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Abstract: By extending the results of Human, Chakraborti and Smit (2010), Phase I control charts
are derived for the generalized variance when the mean vector and covariance matrix of multivariate
normally distributed data are unknown and estimated from m independent samples, each of size n.
In Phase II predictive distributions based on a Bayesian approach are used to construct Shewart-type
control limits for the variance and generalized variance. The posterior distribution is obtained by
combining the likelihood (the observed data in Phase I) and the uncertainty of the unknown parame-
ters via the prior distribution. By using the posterior distribution the unconditional predictive density
functions are derived.

1. Introduction

Quality control is a process which is used to maintain the standards of products produced or services
delivered. As mentioned by Human et al. (2010) monitoring spread is important in practice since
it is an indicator of process quality and also the spread must be first monitored before the mean
control chart should be constructed and examined. If any of the sample variances plot on or outside
the control limits, they should be examined and if they are discarded, revised values should be
calculated for the estimators as well as for the control limits. Although the main aim of this paper is
to monitor sample variances and generalized variances that are too large, i.e., upper one-sided control
limits, it is also important to look at samples with very small variances, i.e., two-sided control-charts.
Observations with very small variances or no variance at all seem suspicious and could have been
tampered with (i.e., artificially changed) to suit the quality control procedure.

It is nowadays commonly accepted by most statisticians that statistical process control should be
implemented in two phases:
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1. Phase I where the primary interest is to assess process stability; and

2. Phase II where online monitoring of the process is done.

As in Human et al. (2010) the Phase I control charts will be constructed using the false alarm prob-
ability (FAP) which is the overall probability of at least one false alarm. The nominal FAP value
that will be used is FAP0 = 0.05. The main difference between our method and that of Human et al.
(2010) is in Phase II where we are using a Bayesian procedure to study the in-control run length.

Bayarri and Garcia-Donato (2005) gave the following reasons for recommending Bayesian anal-
ysis for the determining of control chart limits:

• Control charts are based on future observations and Bayesian methods are very natural for
prediction.

• Uncertainty in the estimation of the unknown parameters is adequately handled.

• Implementation with complicated models and in a sequential scenario poses no methodologi-
cal difficulty, the numerical difficulties are easy handled via Monte Carlo methods.

• Objective Bayesian analysis is possible without introduction of external information other than
the model, but any kind of prior information can be incorporated into the analysis if desired.

In this article, control chart limits will be determined for the sample variance, S2 , and the generalized
variance |S| . Average run-lengths and false alarm rates will also be calculated in the Phase II setting,
using a Bayesian predictive distribution.

2. Example

The data presented in Table 1 represent measurements of inside diameters and represent the number
of 0.0001 inches above 0.7500 inches (Duncan, 1965). The measurements are taken in samples
of j = 1,2, . . . ,n each (n = 5) over time. Also shown in Table 1 are the sample variances, S2

i for
i = 1,2, . . .m samples (m = 10). These data will be used to construct a Shewart type Phase I upper
control chart for the variance, and also to calculate the run-length for future samples of size n = 5
taken repeatedly for the process.

From the data in Table 1 the sample variances are calculated by

S2
i =

1
n−1

m

∑
j=1

(yi j− ȳi)
2 .

The pooled sample variance is then determined as

S2
p =

1
m

m

∑
i=1

S2
i = 10.72.
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Table 1: Data for Constructing a Shewart-Type Phase I Upper Control Chart for the Variance.

Sample Number/
yi1 yi2 yi3 yi4 yi5 s2

iTime (i)
1 15 11 8 15 6 16.5
2 14 16 11 14 7 12.3
3 13 6 9 5 10 10.3
4 15 15 9 15 7 15.2
5 11 14 11 12 5 11.3
6 13 12 9 6 10 7.5
7 10 15 12 4 6 19.8
8 9 12 9 8 8 2.7
9 8 12 14 9 10 5.8
10 10 10 9 14 14 5.8

3. Statistical Calculation of the Control Limits in Phase I

The upper control limit, using the data by Duncan (1965) will be obtained as described by Human
et al. (2010).

It is well known that
(n−1)S2

i
σ2 ∼ χ

2
n−1.

Also, if the underlying distribution is Normal,

m(n−1)S2
p

σ2 ∼ χ
2
m(n−1) =

m

∑
i=1

χ
2
n−1.

Therefore

Yi =
(n−1)S2

i /σ2

m(n−1)S2
p/σ2 =

Xi

∑
m
i=1 Xi

where Xi ∼ χ2
n−1 (i = 1,2, . . . ,m).

The distribution of Ymax = max(Y1,Y2, . . . ,Ym) obtained from 100,000 simulations is illustrated
in Figure 1 . The value b is then calculated such that the False Alarm Probability (FAP) is at a level
of 0.05 (also shown in the figure).

The upper control limit is then determined as:

UCL = mbS2
p = 10(0.3314)(10.72) = 35.526.

The data from Duncan (1965) are presented visually in Figure 2. The figure includes the upper
control limit as determined above.

In the case of a two-sided control chart the joint distribution of Ymin = min(Y1,Y2, . . . ,Ym) and
Ymax = max(Y1,Y2, . . . ,Ym) must first be simulated. The equal tail values given in Table 2, Page 868
of Human et al. (2010) are calculated in such a way that the FAP does not exceed 0.05. For m = 10
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Figure 1: Distribution of Ymax = max(Y1,Y2, . . . ,Ym) (100,000) simulations.

Figure 2: Shewart-type Phase I Upper Control Chart for the Variance - FAP0 = 0.05.

and n = 5 it follows that the lower control limit, LCL = ma1S2
p = (10)(0.0039)(10.72) = 0.4181

and the upper control limit, UCL = mb1S2
p = (10)(0.3599)(10.72) = 38.581. Since the correlation

coefficient between Ymin and Ymax for m = 10 and n = 5 is −0.2731, the shortest two-sided control
limits such that the FAP does not exceed 0.05 is given by ˜LCL = (10)(0.0002)(10.72) = 0.0214 and

˜UCL = (10)(0.3314)(10.72) = 35.5261. This interval is 7% shorter than the equal tail interval.

4. Upper Control Limit for the Variance in Phase II

In the first part of this section, the upper control limit in a Phase II setting will be derived using the
Bayesian predictive distribution.

Theorem 1 Assume Yi j ∼iid N
(
µi,σ

2
)

where Yi j denotes the jth observation from the ith sample
where i = 1,2, . . . ,m and j = 1,2, . . . ,n. The mean µi and variance σ2 are unknown.

Using the Jeffrey’s prior p
(
µ1,µ2, . . . ,µm,σ

2
)

∝ σ−2,σ2 > 0,−∞ < µi < ∞, i = 1,2, . . . ,m it can



CONTROL CHARTS FOR VARIANCE AND GENERALIZED VARIANCE 69

be proved that the posterior distribution of σ2 is given by

p
(
σ

2|data
)
=

(
S̃
2

) 1
2 k 1

Γ
( k

2

) ( 1
σ2

) 1
2 (k+2)

exp
(
− S̃

2σ2

)
,σ2 > 0 (1)

an Inverse Gamma distribution with k = m(n−1) and S̃ = m(n−1)S2
p.

Proof. The proof is given in the Appendix. �
The posterior distribution given in (1) is presented in Figure 3.

Figure 3: Distribution of p
(
σ2|data

)
-Simulated Values.

A predictive distribution derived using a Bayesian approach will be used to obtain the control
limits in a Phase II setting. Let S2

f be the sample variance of a future sample of n observations from
the Normal distribution. Then for a given σ2 it follows that

(n−1)S2
f

σ2 =
vS2

f

σ2 ∼ χ
2
v

which means that

f
(
S2

f |σ2)= ( v
2σ2

) 1
2 v 1

Γ
( v

2

) (S2
f
) 1

2 v−1
exp

(
−

vS2
f

2σ2

)
. (2)

Theorem 2 If S2
f is the sample variance of a future sample of n observations from the Normal

distribution then the unconditional predictive density of S2
f is given by

f
(
S2

f |data
)
= S2

pFn−1,m(n−1)

where S2
p is the pooled sample variance and Fn−1,m(n−1) the F-distribution with n− 1 and m(n−1)

degrees of freedom.
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Proof. The proof is given in the Appendix. �
The upper control limit in the Phase II setting is then derived as

S2
pFn−1,m(n−1) (1−β ) .

At β = 0.0027 we therefore obtain the upper control limit as

S2
pFn−1,m(n−1) (0.9973) = (10.72)(4.8707) = 52.214.

The distribution of the predictive density of S2
f including the derived upper control limit is pre-

sented in Figure 4.

Figure 4: Distribution of f
(

S2
f |data

)
.

Assuming that the process remains stable, the predictive distribution for S2
f can also be used to

derive the distribution of the run-length, that is the number of samples until the control chart signals
for the first time.

The resulting rejection region of size β using the predictive distribution for the determination of
the run-length is defined as

β =
∫

R(β )
f
(
S2

f |data
)

dS2
f

where
R(β ) = (52.214,∞),

is the upper one-sided control limits.
Given σ2 and a stable process, the distribution of the run-length r is Geometric with parameter

ψ
(
σ

2)= ∫
R(β )

f
(
S2

f |σ2)dS2
f

where f
(

S2
f |σ2

)
given in (2) is the predictive distribution of a future sample variance given σ2.

The value of the parameter σ2 is however unknown and its uncertainty is described by the pos-
terior distribution p

(
σ2|data

)
defined in (1).



CONTROL CHARTS FOR VARIANCE AND GENERALIZED VARIANCE 71

Theorem 3 For a given σ2 the parameter of the Geometric distribution is

ψ
(
σ

2)= ψ

(
χ

2
m(n−1)

)
for given χ

2
m(n−1)

which means that it is only dependent on χ2
m(n−1) and not on σ2.

Proof. The proof is given in the Appendix. �

In Figure 5 the distributions of f
(

S2
f |data

)
and f

(
S2

f |σ2
)

for σ2 = 9 and σ2 = 20 are presented
to show the different shapes of the applicable distributions.

Figure 5: Distributions of f
(

S2
f |σ2

)
and f

(
S2

f |data
)

showing ψ
(
σ2

1
)
.

As mentioned, by simulating σ2 from p
(
σ2|data

)
the probability density function f

(
S2

f |σ2
)

as

well as the parameter ψ
(
σ2
)

can be obtained. This must be done for each future sample. Therefore
by simulating a large number of σ2 values from the posterior distribution a large number of ψ

(
σ2
)

values can be obtained. A large number of geometric and run length distributions with different pa-
rameter values (ψ

(
σ2

1
)
, ψ
(
σ2

2
)
,...,ψ

(
σ2

l

)
) will therefore be available. The unconditional run length

distribution is obtained by using the Rao-Blackwell method, i.e., the average of the conditional run
length distributions.

In Table 2(a) results for the run-length at β = 0.0027 for n = 5 and different values for m are
presented for the upper control limit for the variance. The table presents the mean, median, 95%
equal tail interval and calculated β value to obtain a run-length of 370 (the expected run length at
β = 0.0027 is 1

0.0027 ≈ 370 if σ2 is known).
In the case of the diameter example the mean run-length is 29754 and the median run-length

1354. The reason for these large values is the uncertainty in the parameter estimate because of the
small sample size and number of samples (n = 5 and m = 10). To obtain a mean run-length 370 β

must be 0.0173 instead of 0.0027.
For a two-sided control chart, the upper control limit is UCL = S2

pFn−1,m(n−1)

(
1− β

2

)
and

the lower control limit is LCL = S2
pFn−1,m(n−1)

(
β

2

)
. R(β ) are all those values larger than UCL

and smaller than LCL. For the diameter example UCL = (10.72)(5.4445) = 58.365 and LCL =

(10.72)(0.02583) = 0.2769. In this case the mean run-length is 500.
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In Table 2(b) results for the run-length at β = 0.0027 for n = 5 and different values of m are
presented for a two-sided control chart.

Table 2: Mean and Median Run-length at β = 0.0027 for n = 5 and Different Values of m.

m n Mean Median
95% Equal Tail Calculated β for Mean

Interval Run Length of 370

10 5 29 754 1 354 (54;117 180) 0.0173
50 5 654 470 (121;2 314) 0.0044
100 5 482 411 (156;1 204) 0.0035
200 5 422 391 (197;829) 0.0031
500 5 389 379 (244;596) 0.0028
1 000 5 379 374 (274;517) 0.0028
5 000 5 371 370 (322;428) 0.0027
10 000 5 370 370 (335;410) 0.0027

(a) Upper Control Limit.

m n Mean Median
95% Equal Tail
Interval

10 5 500 552 (92;661)
50 5 399 427 (184;492)
100 5 385 398 (227;474)
200 5 377 383 (263;459)
500 5 373 375 (300;432)
1 000 5 371 372 (320;416)
5 000 5 370 370 (347;391)
10 000 5 370 370 (354;385)

(b) Upper and Lower Control Limit.

From Table 2 it can be noted that as the number of samples increase (larger m) the mean and
median run-lengths converge to the expected run-length of 370.

Further, define ψ̄
(
σ2
)
= 1

l ∑
l
i=1 ψ

(
σ2

i
)
. From Menzefricke (2002) it is known that if l → ∞,

then ψ̄
(
σ2
)
→ β = 0.0027 and the harmonic mean of the unconditional run length will be

(
1
β

)
=

1
0.0027 = 370. Therefore it does not matter how small m and n are, the harmonic mean of the run
length will be 1

β
if l→ ∞.

5. Phase I Control Charts for the Generalized Variance

Assume Yi j ∼idd N (µ i,Σ) where Yi j (p×1) denotes the jth observation vector from the ith sample,
i = 1,2, . . . ,m and j = 1,2, . . . ,n. The mean vector µ i (p×1) and covariance matrix, Σ(p× p) are
unknown.

Define Ȳ i =
1
n ∑

n
j=1 Yi j and Ai = ∑

n
j=1
(
Yi j− Ȳi

)(
Yi j− Ȳ i

)′
(i = 1,2, . . . ,m).
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From this it follows that

Ȳ i ∼ N
(

µ i,
1
n

Σ

)
,(i = 1,2, . . . ,m) ,

Ai = (n−1)Si ∼Wp (n−1,Σ) ,

A =
m

∑
i=1

Ai ∼Wp (m(n−1) ,Σ)

and
Sp =

1
m(n−1)

A.

The generalized variance of the ith sample is defined as the determinant of the sample covariance
matrix, i.e., |Si|.

Define

Ti =
|Ai|

|∑m
i=1 Ai|

=
|A∗i |∣∣∑m
i=1 A∗i

∣∣
where A∗i ∼Wp (n−1, Ip).

Also
T = max(T1,T2, . . . ,Tm) = max(Ti) , i = 1,2, . . . ,m.

Now

Ti =
|Ai|

|∑m
i=1 Ai|

=
|Si|

mp
∣∣Sp
∣∣ .

Therefore a (1−β )100% upper control limit for |Si| (i = 1,2, . . . ,m) is mp
∣∣Sp
∣∣T1−β .

Figure 6 presents a histogram of 100,000 simulated values of max(Ti) for the two dimensional
case (p=2, m=10 and n=6). The upper control limit given in Table 3 is presented on the figure. Table
3 also presents the upper control limit for the one dimensional (p=1) and the three dimensional (p=3)
situations as well as the lower control limit for all three dimensions.

Table 3: Upper 95% Control Limit, T0.95 for T = max(Ti) for the Generalized Variance in Phase I
for m = 10, n = 6 and p = 1,2 and 3.

p m n T0.95 T0.025 T0.975

1 10 6 0.30259 0.00665 0.32655
2 10 6 0.04429 0.00014 0.05122
3 10 6 0.00445 1.822967e-6 0.00544

By using a Bayesian procedure a predictive distribution will be derived to obtain control chart
limits in Phase II.

Using the Jeffrey’s prior

p(µ,Σ) ∝ |Σ|−
1
2 (p+1) −∞ < µ < ∞,Σ > 0
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Figure 6: Histogram of max(Ti)-100,000 Simulations.

the posterior distribution of Σ is derived as

|Σ| |data∼ |A|
p

∏
i=1

(
1

χ2
m(n−1)+1−i

)
(3)

and the predictive distribution of a future sample generalized variance
∣∣S f
∣∣ given Σ as

∣∣S f
∣∣ |Σ∼ ∣∣∣∣ 1

n−1
Σ

∣∣∣∣ p

∏
i=1

χ
2
n−i. (4)

By combining (3) and (4) the unconditional predictive distribution is given by

∣∣S2
f
∣∣ |data∼

(
1

n−1

)p

|A|
(

p

∏
i=1

n− i
m(n+1)+1− i

)
F∗ (5)

where

F∗ =
p

∏
i=1

Fn−i,m(n−1)+i−i.

Equation (5) can be used to obtain the control chart limits.
Similarly for the variance, the rejection region of size β is defined as

β =
∫

R(β )
f
(∣∣S f

∣∣ |data
)

d
∣∣S f
∣∣ .

Given Σ and a stable process, the distribution of the run-length r is Geometric with parameter

ψ (|Σ|) =
∫

R(β )
f
(∣∣S f

∣∣ |Σ)
where f

(∣∣∣S f

∣∣∣ |Σ) is given in (4).
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Theorem 4 For a given value of |Σ|, and simulated from the posterior distribution described in (3),
the parameter of the Geometric distribution is

ψ (|Σ|) = P

{
p

∏
i=1

χ
2
n−i ≥

(
p

∏
i=1

χ
2
m(n−1)+1−i

)(
p

∏
i=1

n− i
m(n−1)+1− i

)
F∗1−β

}

for a given ∏
p
i=1 χ2

m(n−1)+1−i.

Proof. The proof is given in the Appendix. �
For further details see Menzefricke (2002, 2007, 2010a, 2010b) .
Mean and median run-length results at β = 0.0027 for n = 50, m = 50 and 100 for the one, two

and three dimensional cases are presented in Table 4.

Table 4: Mean and Median Run-length at β = 0.0027 for n = 50, m = 50 and 100 and p = 1,2 and
3.

p m n Mean Median
95% Equal
Tail Interval

1 50 50 482 414 (185;1 198)
1 100 50 431 402 (197;841)
2 50 50 466 404 (162;1 128)
2 100 50 423 396 (205;819)
3 50 50 461 407 (165;1 063)
3 100 50 424 399 (209;786)

6. Guidelines for Practitioners for the Implementation of the
Proposed Control Chart

It was mentioned in the introductory section and also by Chakraborti, Human and Graham (2008)
that it is now generally accepted that statistical process control should be implemented in two phases.
Phase I is the so-called retrospective phase and Phase II the prospective or monitoring phase.

The construction of Phase I control charts should be considered as a multiple testing problem.
The distribution of a set of dependent variables (ratios of chi-square random variables) can therefore
be used to calculate the control limits so that the false alarm probability is not larger than FAP0.
Tables are provided by Human et al. (2010) for the charting constants for S2 for each Phase I chart,
for a FAP0 of 0.01 and 0.05 respectively. These tables can easily be implemented by practitioners.
Further the charting constants can also be adjusted so that the difference between the upper and lower
control limit is a minimum. Tables of the “adjusted” charting constants for a FAP0 and 0.05 can
therefore also be made available to practitioners. Similar tables can be drawn up for the generalized
variance.

Since the Phase I control charting problem is considered to be a multiple hypothesis testing
problem, Bartletts test can be used instead of two-sided control charts. Bartletts test is a likelihood
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ratio test and it is uniformly the most powerful test for testing the homogeneity of variances. Under
the null hypothesis it is the ratio of the geometric and arithmetic mean of a set of independent chi-
square random variables. Tables of critical values can therefore be easily calculated. A similar test
is available for the generalized variance.

Once the Phase I control chart has been calculated, statistical process control should move to
Phase II. According to Chakraborti et al. (2008) Phase II control chart performance should be mea-
sured in terms of some attribute of the run length. This is exactly what this paper has tried to
achieve. Predictive distributions based on a Bayesian approach are used to construct Shewart-type
control limits for the variance and generalized variance. By using Monte Carlo simulation methods
the distributions of the run length and average run length can easily be obtained. It has also been
shown that an increase in the number of samples m and sample size n leads to a convergence of the
run length towards the expected value of 370 at β = 0.0027. In the case of small sample sizes and
number of samples the average run length can be very large because of the uncertainty in the estima-
tion of the parameter σ2. This is especially the case for the upper control limit. If practitioners are
interested in a certain average run length, they are advised to adjust the nominal value of β to obtain
that specific run length. For m = 10 and n = 5, β = 0.0173 an average run length will be 370. For the
“diameter” example, the upper control limit will then be UCL = (3.406)(10.72) = 36.512. In Figure
7 the predictive distribution of the run length is displayed for the (1−0.0173)100% = 98.27% two-
sided control limit. As mentioned for given σ2 the run length r is geometric with parameter ψ

(
σ2
)
.

The unconditional run length as given in Figure 7 is therefore obtained using the Rao-Blackwell
method, i.e., the average of a large number of unconditional run lengths.

E (r|data) = 498.6473; Median(r|data) = 319; Var (r|data) = 274473.1449

95% Equal− tail = [9;1961]

Figure 7: Predictive Distribution of the “Run-length” f (r|data)for m = 10 and n = 5 - Two-sided
Control Chart.

In Figure 8 the distribution of the average run length is given. Also the harmonic mean of the
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run length is 1
β

. Therefore if β = 0.0027, the harmonic mean is 1
0.0027 = 370.37 and if β = 0.0173,

the harmonic mean is 1
0.0173 = 57.8 and the arithmetic mean is 370.

Mean = 500; Median = 552; Variance = 25572.95

95% Equal− tail = [92;661]

Figure 8: Distribution of the Average “Run-length” - Two-sided Control Chart.

7. Conclusion

Phase I and Phase II control chart limits have been constructed using Bayesian methodology. In
this article we have seen that due to Monte Carlo simulation the construction of control chart limits
using the Bayesian paradigm are handled with ease. Bayesian methods allow the use of any prior
to construct control limits without any difficulty. It has been shown that the uncertainty in unknown
parameters are handled with ease in using the predictive distribution in the determination of control
chart limits. It has also been shown that an increase in number of samples m and the sample size n
leads to a convergence in the run-length towards the expected value of 370 at β = 0.0027.
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Appendix

Theorem 1

Proof. The likelihood function, i.e., the distribution of the data is

L
(
µ1,µ2, . . . ,µm,σ

2|data
)
=

(
1

2πσ2

) 1
2 mn m

∏
i=1

n

∏
j=1

exp
{
−1

2
(yi j−µi)

2 /σ
2
}
.

Deriving the posterior distribution as Poster ∝ Likelihood × Prior, and using the Jeffrey’s prior it
follows that

µi|σ2,data∼ N
(

ȳi,
σ2

n

)
, i = 1,2, . . . ,m

and

p
(
σ

2|data
)
=

(
S̃
2

) 1
2 k 1

Γ
( k

2

) ( 1
σ2

) 1
2 (k+2)

exp
(
− S̃

2σ2

)
,σ2 > 0

an Inverse Gamma distribution with k = m(n−1) and S̃ = m(n−1)S2
p. �

Theorem 2

Proof. For a given σ2 it follows that

(n−1)S2
f

σ2 =
vS2

f

σ2 ∼ χ
2
v ,

which means that

f
(
S2

f |σ2)= ( v
2σ2

) 1
2 v 1

Γ
( v

2

) (S2
f
) 1

2 v−1
exp

(
−

vS2
f

2σ2

)

where v = n−1 and S2
f > 0.

The unconditional predictive density of S2
f is given by

f
(

S2
f |data

)
=

∫
∞

0 f
(

S2
f |σ2

)
p
(
σ2|data

)
dσ2

=
(v)

1
2 v(S̃)

1
2 k
(

S2
f

) 1
2 v−1

Γ( v+k
2 )

Γ( k
2 )Γ( v

2 )
(

S̃+vS2
f

) 1
2 (v+k)

S2
f > 0

where v = n−1, k = m(n−1) and S̃ = kS2
p = m(n−1)S2

p.
Therefore

f
(
S2

f |data
)
= S2

pFn−1,m(n−1).

�
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Theorem 3

Proof. For a given σ2

ψ
(
σ2
)

= P
(

S2
f > S2

pFn−1,m(n−1) (1−β )
)

= P
(

σ2χ2
n−1

n−1 > S2
pFn−1,m(n−1) (1−β )

)
for given σ2

= P
(

m(n−1)S2
p

χ2
m(n−1)

χ2
n−1

n−1 > S2
pFn−1,m(n−1) (1−β )

)
for given χ2

m(n−1)

= P
(

χ2
n−1 >

1
m χ2

m(n−1)Fn−1,m(n−1) (1−β )
)

for given χ2
m(n−1)

= ψ

(
χ2

m(n−1)

)
for given χ2

m(n−1).

�

Theorem 4

Proof. For a given |Σ|

ψ (|Σ|) = P
{∣∣S f

∣∣> ( 1
n−1

)p |A|
(

∏
p
i=1

n−i
m(n−1)+1−i F

∗
1−β

)}
= P

{∣∣ 1
n−1 Σ

∣∣∏p
i=1 χ2

n−i ≥
( n

n−1

)p |A|
(

∏
p
i=1

n−i
m(n−1)+1−i

)
F∗1−β

}
= P

{
|A|∏p

i=1

(
1

χ2
m(n−1)+1−i

)
∏

p
i=1 χ2

n−i ≥ |A|
(

∏
p
i=1

n−i
m(n−1)+1−i

)
F∗1−β

}

= P
{

∏
p
i=1 χ2

n−i ≥
(

∏
p
i=1 χ2

m(n−1)+1−i

)(
∏

p
i=1

n−i
m(n−1)+1−i

)
F∗1−β

}
for a given ∏

p
i=1 χ2

m(n−1)+1−i. �
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