expression of K0 in Theorem 3.2 can be given by:

K0(T ) =
∞

∑
n=1

∫ T

0

∫ wn

0
. . .
∫ w2

0
ng(w1)Pr

(
N(T −wn) = 0

) n

∏
j=1

fWj

(
w j−w j−1

)
dw1. . .dwn.

This setting is well suited when both the inter-claim times and the claim amounts follow
any theoretical distribution process.
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