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Abstract: The purpose of this study is to determine the effect of three improvement methods on
nonparametric kernel regression estimators. The improvement methods are applied to the Nadaraya-
Watson estimator with cross-validation bandwidth selection, the Nadaraya-Watson estimator with
plug-in bandwidth selection, the local linear estimator with plug-in bandwidth selection and a bias
corrected nonparametric estimator proposed by Yao (2012), based on cross-validation bandwith se-
lection. The performance of the different resulting estimators are evaluated by empirically calcu-
lating their mean integrated squared error (MISE), a global discrepancy measure. The first two
improvement methods proposed in this study are based on bootstrap bagging and bootstrap bragging
procedures, which were originally introduced and studied by Swanepoel (1988, 1990), and hereafter
applied, e.g., by Breiman (1996) in machine learning. Bagging and bragging are primarily variance
reduction tools. The third improvement method, referred to as boosting, aims to reduce the bias of
an estimator and is based on a procedure originally proposed by Tukey (1977). The behaviour of the
classical Nadaraya-Watson estimator with plug-in estimator turns out to be a new recommendable
nonparametric regression estimator, since it is not only as precise and accurate as any of the other
estimators, but it is also computationally much faster than any other nonparametric regression esti-
mator considered in this study.

1. Introduction

In regression analysis, the term non-parametric refers to a flexible unknown functional form of the
regression curve. A great deal of effort and attention from researchers went into the development of
elegant non-parametric regression methods. Especially kernel methods are popular, although they
present only a fraction of many approaches towards the construction of flexible models. In this paper,
however, we shall restrict our attention to kernel estimation of joint densities and mean regression
functions.
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Two bootstrap-based variance reduction methods, viz., bagging and bragging, are applied to de-
rive several bandwidth selection procedures. Specifically, three ways of determining bandwidths
data-dependently by applying the bagging method, will be defined, and the effects of these band-
width selectors on the behaviour of various regression estimators, with respect to the mean inte-
grated squared error (MISE) and its components, will be evaluated and demonstrated. The process
will then be repeated, using the bragging method. The influence of the proposed bandwidths on the
behaviour of the following non-parametric estimators is of specific interest: the Nadaraya-Watson
estimator based on improved squared-error cross-validation data-derived bandwidths as well as on
new improved plug-in bandwidths, the local linear estimator using the improved rule-of-thumb plug-
in bandwidths (Fan and Gijbels, 1996), and a new bias reduction non-parametric (BRNP) kernel
regression estimator suggested by Yao (2012), employing the bias-correction idea of Chung and
Lindsay (2011), which was developed for density estimation. For this estimator three improved
cross-validation bandwidths are applicable since Yao (2012) preferred cross-validation bandwidth
over the plug-in bandwidth. The improved kernel regression estimation methods are evaluated com-
paratively, by applying them to well known regression models that appeared in the literature.

Furthermore, a bias reduction improvement method, viz., the boosting method, is utilized on
the classical kernel regression estimators and are evaluated empirically. Boshoff (2009) did a limi-
ted simulation study, confirming some influence of boosting, bagging, bragging and combinations
thereof, on the Nadaraya-Watson estimator with cross-validation bandwidth selection. However, the
effect of boosting, bagging and bragging on the Nadaraya-Watson estimator with plug-in bandwidth
selection, the local linear estimator with plug-in bandwidth selection and Yao’s estimator with cross-
validation bandwidth selection seem to be new contributions to the literature. Computer time for the
various methods will be reported on in general. It should be noted that the behaviour of the bias and
variance components of the estimators are of interest throughout the study.

The BRNP-estimator turned out to be highly computer-intensive and only a limited study was
performed, so that no comparisons were possible with others estimators. Only the behaviour of the
BRNP-estimator based on cross-validation bandwidths under various scenarios were reported. How-
ever, comparative studies were possible between the bahaviour of the Nadaraya-Watson-estimator
and the local linear estimator, both based on plug-in methods, as well as between the Nadaraya-
Watson estimator, based on plug-in methods and the Nadaraya-Watson estimator, based on cross-
validation methods, for all the various bagging and bragging methods and the boosting method.

The paper is organized as follows. In Sections 2 and 3 basic notation is stated regarding the
proposed estimators and the appropriate bandwidth selectors for each estimator. Three procedures
to improve the bandwidth selectors and regression estimators discussed in Sections 2 and 3, will
be presented in Section 4, together with three algorithms to assist the practitioner. The simulation
setup is set out in Section 5, which is summarized in a main algorithm and presented in Section 6.
Results and conclusions are discussed in Section 7, and specific comparisons are made between the
estimators in their classical and improved forms, as well as between the improvement methods, in
Sections 8 to 11 . Section 12 presents a brief discussion on the computer-time involved for each
procedure, while in Section 13 graphical illustrations are discussed. Finally, Section 14 captures
final remarks and recommendations. A set of references follows as well as graphical illustrations of
the various estimators.
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2. Basic notation and definitions

In the case of bivariate observations, we wish to explore the association between the covariate X and
the response Y . Let Sn = {(X1,Y1),(X2,Y2), . . . ,(Xn,Yn)} be a given i.i.d. sample from the population
(X ,Y ). Consider the mean regression model

Yi = m(Xi)+ εi, i = 1, . . . ,n,

where we assume that m(x) = E(Y |X = x) is unknown and E(εi|Xi) = 0 .

2.1. Nadarya-Watson estimator

Nadaraya (1964) and Watson (1964) proposed the following regression estimator

m̂NW (x) =
∑

n
i=1 Kh(x−Xi)Yi

∑
n
i=1 Kh(x−Xi)

, (1)

where

Kh(u) = h−1K(u/h), (2)

with K(·) a bounded (kernel) density function and h a smoothing parameter (bandwidth). Härdle
(1990, p.77) defined the pointwise asymptotic bias and variance for the Nadaraya-Watson estimator,
which is given by

Bias[ ˆmNW (x)] =
(

m′′(x)+
2m′(x) f ′(x)

f (x)

)
h2

2

∫
u2K(u)du,

and

Var[ ˆmNW (x)] =
σ2(x)
f (x)nh

∫
K2(u)du,

where f (x) denotes the marginal density of X and σ2(x) = Var(Y |X = x).

2.2. The local linear estimator

The local linear regression smoother is defined by

m̂LL(x) =
∑

n
i=1 wiYi

∑
n
i=1 wi

, (3)

with

wi = K
(

x−Xi

h

)
[sn,2− (x−Xi)sn,1], (4)

where

sn,l =
n

∑
i=1

K
(

x−Xi

h

)
(x−Xi)

l , l = 1,2. (5)
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Furthermore, from Fan and Gijbels (1996, p.17) it follows that the pointwise asymptotic bias and
variance of the local linear smoother is given by

Bias[ ˆmLL(x)] = m′′(x)
h2

2

∫
u2K(u)du,

and

Var[ ˆmLL(x)] =
σ2(x)
f (x)nh

∫
K2(u)du.

2.3. The bias reduction non-parametric regression (BRNP) estimator

The new non-parametric BRNP regression estimator proposed by Yao (2012) deserves attention
because it has asymptotic bias of order h4 in contrast to the local linear estimators’ asymptotic bias
of order h2. The estimator of Yao (2012) is based on the following bias-corrected estimator f̂ (x) of
the design density f (x), developed by Chung and Lindsay (2011) which has asymptotic bias of order
h4:

f̂ (x) = n−2c(h)∑
i

∑
j

w jK√3h(Xi−X j)K√3h(Xi− x)K√3h(X j− x),

where

c(h) = 3
√

2πh,

and

w j =

{
1
n

n

∑
i=1

K√2h(Xi−X j)

}−1

.

Yao (2012) proposed the following bias-corrected non-parametric regression estimator:

m̂BRNP(x) =
n−2c(h)∑i ∑ j v jYiYjK√3h(Xi−X j)K√3h(Xi− x)K√3h(X j− x)

f̂ (x)
, (6)

where

v j =

{
1
n

n

∑
i=1

K√2h(Xi−X j)Yi

}−1

. (7)

Clearly, m̂BRNP(x) is not a linear smoother, since it is not linear in the response.
Furthermore, Yao (2012) derived the following expressions for the pointwise asymptotic bias and
variance of the estimator:

Bias[ ˆmBRNP(x)] =
h4{A−m(x)B}

f (x)
, (8)



BIAS AND VARIANCE REDUCTION IN NON-PARAMETRIC REGRESSION 127

and

Var[ ˆmBRNP(x)] =
σ2(x)

nh
√

π f (x)

(√
2+

1
4
− 2√

3

)
, (9)

where

A =
[
−g(4)(x)+g−1(x)g′(x)g′′′(x)+g−1(x)g′′(x)2−g′(x)2g−2(x)g′′(x)

]
, (10)

and

B =
[
− f (4)(x)+ f−1(x) f ′(x) f ′′′(x)+ f−1(x) f ′′(x)2− f ′(x)2 f−2(x) f ′′(x)

]
, (11)

with g(x) = m(x) f (x). From (8) to (11) it is clear that the asymptotic bias depends on the first four
derivatives of both m(x) and f (x).

3. Bandwidth selectors

Both the leave-one-out squared-error cross-validation and the plug-in methods for deriving appro-
priate bandwidth selectors are now discussed.

3.1. Bandwidth selectors for the Nadaraya-Watson estimator

A plug-in bandwidth selector can be derived from explicit expressions for the asymptotic variance
and asymptotic squared bias of the Nadaraya-Watson estimator (see e.g. Härdle (1990), by calcu-
lating the asymptotic optimal bandwidth for the conditional mean integrated squared-error (MISE),
i.e.,

hopt =

[
dK

4c2
K

]1/5

 ∫
σ2(x)w0(x)dx∫ { 1

2 m′′(x)+m′(x) f ′(x)
f (x)

}2
w0(x) f (x)dx


1/5

n−1/5,

where cK =
∫

u2K(u)du and dK =
∫

K2(u)du. The unknown quantities σ2(·), m′(·), m′′(·), f (·) and
f ′(·) need to be estimated. Assume that the conditional variance σ2(x) is constant, substitute the
pilot estimates m̂′(·), m̂′′(·), f̂ ′(·), f̂ ′′(·) and σ̂2, and estimate the denominator by

1
n

n

∑
i=1

{
1
2

m̂′′(Xi)+ m̂′(Xi)
f̂ ′(Xi)

f̂ (Xi)

}2

w0(Xi).

A plug-in bandwidth selector is therefore derived, i.e.,

ĥplug =

[
dK

4c2
K

]1/5

 σ̂2 ∫ w0(x)dx

∑
n
i=1

{
1
2 m̂′′(Xi)+ m̂′(Xi)

f̂ ′(Xi)

f̂ (Xi)

}2
w0(Xi)


1/5

,

for a given weight function w0(·).
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The pilot estimate m̂(x) is obtained by fitting a polynomial of degree k globally to the data (Xi,Yi),
i = 1, . . . ,n, leading to the parametric fit

m̂(x) = β̂0 + β̂1x+ · · ·+ β̂kxk, (12)

where k is an appropriate integer. The derivatives m̂′ and m̂′′ are calculated from (12). As usual,
σ̂2 is defined as the standardized residual sum of squares obtained from the fit. The pilot density
estimate f̂ (x) is the classical kernel density estimate given by

f̂ (x) =
1
n

n

∑
i=1

Kĥ(x−Xi),

with ĥ = 1.059snn−
1
5 , and sn being the standard deviation of X1,X2, . . . ,Xn.

The leave-one-out squared-error cross-validation method employs the regression smoother after
having deleted the jth observation, to estimate m in the point X j. The Nadaraya-Watson estimator,
when the jth observation has been left out, is given by

m̂NW,( j)(X j) =
∑

n
i=1,i 6= j Kh(X j−Xi)Yi

∑
n
i=1,i6= j Kh(X j−Xi)

, (13)

where Kh(u) is defined in (2). The cross-validation function is then calculated as the average of the
squared deleted residuals

CV (h) =
1
n

n

∑
j=1

[Yj− m̂NW,( j)(X j)]
2.

The cross-validation method chooses the bandwidth that minimizes CV (h). Denote this bandwidth
by ĥCV . Then the Nadaraya-Watson estimator is determined by using ĥCV , i.e.,

m̂NW (x) =
∑

n
i=1 KĥCV

(x−Xi)Yi

∑
n
i=1 KĥCV

(x−Xi)
.

3.2. Bandwidth selector for the local linear estimator

From Fan (1992) and Fan and Gijbels (1996, pp.57–58) the plug-in bandwidth selector for the local
linear estimator is defined by

ĥplug =

(
dK σ̂2 ∫ w0(x)dx

c2
K ∑

n
i=1{m̂′′(Xi)}2w0(Xi)

)1/5

,

where σ̂2 and m̂′′(·) are pilot estimates of σ2 and m′′(·), obtained by the same process as above via
the fit of a suitable polynomial.
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3.3. Bandwidth selector for the BRNP estimator

For the BRNP estimator, the squared-error cross-validation bandwidth selection method is used. The
leave-one-out BRNP estimator for a given bandwidth h, is defined for k = 1,2, . . . ,n by

m̂BRNP,(k)(Xk) =

∑
n
i=1
i 6=k

∑
n
j=1
j 6=k

v jYiYjK√3h(Xi−X j)K√3h(Xi−Xk)K√3h(X j−Xk)

∑
n
i=1
i6=k

∑
n
j=1
j 6=k

w j
√

3h(Xi−X j)K√3h(Xi−Xk)K√3h(X j−Xk)
.

The cross-validation function is defined in (13), with NW replaced by BRNP and again the bandwidth
that minimizes CV (h) is selected.

4. Improvement methods

Three methods for improving the performance of a given estimation procedure are explored and need
to be defined, i.e., boosting, bagging and bragging. Marzio and Taylor (2008) showed that boosting
improves the Nadaraya-Watson estimator, as far as bias reduction is concerned. On the other hand,
the influence and effect of bootstrap-based improvement methods, viz., bagging and bragging, are
aimed on variance reduction.

4.1. Boosting

Boosting is a general method for improving the accuracy of any given ‘learning algorithm’. In this
study the learning algorithm is the calculation of a non-parametric regression estimator. Boosting
methods, known as L2-boosting (Bühlmann, 2003), were developed for non-parametric regression
which involves minimizing the squared error loss function. This boils down to iterative refitting
of the residuals. The L2-boosting algorithm involves the following basic steps: Suppose the data
Sn = {(X1,Y1),(X2,Y2), . . . ,(Xn,Yn)} is given. Then fit an initial regression procedure to obtain m̂0(·),
using some bandwidth h, obtained from some bandwidth selection method. Or use the default value
m̂0(·)≡ Ȳ = 1

n ∑
n
i=1 Yi. Set t0 = 0. Let ti = ti−1 +1 for i = 1, . . . ,n. Compute for i = 1 the residuals,

U j = Yj− m̂ti−1(X j), j = 1, . . . ,n.

Then fit the residuals U1,U2, . . . ,Un to X1,X2, . . . ,Xn by the base procedure. Call this fit m̃ti(·).
Update the estimator by

m̂ti(·) = m̂ti−1(·)+νm̃ti(·),

where 0 < ν ≤ 1 is a real-valued step-length factor. Marzio and Taylor (2008) chose ν = 1.
Repeat the procedure for i = 2, . . . ,n, where tn = T the stopping time for the number of itera-

tions. Marzio and Taylor (2008) identified a set of kernels satisfying specific matrix requirements,
excluding many popular kernel functions, such as the Epanechnikov, biweight and triweight kernels.
However, Gaussian and triangular kernels are permitted. Furthermore, when boosted, the bias de-
creases exponentially fast towards zero, while the variance increases exponentially slow towards σ2

for the Nadaraya-Watson estimator. Also, the number of boosting iterations should be emphasized.
Boshoff (2009) pointed out that very little improvement was gained from T = 1 to T = 6. After one
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boosting iteration, the bias is reduced from O(h2) to o(h2). If more than one iteration is performed,
Marzio and Taylor (2008) pointed out that, rather than choosing the optimal number of boosting
iterations T and the bandwidth h separately, the optimal pair (h,T ) should be chosen.

4.2. Bagging and bragging

The basic bagging and bragging methodology was presented by Swanepoel (1988, 1990) from a
functional approach, and by Breiman (1996) from an ensemble viewpoint. Swanepoel (1988, 1990)
proved satisfactory asymptotic properties of these procedures. Furthermore, Hall and Robinson
(2009) showed that bagging can be used to reduce the variability of bandwidth selectors obtained
by cross-validation in kernel regression estimation. They suggested that bagging can be applied to
the cross-validation bandwidth selection method in at least two ways, namely bagging the cross-
validation function CV (h) and bagging ĥCV . In this study, bagging is applied to the cross-validation
bandwidth selection method and plug-in bandwidth selection methods in three ways.

Swanepoel’s (1988, 1990) approach was developed as an effort to construct estimators for a
parameter θ , which is written in the form θ = ψ(F), for some suitable functional ψ , where ψ

depends on the distribution function F of the population. From this functional approach it is shown
that if ψ(F) can be approximated by a sequence of functionals, namely ψm(F) ≈ ψ(F), with the
approximation becoming increasingly accurate as m→ ∞, then ψm(Fn) can be taken as an estimator
of θ , with m = m(n) suitably chosen. Here Fn refers to the empirical distribution function.

Suppose Tm(X1,X2, . . . ,Xm) is some known estimator of θ , such as the sample mean. Then two
possible choices of ψm(F) are

ψm,1(F) = E[Tm(X1,X2, . . . ,Xm)]

and

ψm,2(F) = median[Tm(X1,X2, . . . ,Xm)].

In this case we have that

ψm,1(Fn) = E∗[Tm(X∗1 ,X
∗
2 , . . . ,X

∗
m)]

and

ψm,2(Fn) = median∗[Tm(X∗1 ,X
∗
2 , . . . ,X

∗
m)], (14)

respectively, where (X∗1 ,X
∗
2 , . . . ,X

∗
m) denotes a bootstrap random sample of size m taken from Fn.

The ideal bootstrap estimates ψm,1(Fn) and ψm,2(Fn) are approximated by Monte Carlo algorithms
which will be stated in Section 4.3. The choices ψm,1(Fn) and ψm,2(Fn) are nowadays known as
bagging and bragging respectively in the statistical literature.

Bagging and bragging procedures also developed from the theory of ensemble methods as men-
tioned before. Bagging is an acronym for bootstrap aggregating and this term was introduced by
Breiman (1996).

The number of bootstrap replications B in practice governs the accuracy of the Monte Carlo
approximation and depends on the sample size n. It is expected that bagging will increase bias, but
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the hope is set on reducing the variance and on a decrease in terms of the MISE. Also, together with
the boosting algorithm, we may expect a decrease in MISE to some extent.

Bragging stands for bootstrap robust aggregating. The sample median is used over the B boot-
strap estimates instead of the sample mean in the discussion above, as is reflected in (14).

4.3. Bagging and bragging bandwidths

One suggestion by Hall and Robinson (2009) for bagged cross-validation is to bag hCV when de-
termining the smoothing parameter. From a limited simulation study, Boshoff (2009) involved only
squared-error cross-validation and the Nadaraya-Watson estimator and found that at least three dif-
ferent cross-validation bagging methods for determining bandwidths were worthwhile investigating,
in order to perform bootstrap aggregation. Throughout, these methods are referred to as Bag1,Bag2
and Bag3. However, the same procedures can be applied for plug-in methods. If cross-validation
and plug-in bandwidth selection are therefore used in the algorithms below, these three methods are
referred to as Bag1CV , Bag2CV , Bag3CV and Bag1plug, Bag2plug and Bag3plug respectively.

Similarly, if these 6 bandwidth estimation methods are repeated, but in all algorithms medians
are determined instead of averages, i.e.,

ĥbragm = median1≤b≤Bĥ∗CV (b), m = 1,2,3,

is replaced for

ĥbagm =
1
B

B

∑
b=1

ĥ∗CV (b), m = 1,2,3,

for both cross-validation and plug-in bandwidth selection methods, we also obtain methods Brag1CV ,
Brag2CV , Brag3CV , Brag1plug, Brag2plug and Brag3plug.

In this way, apart from calculating the three classical regression methods, and the three boosted
regression methods, 12 regression estimation methods, using improved bandwidths, are also in-
cluded in the comparative studies below.

For example, the classical Nadaraya-Watson estimator is calculated, boosted and again calculated
in 12 other ways, using Bag1CV , Bag2CV , Bag3CV , Bag1plug, Bag2plug, Bag3plug and Brag1CV ,
Brag2CV , Brag3CV , Brag1plug, Brag2plug, Brag3plug, resulting in 16 algorithms. The same holds for
the local linear estimator (which only uses the plug-in bandwidths, resulting in 8 methods) and the
BRNP-estimator (using only cross-validation methods, resulting also in only 8 methods).

Brief algorithms to determine regression estimators via the first three , i.e., by using Bag1CV ,
Bag2CV , Bag3CV , for cross-validation selected bandwidths, will follow below. Algorithms for plug-
in bagged bandwidths and subsequent regression estimates as well as the 6 bragged equivalents, are
determined analogously and will be omitted.

Algorithm 4.1. Bag1(CV) using cross-validation bandwidth selection

1. Let Sn = {(X1,Y1),(X2,Y2), . . . ,(Xn,Yn)} be the given sample.

2. Randomly sample m data pairs without replacement from Sn to obtain a bootstrap sample
S∗m = {(X∗1 ,Y ∗1 ),(X∗2 ,Y ∗2 ), . . . ,(X∗m,Y ∗m)}.
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3. Determine, over an appropriate grid of h values, a bootstrap version of the leave-one-out cross-
validation function by using the bootstrap sample S∗m to obtain CV ∗(h). Obtain the value ĥ∗CV
that minimizes CV ∗(h).

4. Repeat steps 2 and 3 B times to obtain bootstrap replications of the cross-validation bandwidth
ĥ∗CV (1), ĥ∗CV (2), . . . , ĥ

∗
CV (B).

5. Calculate the average of the bootstrap replications of the bandwidth

ĥbagm =
1
B

B

∑
b=1

ĥ∗CV (b).

6. Rescale the bandwidth in step (5): ĥbag = (ĥbagm)
(m

n

) 1
5 as was suggested by Hall and Robin-

son (2009).

7. Fit the estimator m̂(x) using the original sample Sn and the bandwidth ĥbag.

Here m̂(x) can refer to any of the regression estimators defined in (1), (3)–(5) or (6)–(7).

Algorithm 4.2. Bag2(CV) using cross-validation bandwidth selection

1. Repeat steps 1 to 5 of Algorithm 4.1.

2. Use each bootstrap sample S∗m and the aggregated bandwidth ĥbagm and fit the estimator m̂(x)
to obtain bootstrap versions of the regression estimate

m̂∗(x)(1), m̂∗(x)(2), . . . , m̂∗(x)(B).

3. Calculate the average of the bootstrap replications of the regression estimate

m̂∗(x) =
1
B

B

∑
b=1

m̂∗(x)(b).

Algorithm 4.3. (Bag3CV) using cross-validation bandwidth selection

1. Repeat steps 1 to 3 of Algorithm 4.1.

2. Use the bootstrap sample S∗m and corresponding bandwidth ĥ∗CV and fit the estimator m̂(x) to
obtain a bootstrap version of the regression estimate m̂∗(x).

3. Repeat steps 1 and 2 of this algorithm B times to obtain bootstrap replications of the regression
estimate

m̂∗(x)(1), m̂∗(x)(2), . . . , m̂∗(x)(B).

4. Calculate the average of the bootstrap replications of the regression estimate

m̂∗(x) =
1
B

B

∑
b=1

m̂∗(x)(b).
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5. Simulation setup

A short main algorithm will be presented below, to summarize the complete simulation process from
data generation to evaluation of each procedure, on the hand of the behaviour of the MISE and its
components. Necessary information for the simulation study is as follows:

Three specific models, which are used frequently in the literature and which are well-known for
being difficult to estimate, will be considered. These models are defined in Table 1 and represented
graphically in Figure 1.

Table 1: The underlying regression function m(x).
Model m(x)

1 x+2exp(−16x2)

2 sin(2x)+2exp(−16x2)

3 0.3exp{−4(x+1)2}+0.7exp{−16(x−1)2}

Figure 1: The underlying regression function m(x).

The covariate data were drawn from the U(−2,2) and N(0,1) distributions respectively as was
done in Fan and Gijbels (1996). Response data Y are constructed from Y = m(X)+σε , where the
ε’s are random errors drawn from the N(0,1) distribution in this study, m is chosen from Table 1
and, for comparison reasons with related papers, σ is chosen as 0.2, 0.6 and 1.0 for Models 1 and 2
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and as 0.1, 0.3 and 0.5 for Model 3. Similar to Marzio and Taylor (2008) we used samples of sizes
n = 50, n = 100 and n = 200. The N(0,1) and triangular kernels were used throughout. Initial cross-
validation bandwidth application needs to be determined on a grid of possible bandwidth values. A
grid between 0.01 and 2 is initially used and subdivided in increments of length 0.01. In a preliminary
study it was confirmed that this specific choice of the grid is effective.

For the execution of plug-in bandwidth selection algorithms, the weight function is defined as
w0(x) = I(−1.8 ≤ x ≤ 1.8) if X ∼ U(−2,2). This is the same weight function used by Fan and
Gijbels (1996, p.112). If X ∼ N(0,1), the weight function is defined as w0(x) = I(−1.8 ≤ x ≤
1.8)φ(x), where φ(x) is the standard normal density function. For sample sizes n = 100 and n =

200 a polynomial regression function of degree 12 is used and for n = 50 a polynomial regression
function of degree 5 is used in (12). Similar to Hall and Robinson (2009) we used 50 bootstrap
samples for the application of the bagging and bragging methods throughout.

Bootstrap samples of size m = [an],0 < a < 1, are drawn, where [x] denotes the largest inte-
ger value smaller than or equal to x. In the present study bootstrap samples of size m = n/2 are
used, as was recommended by Bühlmann (2004, p.884). In all leave-one-out cross-validation algo-
rithms, resampling is done without replacement as Hall and Robinson (2009) recommend to avoid
difficulties caused by ties. In all plug-in bandwidth selection algorithms resampling is done with
replacement. To save computer time, and for reasons previously mentioned, we allowed only one
boosting iteration.

To determine the approximated MISE, as will be seen from the main algorithm specified below,
the pointwise MSE has to be calculated for a grid of x-values. A fixed grid is constructed between
the values -2 and +2 and 100 grid points are used. Both Marzio and Taylor (2008) and Hall and
Robinson (2009) used MC = 200 in their simulation studies. In the present study 200 Monte Carlo
samples (MC = 200) are generated for each of the sample sizes n = 50, n = 100 and n = 200. For a
particular combination of model choice, underlying distribution of the covariate variable X and ker-
nel choice, the Nadaraya-Watson with cross-validation bandwidth selection and plug-in bandwidths,
the classical local linear estimator with plug-in bandwidth selection and the classical BRNP estima-
tor with cross-validation bandwidth selection were determined. These methods are reflected in step
3 of the main algorithm. Also, for each model and each estimation method mentioned above, the
various improvement methods discussed in Section 4 are applied. These improvement methods are
listed in Section 4.3. All calculations were done using R 2.15.1 (R Core Team, 2014). The computer
code is available on request.

6. The main algorithm

The main algorithm covers the complete process from data generation to evaluating the discrepancy
measures as it was explained above.

1. Draw a random sample of size n from the underlying distribution and denote the sample by
Sn = {(X1,Y1),(X2,Y2), . . . ,(Xn,Yn)}.

2. Construct a grid of x-values and denote the minimum grid value by xmin and the maximum
grid value by xmax. In each grid point, x, estimate m(x), for each of the three models defined in
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Table 1, by utilising one of the 32 specific estimation methods described above, in a specific
parameter scenario.

3. Repeat the above steps MC times and denote the estimates by m̂i(x), i = 1,2, . . . ,MC, where
xmin = x1 and xmax = x100 The following matrix is obtained

m̂1(xmin) m̂2(xmin) · · · m̂MC(xmin)

m̂1(x2) m̂2(x2) · · · m̂MC(x2)
...

...
...

...
m̂1(xmax) m̂2(xmax) · · · m̂MC(xmax)

 .

4. For the chosen model and estimation method, calculate Monte Carlo approximations to the
mean-squared error (MSE), variance and squared bias in each grid point x:

M̂SE[m̂(x)] =
1

MC

MC

∑
i=1

[m̂i(x)−m(x)]2,

V̂ar[m̂(x)] =
1

MC

MC

∑
i=1

[
m̂i(x)−

1
MC

MC

∑
i=1

[m̂i(x)]

]2

and

B̂ias
2
[m̂(x)] =

[
1

MC

MC

∑
i=1

[m̂i(x)]−m(x)

]2

.

5. Use numerical integration to integrate over the entire range of x-values to obtain approximated
global measures:

M̂ISE =
∫ xmax

xmin

M̂SE[m̂(x)]dx,

Approximate Integrated Variance =
∫ xmax

xmin

V̂ar[m̂(x)]dx

and

Approximate Integrated Bias2 =
∫ xmax

xmin

B̂ias
2
[m̂(x)]dx.

6. Repeat for all models in Table 1 and for all estimation method procedures.

For numerical integration, the trapezoid rule numerical integration was used, utilizing the R
package caTools (Tuszynski, 2014). The results of the various simulation executions have been
summarized, studied and evaluated.
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7. Results and conclusions

The results of the 32 procedures, some ranging over 36 scenarios, have been summarized into 324
tables, which were regrouped into 36 sub-tables. These results are available on request. However,
we state the main results below along broader lines, to indicate the main effects of boosting, bagging
and bragging on the final estimators, and to point out specific comparative observations between
the estimators and the applied bandwidths. In general, the following is true for all scenarios and all
models:

a) The MISE decreases as the sample size increases. This is to be expected, since the under-
lying regression relationship m(x) will be more evident from large samples carrying a lot of
information than from smaller samples.

b) Increasing values of the error variance, σ2, result in larger MISE values, since m(x) will be
more difficult to estimate from data that were generated to deviate much from m(x), compared
to data generated to follow m(x) closely, i.e., data constructed with small error variance.

c) The N(0,1) kernel performs slightly better with regard to the smallest MISE, due to a longer
tail and therefore including more data than the triangular kernel.

d) The underlying distribution of the covariate data influences the MISE values. Smaller MISE
values are observed when X ∼U(−2,2), compared to X ∼ N(0,1).

e) Throughout the study it is evident that the results obtained by the various procedures, are also
model dependent.

For the discussion below we use the terms classical Nadaraya-Watson estimator, classical local lin-
ear estimator and classical BRNP-estimator, when referring to the NW-estimator, the LL-estimator
and the BRNP-estimator, without any improvements applied. The appropriate bandwidth-selection
method used will be indicated by a subscript. This notation will enable comfortable remarks and
discussions below, regarding the effects of the improvement methods on the various estimators.

7.1. Effects on the Nadaraya-Watson estimator with cross-validation band-
width (NWCV )

a) In general bagging reduced the variance of NWCV .

b) For Models 1 and 2, in all 36 simulation setup scenarios, the boosting procedure led to a
smaller integrated squared bias value compared to the integrated squared bias value of the
classical NWCV . For Model 3, this was also true for most cases of Bag1, Bag3 and Brag3. But
Bag2, Brag1 and Brag2 inflated the variance.

c) In 86% of the simulation scenarios for Model 3, Bag3 performed better than Bag1 and Bag2 in
terms of reducing the variance component of the classical NWCV , while in 78% of the scenarios
Bag3 also produced the lowest MISE.
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d) In most simulation scenarios the bagged NWCV performed better compared to the classical
NWCV , in the sense that the MISE was smaller overall. Bag1 performed the best, compared to
Bag2 and Bag3.

e) Similarly, bragging reduced the variance component of the classical NWCV -estimator. In gen-
eral, the bragged NWCV performed better than the classical NWCV , in the sense that the MISE
was smaller overall. Brag3 performed better than Brag1 and Brag2, in most simulation scenar-
ios, in terms of reducing the variance component of the classical NWCV , but in most simulation
scenarios Brag1 performed the best, compared to Brag2 and Brag3, in terms of providing a
lower value for the MISE.

f) The boosted NWCV always had a smaller integrated squared bias value compared to the inte-
grated squared bias value of the classical NWCV , but the lower bias was almost always accom-
panied by inflated variance. This conclusion was also confirmed by Marzio and Taylor (2008)
and Boshoff (2009). Therefore, the boosted NWCV outperformed the classical NWCV in terms
of a lower MISE value, only in limited cases. This happened when X ∼ N(0,1) and the error
variance was small.

7.2. Effects on the Nadaraya-Watson estimator with plug-in bandwidth (NWplug)

a) For all three models, in all 36 simulation setup scenarios, the boosting procedure led to a
smaller integrated squared bias value compared to the integrated squared bias value of the
classical NWplug, usually due to often significant variance inflation. In only limited cases were
the boosted MISE lower than the MISE obtained from the classical method. Boosting seemed
to be most effective in simulation setup scenarios where the error variance was small.

b) However, in limited cases, bagging reduced the variance of the NWplug. Again, bagging was
the most effective in the case of small sample sizes, X ∼N(0,1) and when the triangular kernel
was used. Also, in limited cases the bagged NWplug performed better in terms of lower MISE
overall, compared to the classical NWplug. Bag3 performed the best, compared to Bag1 and
Bag2, in most simulation scenarios, in terms of reduced MISE.

c) Similar deductions can be made for bragging. In limited cases the bragged NWplug outper-
formed the classical NWplug in terms of the lowest MISE. In most simulation scenarios Brag1
or Brag3 performed the best of the bragging procedures in terms of MISE.

7.3. Effects on the local linear estimator with plug-in bandwidth (LLplug)

a) Similar results were obtained as those for NWplug. In cases where the bagged or bragged
LLplug-estimator performed better than the classical LLplug in terms of the MISE, it was due to
a smaller variance component. Bagging and bragging indeed reduced the variance of LLplug

in a substantial number of scenarios.

b) Bag3 and Brag3 were the most effective improvement methods. The Bag3 and Brag3 algo-
rithms produced estimates for m(x) for each bootstrap sample separately and then aggregated
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these estimates. The aim of the Bag3 and Brag3 methods therefore is to reduce the variability
of m̂(x).

c) In many scenarios the bagging and bragging methods were the most effective in terms of
smaller MISE, when sample sizes were small.

d) For all three models, in all 36 simulation setup scenarios, the boosting procedure led to a
smaller integrated squared bias compared to the integrated square bias of the classical LLplug.
Boosting indeed reduced the bias of the classical LLplug. Unfortunately, the boosting improve-
ment method was not effective in terms of the MISE. In most of the simulation setup scenarios,
there were a significant increase in the integrated squared variance value. This increase in the
variance component resulted in a MISE larger than that of the classical LLplug. Only in a
limited number of cases the boosted LLplug had a smaller MISE.

7.4. Effects on the BRNP estimator with cross-validation bandwidth (BRNPCV )

a) In several scenarios Bag1 and Brag1 and even Bag3 achieved smaller MISE values than the
classical BRNPCV . In all such cases the covariate distribution was U(−2,2) and the N(0,1)
kernel was used. Bagging and bragging indeed reduced the variance of the classical BRNPCV .
Bag1 and Brag1 were the most effective improvement methods in terms of the MISE, for
Model 2 and Model 3, for almost all choices of sample size and error variance.

b) For all three models, for almost all simulation setup scenarios, the boosted BRNPCV had a
smaller integrated squared bias value compared to the integrated squared bias value of the
classical BRNPCV . The only exception was for Model 3, X ∼U(−2,2), σ = 0.5 and n = 100.
Also, in most cases, boosting improved the classical BRNPCV in terms of the MISE values.
Hence, we can conclude that boosting was very effective in reducing the bias of the classical
BRNPCV estimator. However, an increase in the error variance led to an increase in the values
of the discrepancy measure in a limited number of cases.

8. Comparing NWCV to the NWplug

a) In order to compare the results of NWCV to the results of NWplug, a ratio of the obtained MISE
values is used:

ratio =
MISENWCV

MISENWplug

. (15)

If this ratio is larger than one, then NWplug has the smaller MISE value for a specific simulation
scenario. If the ratio is less than one, the opposite is true. The results of the comparisons are
displayed in Table 2. Recall that for the three models there were 36 simulation setup scenar-
ios, i.e., three sample sizes, three error variances, two kernels and two covariate distributions
were considered. Table 2 provides a summary of the percentage of times the classical NWCV

performed best in terms of MISE, and the percentage of times the classical NWplug performed
best in terms of MISE. We now discuss the results and draw conclusions.
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b) From Table 2 it is clear that in the classical case, as well as when boosting were applied,
and for almost all the bagging methods, in almost all simulation setup scenarios, the classical
NWplug outperformed NWCV in terms of smallest MISE. For Model 1, the classical NWplug

had a smaller MISE, compared to that of NWCV for 75% of the simulation setup scenarios. No
general pattern could be established since all covariate and kernel distributions, all σ -values
and sample sizes were involved. Similar results were obtained for the other models and all
estimation procedures.

Table 2: Percentage of times the estimator performed best in terms of MISE for the 36 simulation
scenarios.

Model 1 Model 2 Model 3
NWCV NWplug NWCV NWplug NWCV NWplug

Classical 25% 75% 31% 69% 19% 81%
Bag1 53% 47% 64% 36% 36% 64%
Bag2 33% 67% 47% 53% 25% 75%
Bag3 33% 67% 53% 47% 50% 50%
Boost 19% 81% 11 % 89% 17% 83%

c) It should be mentioned that for the various scenarios, the MISE profits were not dramatic
throughout. MISE comparisons were of the order 0.02658

0.02459 = 1.08 for a large portion of the
scenarios. However, for the ratio defined in (15) when comparing the classical estimators,
53% of the MISE ratios were between 1 and 1.2, while 23% were above 1.2 but less than 1.7.

d) Boosting favoured the classical NWplug instead of the classical NWCV , since in 45% of the
scenarios the ratio (15) were between 1.2 and 1.7. The bagging procedures showed in 44%
of the scenarios ratio values between 1 and 1.2 and only in 9% values above 1.2. Bragging
procedures behaved similarly.

9. Comparing LLplug to NWplug

In this section, similar ratios as in (15) were calculated for all simulation scenarious, to compare
LLplug with NWplug. The following results were obtained:

Table 3: Percentage of times the estimator performed best in terms of MISE for the 36 simulation
scenarios.

Model 1 Model 2 Model 3
LLplug NWplug LLplug NWplug LLplug NWplug

Classical 8% 92% 31% 69% 22% 78%
Bag1 6% 94% 31% 69% 19% 81%
Bag2 11% 89% 33% 67% 28% 72%
Bag3 28% 72% 36% 64% 28% 72%
Boost 3% 97% 6% 94% 6% 94%
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a) From Table 3 it is evident that NWplug yielded smaller MISE-values than LLplug. In fact, in
34% of the scenarios the ratio between the MISE-values, in the classical case, were above 1.2,
and ratio-values of 1.8 occurred. When boosting were applied, ratio-values even exceeded
4.00, and in 58% of the scenarios the ratios-values were above 1.2. Similar results were found
for the bagging procedures.

b) Results for the bragging procedures were similar to the results obtained from the bagging
procedures, and have been omitted.

10. Comparing BRNPCV to NWCV

This comparison could not be done because the number of Monte Carlo replications were not the
same for the two procedures. Only 20 Monte Carlo replications were used to obtain results for the
BRNP estimator, because procedures for this estimator is very computer time intensive. See the
following paragraph for specific information.

11. Comparing the improvement methods

One of the most important aspects of this paper is to evaluate the improvement methods, i.e., the three
bagging methods, the three bragging methods and the boosting procedure. From the discussions in
Section 7 it is evident that the behaviour of the improvement methods are model dependent and they
show different behaviour for the estimators NWCV , NWplug, LLplug and BRNPCV . From Tables 2 and
3 it is also clear that specific estimators of m(x) favour different methods of derived bandwidths and
the boosting procedure does not suit all estimation methods of m(x) equally well in terms of small
MISE.

To illustrate that no fixed general rule exists to select the best improved bandwidth selection
method for the four estimators of m(x) in terms of smallest MISE, and to verify the results stated
in Section 7.1, the upper part of Table 4 shows the percentage of times (out of 36 scenarios) that
the bag procedures produced the smallest MISE for the three models among the bag procedures, for
the NWCV estimator. The lower part displays similar percentages for the brag procedures among the
brag procedures, for the three models, for the NWCV estimator. However, Table 5 shows a percentage
comparison of all the improvement methods simultaneously, for Models 1-3, for the NWCV estimator,
i.e., it shows the percentage of times (out of a possible 36 scenarios) that each of the bagging,
bragging and boosting procedures was responsible for the smallest MISE, for the NWCV estimator.
The results displayed in Tables 4 and 5 regarding the behaviour of the improvement methods based
on the NWCV estimator, therefore confirm the discussions and conclusions contained in Section 7.1.
Similarly, tables for the other estimators show similar model and scenario-specific behaviour and are
omitted. However, the main findings acquired from these tables are captured in Sections 7-11 and
14.
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Table 4: Percentage of times bagging and bragging procedures performed best among bagging
procedures and bragging procedures respectively in terms of MISE, for the 36 simulation scenarios.

Model 1 Model 2 Model 3
Bag1 80.56% 61.11% 19.44%
Bag2 2.78% 13.89% 2.78%
Bag3 16.67% 25.00% 77.78%

Brag1 88.89% 63.89% 38.89%
Brag2 0.00% 2.78% 0.00%
Brag3 11.11% 33.33% 61.11%

Table 5: Percentage of times bagging, bragging and boosting procedures performed best in terms of
MISE, for the 36 simulation scenarios.

Model 1 Model 2 Model 3
Bag1 33.33% 44.44% 8.33%
Bag2 2.78% 13.89% 0.00%
Bag3 16.67% 25.00% 66.67%

Brag1 38.89% 11.11% 16.67%
Brag2 0.00% 0.00% 0.00%
Brag3 0.00% 0.00% 8.33%
Boost 8.33% 5.56% 0.00%

12. Computer-time

It was shown that the classical NWplug and LLplug performed just as good as the classical NWCV

in terms of small MISE-values. Typical computation time (in seconds) for the 1000 Monte Carlo
iterations and all the models considered, are:

If n = 200, σ = 0.2, the kernel is Gaussian and the covariate distribution is U(−2,2), then the
following times (in seconds) are consumed by calculating classical versions of NWCV , NWplug and
LLplug respectively: 1021.74, 4.43 and 3.47. For a triangular kernel the number of seconds become
2725.45, 8.88 and 6.35. If n = 50, these numbers become a third of the times.

If the Bag1 procedure is executed, for n = 200, σ = 0.2, the kernel is Gaussian and the covariate
distribution is U(−2,2), then the following times are used by NWCV , NWplug and LLplug respec-
tively in seconds: 14279, 153.37 and 37.49. For a triangular kernel the number of seconds become
32935.96, 309,12 and 39.67. Bag2 and Bag3 are a little more time consuming than Bag1. Time
for the boosting procedures are almost similar to the times used for classical estimators. However,
to determine the classical BRNPCV takes up to 16009.51 seconds and the boosting process another
13592.29 seconds. It is therefore clear that a nonparametric regression estimator utilizing plug-in
bandwidth selection methods is computationally more efficient than a nonparametric regression es-
timator utilizing cross-validation bandwidth selection methods.

In view of the above findings, the NWplug is a nonparametric regression estimator to be recom-
mended for practical purposes, since it is not only a fairly precise and accurate estimator, but it is
also computationally much faster than other nonparametric regression estimators considered in this
study. It is clear that Yao’s estimator is a very computer time intensive estimator compared to the
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other three estimators. In future studies a plug-in bandwidth selection method for Yao’s estimator
needs to be derived to improve the computation time of this estimator.

13. Graphical illustrations

Figures 2, 3 and 4 present graphs, derived from simulation studies, to illustrate general aspects of
the behaviour of the estimators. The following conclusions are particularly clear from these graphs:

Due to bias reduction, the boosted estimators produce curves that are slightly closer to the un-
derlying regression curve m(x) than the standard estimators. Furthermore, the bagged estimators
produce smoother curves, i.e., curves with less variability, than the standard estimators. Only graphs
of sample size n = 200 are provided to display the behaviour of the four estimators. For smaller
sample sizes, graphs show slightly higher variance and bias. As n increases, the estimates lie closer
to m(x) (i.e., the integrated bias decreases) and the variability becomes smaller (i.e., the integrated
variance decreases).

14. Final remarks and recommendations

This study focused on bias reduction techniques in nonparametric kernel regression, but variance
reduction was also a major point of interest throughout. The following final remarks and recommen-
dations regarding the study can be made:

a) The behaviour of the classical NWplug proved to be a recommendable nonparametric regres-
sion estimator, since it is not only as precise and accurate as any of the other estimators,
but it is also computationally much faster than any other nonparametric regression estimators
considered in this study.

b) Boosting reduced the bias component of the classical NWCV in all simulation scenarios con-
sidered. Boosting was not effective in terms of providing an estimator for m(x) with a MISE
value lower than that of the classical NWCV , due to variance inflation. In general, the boosted
NWplug performed better than the classical NWplug. This is also true for LLplug. Small sample
sizes and small variances suit the boosting procedure.

c) For the BRNPCV , boosting reduced the bias of the estimator in all simulation scenarios con-
sidered. Since the BRNPCV is a very computer time intensive estimator, only 20 Monte Carlo
iterations were performed. A larger study is on its way, including a new BRNPplug-estimator
and its properties and behaviour.

d) Bagging methods are very effective in reducing the variance component of the classical NWCV .
Specifically Bag3 performed well in terms of reducing the variance component of the classical
NWCV . Bag1 performed best in terms of lower MISE than Bag2 and Bag3. Bragging revealed
the same patterns as bagging in this case with regard to NWCV . Bagging and bragging methods
were also effective in reducing the variance component of BRNPCV in limited cases. In gen-
eral the bias component of the estimators with cross-validation bandwidth selection increased
when bagging and bragging improvement methods were applied to the estimators.
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e) Bagged and bragged estimators were not effective when plug-in bandwidth selection methods
were used.

f) The MISE decreased as the sample size increased. Increasing values of the error variance,
resulted in larger MISE values, since m(x) would be more difficult to estimate from data that
were generated to deviate from m(x) much by means of a large error variance, compared to
data generated to follow m(x) closely.

g) By using the N(0,1) kernel, smaller MISE values were obtained in most cases, compared to
the triangular kernel. This is to be expected, since the N(0,1) kernel has longer tails and
therefore more data are included in the estimation process than when using the restricted
triangular kernel.

h) Smaller MISE values were obtained when covariate data were from the U(-2,2) distribution
than for the scenarios where data were drawn from the N(0,1) distribution.

i) Despite all the effort and new insight into the improvement methods and estimators, no specific
rules could be set to predict favourable results. For various models, various scenarios were
favoured by the estimators. However, for large samples and not too large variances, non-
parametric regression estimators could be presented with reliable properties.

j) Figures 2–5 illustrate general aspects of the simulation studies, such as the bias and variance
behaviour of the various methods.

k) Computer package used: All calculations are done using R 2.15.1 (R Core Team, 2014).
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Figure 2: Model 1, X ∼U(−2,2), N(0,1) kernel, σ = 0.2, n = 200.

Top left: The classical (standard) NWCV . Top right: The bagged NWCV . Bottom left: The boosted
NWCV . The black lines represent the estimates for each of the 200 Monte Carlo simulations. The red
line indicates m(x). Bottom right: The average estimates over the 200 Monte Carlo simulations for
Standard, Boost, Bag3, as indicated in the legend.
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Figure 3: Model 1, X ∼U(−2,2), N(0,1) kernel, σ = 0.2, n = 200.

Top left: The classical (standard) NWplug. Top right: The bagged NWplug. Bottom left: The boosted
NWplug. The black lines represent the estimates for each of the 200 Monte Carlo simulations. The
red line indicates m(x). Bottom right: The average estimates over the 200 Monte Carlo simulations
for Standard, Boost, Bag3, as indicated in the legend.
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Figure 4: Model 1, X ∼U(−2,2), N(0,1) kernel, σ = 0.2, n = 200.

Top left: The classical (standard) LLplug. Top right: The bagged LLplug. Bottom left: The boosted
LLplug. The black lines represent the estimates for each of the 200 Monte Carlo simulations. The
red line indicates m(x). Bottom right: The average estimates over the 200 Monte Carlo simulations
for Standard, Boost, Bag3, as indicated in the legend.
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Figure 5: Model 1, X ∼U(−2,2), N(0,1) kernel, σ = 0.2, n = 200.

Top left: The classical (standard) BRNPCV . Top right: The bagged BRNPCV . Bottom left: The
boosted BRNPCV . The black lines represent the estimates for each of the 200 Monte Carlo simula-
tions. The red line indicates m(x). Bottom right: The average estimates over the 200 Monte Carlo
simulations for Standard, Boost, Bag3, as indicated in the legend.
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