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Abstract: The empirical characteristic function (ECF) has been in use in statistical inference for
nearly fifty years now. We provide an overview of testing procedures based on the ECF within
certain statistical models. Specifically our emphasis is on recent developments of ECF procedures
for goodness-of-fit testing for parametric families of distributions with structured data, and for the
two-sample and the k-sample problem.

1. Introduction

Let F denote a distribution function (DF) of a random variable Y ∈ Rd , d ≥ 1, and consider the
specific parametric class FΘ = {Fϑ ,ϑ ∈ Θ}, of distributions indexed by ϑ ∈ Θ, where Θ is an
open subset of the Euclidean space of arbitrary dimension p ≥ 1. A standard statistical decision
problem is to test the goodness-of-fit (GOF) null hypothesis,

H01 : F ∈FΘ, for some ϑ ∈Θ. (1)

Another typical problem of interest is testing for the two-sample problem

H02 : F1 ≡ F2, (2)

where F1 and F2, denote a couple of unspecified DF’s.
These hypotheses have been approached by methods based on the empirical characteristic func-

tion (ECF) defined by

ϕn(t) =
∫

∞

−∞

eiytdFn(y), (3)
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where Fn denotes the empirical DF computed from independent copies Y1, ...,Yn of Y .
The main idea behind the methods utilizing the ECF is that the null hypotheses in (1)-(2) may

also be expressed in terms of the characteristic function (CF). For instance, by writing ϕ(t) for the
CF corresponding to F , the null hypothesis in (1) may equivalently be written as

H01 : ϕ ≡ ϕϑ , for some ϑ ∈Θ,

where ϕϑ (t) denotes a CF in FΘ. Likewise in the Fourier domain the null hypothesis (2) is stated as

H02 : ϕ1 ≡ ϕ2,

where ϕk, stands for the CF corresponding to Fk, k = 1,2.
Then as it is typical in GOF testing, we compare a nonparametric estimator of the CF, which

in this review is the ECF ϕn(t), with a corresponding parametric estimator of the same quantity
reflecting the null hypothesis, which will be denoted by ϕn0(t). We reject the null hypothesis (1) for
large values of a test statistic of the type

∆n = ∆w(ϕn,ϕn0), (4)

where ∆w(·, ·), denotes some distance function involving a weight function w(t), the role of which
will be discussed below. Analogous is the approach for the null hypothesis in (2).

Historically the definition of the ECF first appears in the famous textbook of Cramér (1946),
page 342. Several years later the ECF is used by Parzen (1962) as an auxiliary tool in kernel-type
density estimation. In each own right however the ECF first appears in the works of Press (1972)
for estimation of parameters of stable distributions and Heathcote (1972) for GOF testing, while
later work has established the ECF as a main tool for many inferential procedures. Earlier reviews
on the subject of testing by the ECF are included in Csörgő (1984), Hušková and Meintanis (2008a,
2008b), and in chapter 3 of Ushakov (1999). In this synopsis we concentrate on recent developments
of ECF procedures for GOF testing and for the two-sample problem. Specifically in Section 2, we
review GOF tests under various regression settings, while in Section 3 corresponding ECF methods
are surveyed which apply with vectorial observations. Section 4 is devoted to approximations of the
resulting limit distributions of the ECF test statistics and to the choice of the weight function, while
the extension of the methods to data involving dependence is considered in Section 5. Section 6
reviews two-sample and many-sample methods, both in the univariate and multivariate setting, and
we conclude with Section 7.

2. GOF tests for parametric families of distributions
In the classical case of independent and identically distributed (i.i.d.) observations, the typical ECF
approach in testing (1) is the so-called L2 approach which utilizes the distance

∆w( f ,g) =
∫
|g1(t)−g2(t)|2w(t)dt (5)

where the weight function w is assumed to satisfy w(t) = w(−t), t ∈ R. Then the test statistic is
defined by ∆n,w = n∆w(ϕn,ϕn0), where ϕn is defined in (3), ϕn0 is replaced by the estimated CF ϕ

ϑ̂n
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under the null hypothesis (1), and ϑ̂n denotes a consistent estimator of the parameter ϑ . The L2
approach was initiated by Feuerverger and Mureika (1977) for testing symmetry, and by Epps and
Pulley (1983, 1986), for testing normality and exponentiality, respectively, and was subsequently
followed by many researchers; for more information the reader is referred to the aforementioned
earlier reviews. In this connection we also refer to Meintanis and Swanepoel (2007) that present an
overview of L2 methods for the null hypothesis in (1) including corresponding asymptotic results
and suggestions for a parametric bootstrap resampling procedure in order to circumvent the problem
of a highly non trivial asymptotic null distribution of the test statistic.

Another recent development is related to the resampling procedure suggested by Meintanis and
Swanepoel (2007). Specifically, Jiménez-Gamero and Kim (2015) suggest to replace the parametric
bootstrap procedure by a weighted bootstrap procedure, originally found in Kojadinovic and Yan
(2012). The weighted bootstrap, unlike the parametric bootstrap, requires preliminary estimating
computations which are not trivial and which are different for different DF’s under the null hypoth-
esis (1). On the other hand, these computations are carried out only once with every Monte Carlo
whereas with the parametric bootstrap, estimation is performed with each bootstrap sample. Hence
the weighted bootstrap is faster to apply and, as reported in Jiménez-Gamero and Kim (2015) the
loss of power compared to the parametric bootstrap is small, especially for large sample size n.

In this section we will review certain extensions of the above GOF procedure starting with the
case of linear regression. Specifically consider the classical linear model

Y = xT
β + cε, (6)

where x = (1,x2, ...,xp)
T ∈ Rp, is a known regressor vector, β ∈ Rp and c > 0 denote unspecified

regression and scale parameters, respectively, and ε is the error which has F and ϕ as its DF and
CF, respectively. We wish to test the null hypothesis H01 in (1). In the regression setting however
we will further assume that the DF under the null hypothesis H01 is symmetric around zero with
unit scale. Moreover we assume that no extra parameters, apart from location and scale, exist in the
parametric family FΘ, and we will write F0 and ϕ0 for the corresponding DF and CF under the null
hypothesis H01 in (1), respectively.

Hušková and Meintanis (2007) and Jiménez-Gamero, Muñoz-García and Pino-Mejías (2005)
consider this GOF problem for the errors in the regression setting (6). In particular they apply the
test statistic in (5) with g2 replaced by ϕ0 and g1 replaced by the ECF of the residuals

ϕ̂n(t) =
1
n

n

∑
j=1

eit(Y j−xT
j β̂n)/ĉn , j = 1, ...,n,

obtained from a regression fit based on the data {x j,Yj}n
j=1. Here we shall follow the exposition in

Hušková and Meintanis (2007). First it is assumed that the estimator β̂n := β̂n

(
{x j,Yj}n

j=1

)
of β ,

considered is regression equivariant, i.e.,

β̂n
(
{x j,Yj + xT

j v}n
j=1
)
= β̂n

(
{x j,Yj}n

j=1
)
+ v, (7)

for each v ∈ Rp, and that the estimator ĉn = ĉn

(
{x j,Yj}n

j=1

)
, of c is scale equivariant, i.e.,

ĉn
(
{x j,bYj}n

j=1
)
= b ĉn

(
{x j,Yj}n

j=1
)
, (8)
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for each b > 0.
If the regression estimators satisfy (7) and (8) and under some additional assumptions, it is

proved that under the null hypothesis

∆n,w
D−→
∫

Z 2(t)w(t)dt, (9)

where {Z (t), t ∈ R} is a zero-mean Gaussian process with covariance kernel depending on F0 and
on the type of estimation of the parameters (β ,c) but not on the true values of these parameters.

A study the behaviour of ∆n,w under contiguous alternatives is also carried out by Hušková and
Meintanis (2007). Specifically the density of the random errors under this type of alternatives is
written as:

gn(x) = (1+
κ√
n

u(x)) f0(x), x ∈ IR, (10)

where f0(·) is the density corresponding to F0(·), κ 6= 0 , and u(·) is a suitable measurable function.
Then it is shown that

∆n,w
D−→
∫
(Z (t)+κµ(t))2w(t)dt,

where
∫

µ2(t)w(t) 6= 0. Hence the test procedure is consistent as soon as κ → ∞.
The problem of testing (1) for the distribution of the error ε was considered in Hušková and

Meintanis (2010) also in the context of the nonparametric regression model

Y = m(X)+σ(X)ε, (11)

where m(·) and σ(·) denote unspecified regression and scale functions, respectively. This test uses
the approach in (5) with g1 replaced by the ECF

ϕ̂n(t) =
1
n

n

∑
j=1

eit(Y j−m̂(X j))/σ̂(X j), (12)

of the nonparametrically computed residuals and g2 replaced by the CF ϕ
ϑ̂n

under the null hypothe-
sis. We will not present any technical results here but simply mention that as in the linear regression
setting, the limit null distribution of the test statistic depends on the law of the error under the null
hypothesis. However it is shown that this distribution does not depend on the density of the regressor
X , or the nonparametric functions m(·) and σ(·), and even not on the kernel and the bandwidth used
in estimating these functions. This result is somewhat surprising but nevertheless in line with the
results of Neumeyer, Dette and Nagel (2006) for corresponding classical GOF tests based on the
empirical DF. Finally we mention an ECF test for testing GOF of the regression function in (11) de-
veloped by Hušková and Meintanis (2009). This test uses the approach in (5) with the ECF as in (12)
and g2 replaced by the ECF of the residuals computed under the null hypothesis m(X) = mϑ (X).

3. Multivariate extensions

Versions of the distance measure in (5) for the null hypothesis (1) in the multivariate context (d > 1)
were considered in Henze and Wagner (1997), Jiménez-Gamero, Alba-Fernández, Muñoz-García
and Chalco-Cano (2009) and Meintanis, Allison and Santana (2016), always with special reference
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to testing for multivariate normality. On the other hand, Arcones (2007) uses certain characteriza-
tions of the normal distribution in constructing an L2-type distance analogous to (5). The charac-
terization approach is also followed by Meintanis, Ngatchou-Wandji and Taufer (2015), in order to
generalize the L2-type test of Henze and Wagner (1997) from a test of normality to a test for an
arbitrary multivariate stable distribution.

On the other hand, Pudelko (2005) employs the supremum (Kolmogorov-Smirnov type) distance

sup
t
‖ϕn(t)−ϕ

ϑ̂n
(t)‖ (13)

initially suggested by Csörgő (1986) for testing multivariate normality. A supremum distance anal-
ogous to (13) is also used by Fang, Li and Liang (1998), with the related notion of the empirical
moment generating function.

In the context of testing for the error distribution in linear regression, the corresponding multi-
variate case was treated by Jiménez-Gamero et al. (2005) by extending the test for normality pro-
posed by Henze and Wagner (1997). The results obtained are similar to those listed in Section 2,
since the dimension carries no specific significance in the proofs of Hušková and Meintanis (2007).
An exception is that Jiménez-Gamero et al. (2005) also allow the number of regressors p to increase
with the sample size at a rate which satisfies p2/n = o(1).

4. Limit distribution and the weight function

Meintanis and Swanepoel (2007) show that in the i.i.d. case the test statistic

∆n,w = n∆w(ϕn,ϕϑ̂n
), (14)

for the null hypothesis H01 has the same limit null distribution as the random variable

Dw =
∞

∑
m=1

λ
(w)
m Z2

m, (15)

where Zm are i.i.d. standard normally distributed, and the coefficients (or eigenvalues) λm =

λ
(w)
m (ϑ0,FΘ), m ≥ 1, depend on the weight function w(t) as well as on the family being tested,

on the the true value ϑ0 of the parameter ϑ , but also on the type of estimation used in estimating this
parameter.

Numerical approximation of the distribution of Dw in (15) has been attempted by Matsui and
Takemura (2008) for the special case of testing GOF to symmetric stable distributions. Even in
this special case this is a highly non-trivial numerical task since the coefficients λm can only be
obtained by solving a complicated integral equation. As expected, analytic solution of this equation,
and hence analytic approximation of the distribution of Dw, is in most cases not possible. In fact,
the sole exception of an analytically derived approximation of the limit distribution of an L2-type
ECF statistic in the multivariate context is for the asymptotic null distribution of the test statistic for
multivariate normality of Henze and Wagner (1997) with fixed location and covariance matrix. (Note
that this test was initially suggested by Baringhaus and Henze, 1988 and Henze and Zirkler, 1990).
This approximation has been derived by Baringhaus (1996) and includes an analytic expression for
the eigenvectors.
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In order to circumvent the problem of a non-standard asymptotic null distribution, Naito (1996a,
1997) expands on an earlier suggestion of Ahmad (1993) to employ a weighted version of the empir-
ical DF in the Cramér-von Mises statistic, and suggests a modification of the Epps and Pulley (1983)
test statistic that is asymptotically normally distributed; see also Wong and Sim (2000).

Another important issue with ECF-based test statistics is the choice of the weight function w(t)
figuring in (5). Important aspects for this choice is computational simplicity and level/power prop-
erties of the resulting tests. As far as the first aspect is concerned there seems to be a strong bias
towards exponential weight functions of the type

wa(t) = e−a|t|b , a > 0, b = 1,2, (16)

and their corresponding multivariate versions. In this connection Epps (2005) notes that tests for
normality have mostly been implemented with b = 2, while for testing for the Cauchy distribution
b = 1 is utilized in wa(t) of (16). Clearly this amounts to taking (a specific instance of) the respective
population CF as weight function in each case. Epps (2005) provides further grounds and generalizes
this type of choice which in many cases leads to a closed formula for the resulting test statistic,
while Jiménez-Gamero et al. (2009) carry this approach of hypothesis-specific weight function to
the multivariate context.

Besides simplicity, the preference for weight functions such as wa(t) is grounded on a standard
practice of earlier workers whereby ECF procedures are confined to a relatively narrow interval
around zero for t. This practice partly rests on the well known fact that tail properties of any distri-
bution are reflected on the behaviour of its CF around the origin. Research papers in this direction
include Welsh (1986), Csörgő and Heathcote (1987), and Pourahmadi (1987). Specifically these
authors argue that ECF-based inference should not be extended beyond values of the argument t
greater than the first root of the real part of the ECF, a suggestion that triggered research towards the
stochastic properties of this root; see for example Bräker and Hüsler (1991).

Further study on w(t) was facilitated by the the connection made by Henze and Zirkler (1990)
that the choice of w(t) is directly related to the choice of the kernel in L2-type GOF tests of Bowman
and Foster (1993) utilizing kernel-based density estimators. This line of research is carried further by
Lindsay, Markatou and Ray (2014) in a more general framework whereby distance-based GOF tests
are expressed by means of kernels, with ECF tests being a special case. The authors essentially sug-
gest a calculus for kernel/bandwidth choice directed at specific alternatives. The kernel/bandwidth
role is also analysed in Sejdinovic, Sriperumbudur, Gretton and Fukumizu (2013) where it shown
that distance-based statistics such as those for the two-sample problem in (18) are equivalent with
certain statistics encountered in the machine learning literature. In this connection and in the context
of parametric weight functions defined in (16), the value of the parameter a is particularly important
as it directly relates to the value of the bandwidth in nonparametric density estimation. Hence further
work in this line of research has been carried out in order to investigate test-efficiency as a function
of a within specific parametric forms such as wa(t); for more details the reader is referred to Naito
(1996b), Epps (1999) and Tenreiro (2009, 2011). Finally, there exists a moment-based interpretation
concerning the weight function which is considered in Section 6.
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5. Testing with dependent observations

In this section we provide a summary of ECF-based GOF tests under dependence. We begin with
tests within a parametric context. Specifically suppose that observations Yt come from a GARCH
model

E(Yt |Ys,s < t) = 0, σ
2
t = Var(Yt |Ys,s < t) = β0 +

k

∑
j=1

β jY 2
t− j +

κ

∑
j=1

γ jσ
2
t− j, (17)

where β j (0 ≤ j ≤ k) and γ j(1 ≤ j ≤ κ) denote unknown parameters. We are interested in testing
H01 of (1) with F standing for the DF of the innovations εt =Yt/σt in (17). Jiménez-Gamero (2014)
follows the L2 approach in (5) and essentially suggests the test statistic (14) where

ϕ̂n(t) =
1
n

n

∑
t=1

eitYt/σ̂t ,

where σ̂t is a suitable estimator of the volatility parameter. The asymptotic null distribution of the
test statistic is derived and a resampling algorithm is suggested by means of which this distribution
may be consistently approximating via the bootstrap. It should be mentioned here that the GOF tests
proposed by Jiménez-Gamero (2014) were first suggested by Klar, Lindner and Meintanis (2012)
who also provided an extensive study of their small sample properties.

More general frameworks for dependence are those of weak dependence and long-range depen-
dence. Leucht (2012) extends the test statistic in (14) from i.i.d. observations to weakly dependent
observations. Specifically it is shown that the limit null distribution exists but as in the i.i.d. case
is highly non-trivial. However, unlike the case with i.i.d. data, the bootstrap statistic in this context
does not mimic the original test statistic, but has to be suitably modified in order to become consis-
tent. On the other hand, the case of long-range dependence is entirely different as far as the limit null
distribution is concerned: L2-type statistics for normality testing as in (14) attain trivial limit null
distributions. This somewhat surprising fact is proved in Ghosh (2013) where similar test statistics
involving the empirical moment generating function are shown to converge in distribution to the χ2

1
distribution, under the null hypothesis of normality, if the data are long-range dependent.

The favourable feature of a simple limit null distribution seems to be the main reason that Nieto-
Reyes, Cuesta-Albertos and Gamboa (2014) deviate from the L2 formulation of (5). These authors
suggest a test for normality for dependent data that relies on an earlier χ2-type method suggested
by Epps (1987). Specifically for fixed integer M > 0, the test is based on a quadratic form of the
type ∑

M
m,`=1 vm,`δmδ` in which δm = ϕn(tm)− ϕn0(tm), m = 1, ...,M, and vm,` denotes a specific

weighting scheme depending on the spectral density estimate of the process (sin(tYm),cos(tYm)). As
expected the test has an asymptotic chi-squared distribution under the null hypothesis. However,
test consistency, which is generally true for L2-type procedures as those in (14), is compromised
with chi-square type measures. The reason is that the uniqueness property of the CF is only valid if
this function is viewed over the entire real line and not at certain isolated values of its argument t.
Hence, and in order to restore consistency, Nieto-Reyes et al. (2014) suggest a certain version of the
test statistic that makes use of the notion of random projections, which however has the “side-effect”
of the test procedure becoming much more complicated to apply in practice.
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Returning to more parametric frameworks of dependence, we mention the work by Chan, Chen,
Peng and Yu (2009) where GOF tests based on the ECF for the null hypothesis H01 in (1) are
constructed in the context of continuous-time Lévy processes. Actually the test utilizes the corre-
sponding increments which are well known to be independent and stationary, i.e. they are i.i.d. The
novelty of the procedure lies mainly in that the authors employ the empirical likelihood to estimate
the parameters, with the likelihood equations resulting from the CF of the increments under the null
hypothesis. Then in a fashion analogous to Einmahl and McKeague (2003) their test statistic is the
minimized log-likelihood ratio, properly integrated. The parametric bootstrap is employed in order
to actually carry out the test for certain well known processes (Black-Scholes and variance gamma),
with estimated parameters. In a similar context Lin, Lee and Guo (2013) use the ECF in order to
test goodness-of-fit for the marginal law driven by a continuous time stochastic volatility model
and show that the parametric bootstrap consistently estimates the limit null distribution of their test
statistic.

6. The two-sample and the k-sample problem

In the classical two-sample problem in (2) the ECF approach utilizes the test statistic

∆n1,n2,w = n1

∫
∞

−∞

|ϕn1(t)−ϕn2(t)|
2w(t)dt, (18)

which results from (5) with ϕnk being the ECF corresponding to the kth sample Yk j, j = 1, ...,nk,
k = 1,2. We will refer to the asymptotics later on but for now we wish to illustrate an interesting
interpretation of ∆n1,n2,w in terms of moments. To this end assume that the weight function satisfies∫

tρ w(t)dt < ∞, for each ρ > 0, and write for simplicity ∆w for the test statistic in (18). Then by
straightforward algebra we have that

∆w

n1
=
∫

g2(t)w(t)dt, (19)

where g(t) = Rn1(t) +In1(t) −Rn2(t) −In2(t), with Rnk(t) = n−1
k ∑

nk
j=1 cos tYk j and Ink(t) =

n−1
k ∑

nk
j=1 sin tYk j, being the real and imaginary part of ϕnk , k = 1,2, respectively. In turn, simple

Taylor expansions of the sin(·) and cos(·) functions lead to the expansion

g(t) =
M

∑
m=1

γmtm

m!
Mm +o(tM), t→ 0, M = 1,2, ..., (20)

where γm = 1 or −1, Mm = Y (m)
1 −Y (m)

2 and Y (m)
k = nk

−1
∑

nk
j=1 Y m

k j , m = 1, ...,M, k = 1,2. Clearly
then moment matching takes place in g(t) between the empirical moments computed from the first
sample and the corresponding empirical moments of the same order computed from the second
sample. Furthermore by substituting (20) into (19) and by some extra algebra we arrive at

∆w

n1
=

M

∑
m,`=1

γmγ`

m!`!
MmM` vm,`+ remainder, (21)
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where vm,` =
∫

tm+`w(t)dt. Hence the role of the weight function is to regulate the weight according
to which each moment equation Mm enters the value of the test statistic. For parametric weight
functions such as those in (16) things are even clear regarding the role of the weight parameter
a > 0. Specifically if a is large then the rate of decay for wa(·) is high, and consequently we are led
to a test statistic that simply matches the sample moments of only low order. By the same reasoning,
choosing a value of a close to zero results in a procedure which takes into account not only lower but
also higher order moments. Some caution should be exercised in this respect though, since if a= 0 in
wa(t) of (16), then it is straightforward to see that the integral in (18) diverges. Consequently values
of a which are too close to zero should be avoided as they lead to numerical instability. Likewise
taking a to be too large should also be avoided because such values lead to loss of information.
These observations are in agreement with the simulation results in the work of Lindsay et al. (2014)
mentioned in Section 4 which show that the bandwidth of the Bowman-Foster test for multivariate
normality should be neither too small nor too large. For more discussion on this the reader is referred
to Meintanis (2013).

Turning now to the k-sample problem (k > 2), an analogous test statistic is given by

∆n,w =
∫

∞

−∞

k

∑
j=1

n j|ϕn j(t)−ϕn(t)|2w(t)dt, (22)

where ϕn j(t) is the ECF of sample j resulting from (3) by replacing n by the corresponding sample

size n j, j = 1, ...,k, and ϕn(t)=∑
k
j=1(n j/n)ϕ( j)

n j (t), with n=∑
k
j=1 n j. The corresponding asymptotic

theory is well documented in several papers so we will not present it here. For asymptotics the
interested reader is referred to Meintanis (2005), Hušková and Meintanis (2008b), and Hušková
and Meintanis (2008c). In fact the last paper considers the sample homogeneity problem in its full
generality of k ≥ 2 multivariate samples. Instead we will review certain recent developments and
variations of the test statistics.

Independently of Hušková and Meintanis (2008c) but in an entirely analogous manner, Alba-
Fernández, Jiménez-Gamero and Muñoz-Garcia (2008) consider the ECF test statistic in the special
case of the (univariate) two-sample problem (k = 2). The authors suggest two resampling schemes
for approximating the limit null distribution of the test statistic: The permutation (also employed by
Hušková and Meintanis, 2008c) and the bootstrap, and show the consistency of both approximations.
In a more numerically oriented work Alba-Fernández, Ibáñez-Pérez and Jiménez-Gamero (2004)
consider the test statistic in (18) with

w(t) =

{
1, |t|< T,

0, |t|> T,
(23)

for some T > 0. The novelty of this work lies mainly in the computation of the test statistic: They
propose a partition of the interval of integration [−T,T ] into N subintervals and use a numerical
quadrature technique involving Hermite polynomials in order to compute the integral in the resulting
test statistic. The asymptotic null distribution of the test statistic coincides with that of a quadratic
form involving zero mean Gaussian variables of order 4N. Then the authors use the bootstrap in order
to approximate this distribution and also show consistency of this approximation. An extension of
these numerical quadrature ideas to the bivariate case is carried out by Alba-Fernández, Barrera-
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Rosillo, Ibáñez-Pérez and Jiménez-Gamero (2009) which is based on an earlier method of Alba-
Fernández, Barrera and Jiménez (2001).

We close this section by mentioning the related works of Ghosh and Beran (2000) for the classical
two-sample problem which utilizes the moment generating function, of Baringhaus and Kolbe (2015)
which utilizes the Hankel transform for the same problem, and of Jiménez-Gamero, Batsidis and
Alba-Fernández (2015) for the problem of model selection. We finally mention the ECF-based
methods for the k-sample problem with dependent data suggested by Quessy and Éthier (2012).

7. Conclusion
We review testing procedures based on the empirical characteristic function. Our review is not
exhaustive and has basically been confined to goodness-of-fit tests for parametric families of distri-
butions and tests for the two-sample and the k-sample problem. Other related areas in which the ECF
has been applied are, testing for symmetry, testing for independence, and change-point detection. As
far as the first problem is concerned we refer to Meintanis and Ngatchou-Wandji (2012) that provide
a review of symmetry tests with particular emphasis on ECF-based procedures, but also mention the
articles of Hušková and Meintanis (2012), Klar et al. (2012), Ngatchou-Wandji and Harel (2013),
Laïb, Lemdani and Saïd (2013), Jiménez-Gamero (2014), and Henze, Hlávka and Meintanis (2014),
which have appeared since that review.

Along the paper we mention occasionally related work that uses the empirical moment gener-
ating function. Note that the empirical Laplace transform is another related notion that applies to
non-negative observations. For discrete observations however the natural empirical transform is not
the ECF (or its real-valued equivalents) but the empirical probability generating function

gn(t) =
∫

∞

−∞

tydFn(y), 0≤ t ≤ 1.

Goodness-of-fit tests based on gn(t) date back to Kocherlakota and Kocherlakota (1986), while
Nakamura and Pérez-Abreu (1993) provide an early review of such procedures. We conclude by
mentioning the related works of Epps (1995), Gürtler and Henze (2000), Meintanis and Nikitin
(2008), Szűcs (2005), and Novoa-Muñoz and Jiménez-Gamero (2014), all of which centre around
goodness-of-fit testing for the Poisson distribution.
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Professor Meintanis is to be congratulated for this nice review paper on tests based on the em-
pirical characteristic function (ECF). There is not much to add, but I want to emphasize one basic
point. There are numerous results on the limit behavior of ECF based tests under contiguous alter-
natives to the null hypothesis, and usually authors derive an almost sure limit for the suitably scaled
test statistic under fixed alternatives. At least to my knowledge, however, there is only one result on
the limit distribution of the test statistic under fixed alternatives, which is due to Gürtler (2000), and
which refers to the BHEP tests for multivariate normality. Since the approach taken by Gürtler will
probably be useful also for other tests based on the ECF, we outline the reasoning in what follows.

For testing the hypothesis H0 that an unknown d-variate distribution is some non-degenerate
normal distribution, based on independent and identically distributed copies X1, . . . ,Xn of a d-variate
random column vector X satisfying E‖X‖2 < ∞, the BHEP statistic is

Tn,β = n
∫
Rd

∣∣∣Ψn(t)− exp
(
−‖t‖

2

2

)∣∣∣2ϕβ (t)dt.

Here, β > 0, ϕβ (t) = (2πβ 2)−1/2 exp(−t2/(2β 2)), Ψn(t) = n−1
∑

n
k=1 exp(it>Yn,k) is the ECF of

the scaled residuals Yn,k = S−1/2
n (Xk−Xn), S−1/2

n is the symmetric square root of the inverse of the
empirical covariance matrix of X1, . . . ,Xn, and Xn = n−1

∑
n
j=1 X j. Because of affine invariance, we

assume that E[X ] = 0 and E[XX>] = Id , the unit d-matrix. Baringhaus and Henze (1988) proved
that

Tn,β

n
−→ Lβ =

∫
Rd

∣∣∣Ψ(t)− exp
(
−‖t‖

2

2

)∣∣∣2ϕβ (t)dt

almost surely as n→ ∞, where Ψ(t) = E[exp(it>X)] is the characteristic function of X . Under the
condition E‖X‖4 < ∞ Gürtler (2000) proved that

√
n
(

Tn,β

n
−Lβ

)
D−→N (0,τ2

β
), (1)

where D−→ is convergence in distribution and τ2
β

depends on the distribution of X in an explicit way.
To prove (1), Gürtler observed that the left-hand side of (1) equals

2
∫
Rd

Zn(t)
[
ψ̃(t)− exp

(
−‖t‖

2

2

)]
ϕβ (t)dt +

1√
n

∫
Rd

Zn(t)ϕβ (t)dt, (2)
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where

Zn(t) =
1√
n

n

∑
j=1

[
cos(t>Yn, j)+ sin(t>Yn, j)− Ψ̃(t)

]
, Ψ̃(t) = E[cos(t>X)+ sin(t>X)].

By working in the Hilbert space H = L2(Rd ,Bd ,ϕβ (t)dt), Gürtler proved the convergence of Zn to
some centered Gaussian element Z of H . From (2) and the continuous mapping theorem, the limit
distribution of

√
n(Tn,β/n−Lβ ) is then the (centered normal) distribution of the first summand of

(2), with Zn replaced by the limit process Z.
Since a consistent estimator τβn of τβ is available, the convergence (1) can be used to approxi-

mate the power of the BHEP test. If qβ ,n,1−α denotes the critical value of an (upper rejection region)
test based on Tn,β at nominal level α , (1) yields the approximation

P(Tn,β > qβ ,n,1−α) ≈ 1−Φ

(
qβ ,n,1−α −nLβ√

nτβn

)
,

where Φ is the distribution function of the standard normal distribution. By considering various
alternatives, Gürtler also showed that replacing Lβ by its consistent estimator Tn,β/n in the above
expression yields a good approximation to the power of the BHEP test. Moreover,[

Tn,β

n
−Φ

−1
(

1− α

2

) τβn√
n
,

Tn,β

n
+Φ

−1
(

1− α

2

) τβn√
n

]
is an asymptotic confidence interval for Lβ at level 1−α .

A final important point is that any goodness-of-fit test in the classical sense is not able to ‘val-
idate’ the null hypothesis H0. If H0 is not rejected, the data are not ‘in sufficient contradiction to
H0’, but nothing more can be concluded. The limit result (1), however, can be used to construct an
asymptotic test for the hypothesis H∆ : Lβ ≥ ∆ against the alternative K∆ : Lβ < ∆, where ∆ > 0 is a
given positive number. Suppose that we reject H∆ if

Tn,β

n
≤

τβn√
n

Φ
−1(α)+∆.

Then for each alternative distribution (function) F ∈ H∆ we have

limsup
n→∞

PF(‘rejecting H∆’)≤ α

with equality if Lβ = Lβ (F) = ∆. If such an ‘inverse test’ rejects H∆, there is evidence that the
underlying distribution is sufficiently near to a normal distribution, at least with regard to the distance
measure Lβ .
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It is a nicely and clearly written paper on statistical procedures based on the empirical charac-
teristic function (ECF). The paper provides an overview of recently developed goodness-of-fit tests
based on functionals of the ECF for both simple setups as well as rather advanced situations (with
nuisance parameters). The author also touches on procedures based on the ECF for the k-sample
problem.

In this discussion I would like to bring attention to another class of procedures based on the ECFs
used in change point analysis, that is, a class of statistical procedures for the detection of instabilities
in various statistical models based on functionals of the ECFs.

Introduction

In change point analysis we typically have observations Y1, ...,Yn obtained at ordered time points and
the basic task is to decide whether the model remains stable during the whole observational period
or whether the model changes at some unknown time point (called the change point) or become
generally unstable. In case change(s) are detected the further task is also to estimate the time of the
change and other parameters of the model in the periods where the model is stable.

Construction of such procedures are usually based on similar principles as in other testing and
estimation problems like maximum likelihood ratio, empirical likelihood, robust procedures, rank
based procedures, etc. If the location of the change point is known the problem reduces to a general
version of the two-sample problem.

There are a number of monographs and survey papers tackling the problem of detection of
changes from various points of view, various levels of generality, etc., e.g. Brodsky and Darkhovsky
(1993), Basseville and Nikiforov (1993), Csörgő and Horváth (1997), Chen and Gupta (2000). A
partial survey of basic procedures till 2000 can be found in, for example, Antoch, Hušková and
Jarušková (2000).

In the next two sections we survey test procedures for the detection of changes based on ECF in
off-line and on-line setups.
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Off-line procedures

Let Y1, . . . ,Yn be independent random variables, let Yj have a distribution function Fj, j = 1, . . . ,n,
and consider the testing problem

H0 : F1 = . . .= Fn (1)

against
H1 : F1 = . . .= Fk0 6= Fk0+1 = . . .= Fn f or k0 < n, (2)

where k0 is an unknown change point, F1 and Fn are also unknown. Motivated by the two-sample
tests based on ECFs (see Section 6 of the overview paper) Hušková and Meintanis (2006a) intro-
duced the following class of test statistics:

Tn,γ(w) = max
1≤k<n

(k(n− k)
n2

)1+γ
∫

∞

−∞

n|ϕ̂k(t)− ϕ̂
0
k (t)|2w(t)dt, (3)

where w(·) is a nonnegative weight function, ϕ̂k(.) and ϕ̂0
k (.) are empirical characteristic functions

based on Y1, . . . ,Yk and Yk+1, . . . ,Yn, respectively, i.e.,

ϕ̂k(t) =
1
k

k

∑
j=1

exp{itYj}, ϕ̂
0
k (t) =

1
n− k

n

∑
j=k+1

exp{itYj}, k = 1, . . . ,n, (4)

and γ is a positive tuning constant. The weight function w plays the same role as in the overview
paper. Large values of the test statistics indicate that the null hypothesis is violated. Limit properties
can be formulated in two ways, either through function of degenerate U-statistics or as a functional
of a Gaussian processes. Particularly, the limit behavior (n→∞) under the null hypothesis of Tn,γ(w)
is the same as that of

max
s∈(0,1)

(s(1− s))1+γ

∫
V 2(s, t)w(t)dt,

where {V (s, t); t ∈ R1,s ∈ (0,1)} is a zero-mean Gaussian process with the covariance structure

cov(V (s1, t1),V (s2, t2)) =cov(cos(t1Y1)+ sin(t1Y1),cos(t2Y2)+ sin(t2Y2)

× 1
max(s1,s2)(1−min(s1,s2))

when the weight function w(·) and the characteristic function satisfy some mild conditions. The limit
distribution is not useful in getting an approximation for critical values, but these can be obtained
through the bootstrap (with or without replacement). However, while the bootstrap approximation
is asymptotically correct under the null hypothesis or local alternatives, this is not true for fixed
alternatives, but the resulting test is consistent. Details including theorems, proofs, simulations and
discussion are found in Hušková and Meintanis (2006a).

In addition, assuming that the distribution functions F1, . . . ,Fn are continuous, Hušková and
Meintanis (2006b) proposed a rank based version of the above statistics. Denote by R1, . . . ,Rn the
ranks related to Y1, . . . ,Yn. The respective test statistic is defined as follows

Tn,γ(w,R) = max
1≤k<n

(k(n− k)
n2

)1+γ

n
∫

∞

−∞

|ϕ̂k(t,R)− ϕ̂
0
k (t,R)|2w(t)dt, (5)
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where R = (R1, . . . ,Rn), w(·) is a nonnegative weight function, ϕ̂k(.,R) and ϕ̂0
k (.,R) are empirical

characteristic functions based on R1, . . . ,Rk and Rk+1, . . . ,Rn, respectively, i.e.,

ϕ̂k(t,R) =
1
k

k

∑
j=1

exp{itR j/n}, ϕ̂
0
k (t,R) =

1
n− k

n

∑
j=k+1

exp{itR j/n}, k = 1, . . . ,n−1, (6)

and γ is a positive constant.
The advantage of the respective test procedure is that under the null hypothesis it is distribution

free and therefore the approximation for critical values can be obtained by simulations, which is not
the case for Tn,γ(w). Limit properties under the null as well as under alternatives are studied in the
paper by Hušková and Meintanis (2006b), where the results of a simulation study is also presented.
In this paper procedures based on empirical distribution functions (Kolmogorov-Smirnov type) are
also discussed, including comparisons via simulations.

The above described testing procedures are suitable when there are not finite dimensional nui-
sance parameters. For example, if the problem is to test for a change in the distribution of the error
terms, then the regression parameters are nuisance ones. The above procedures can be modified to
replace the observations in (6) by residuals similarly to what was done in Section 2 of the survey
paper.

On-line procedures

This section is devoted to the on-line procedures for detection of change based on ECF. We explain
the basic formulation in the following simple basic setup. The observations Y1, . . . ,Yn, . . . arrive
sequentially, Yi has the continuous distribution function Fi, i = 1, . . . , and a training sample of size
m with no change is available such that the first m observations have the same distribution function
F0, i.e.,

F1 = . . .= Fm = F0, (7)

where F0 is unknown. We are interested in testing the null hypothesis:

H0 : Fi = F0, ∀i > m, (8)

against the alternative:

H1 : there exists 1≤ k∗ < ∞ such that Fi = F0, 1≤ i < m+ k∗

and Fi = F0 6= F0, k∗+m≤ i < ∞.

The number k∗ is also called the change point.
The related test procedures are usually described by the stopping rule:

τm,T = inf{1≤ k < mT +1 : Q(m,k)≥ cq(k/m)}, (9)

with inf /0 :=+∞, where the detector Q(m,k) is a statistic calculated from observations Y1, . . . ,Ym+k,
k = 1, . . . , c is a tuning constant, and

qγ(t) = (t/(1+ t))1+γ , t > 0,
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is a boundary function with 0 < γ ≤ 1. Finally, 0 < N < ∞ is such that b(N +1)mc+1 is the upper
bound of the maximum number of observations that can be conducted during a certain period.

The corresponding decision rule is usually formulated as follows: the null hypothesis is rejected
as soon as for some 1≤ k < mN +1

Q(m,k)≥ cα qγ(k/m)

where cα is determined in such a way that the asymptotic significance level of the test is equal to
α(∈ (0,1)), i.e., under the null hypothesis:

lim
m→∞

PH0( max
1≤k<N+1

(Q(m,k)/q(k/m))≥ cα) = α.

Moreover, it is required that at least for fixed alternatives the test is consistent, i.e., a false null
hypothesis is rejected with probability tending to 1, as m→ ∞. Notice that in this formulation the
number of observations until a decision is made is a random variable.

The choice of the detectors Q(m,k),k = 1, . . . , based on observations Y1, . . . ,Ym+k is crucial. We
take here ECFs based ones:

Q(m,k) =
1
m

∫
∞

−∞

|ϕ̂m,m+k(u)− ϕ̂p,m(u)|2w(u)du, (10)

where

ϕ̂ j1, j2(u) =
1

j2− j1

j2

∑
t= j1+1

exp{iuYt}

is the ECF based on Yj1+1, . . . ,Yj2 .
It can be shown that if the observations Y1, . . . ,Yn, . . . , are i.i.d. random variables and under some

additional quite mild assumptions, as m→ ∞ (i.e., the number of training data tends to tend to ∞),
then

max
1≤k<mT

Q(m,k)
qγ(k/m)

has the same limit distribution as

sup
0<s<T

sγ−1(1+ s)−(1+γ)
∫

Z2(t,s)w(t)dt,

where {Z(t,s); t ∈ R1,0 < s < T} is a Gaussian process with zero mean and dependence structure
depending on the unknown characteristic function. The limit distribution can therefore not be used
to approximate the critical value cα . However, the bootstrap based on training data provides asymp-
totically correct approximations for critical values. Also, it can be shown that under quite mild
conditions the test is consistent for a quite wide spectrum of alternatives. More details are available
in Hlávka and Hušková (2012).

Next we consider a more general setup, namely, we assume {Yj, j = p+ 1, . . . ,} is an AR(p)
process defined by the equation

Yj = β
TY j−1 + ε j, j > p, (11)
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where Y j−1 = (Yj−1, . . . ,Yj−p)
T , and β = (β1, ...,βp)

T is a vector of unknown regression parame-
ters. The error terms {ε j, j = p+1, . . . ,} are independent, each having a corresponding distribution
function Fj, j = p+1, . . . , with mean zero and finite variance.

We are interested in a change in distributional aspect of the errors ε j, i.e. we wish to test the
hypothesis

H0 : Fj = F0, j = p+1,m+2, . . . vs.

H1 : Fj = F0, j ≤ m+ k0;Fj = F0 6= F0, j > m+ k0,

where F0,F0, and the time of a change k0 ≥ 1, are considered unknown. Under the null hypothesis
the AR process is assumed to be stationary i.e., the characteristic polynomial P(z) = 1−β1z− ...−
βpzp, is assumed to satisfy P(z) 6= 0,∀|z| ≤ 1. Notice that β is a nuisance parameter.

Since the error terms are unobserved, typically one computes the residuals

ε̂ j = Yj− β̂
T
m YT

j−1, (12)

where β̂ m := β̂ T (Y1, . . . ,Ym) is an estimator of β , based only on the training data set Y1, . . . ,Ym, and
satisfying √

m(β̂ m−β ) = OP(1), as m→ ∞. (13)

Based on the estimated residuals we now replace in the ECF in (10) ϕ̂ j1, j2(u) by a different ECF

ϕ̃ j1, j2(u) =
1

j2− j1

j2

∑
t= j1+1

exp{iuε̂t}.

With this replacement we proceed as in the previous simple situation (even the limit behaviour as
m→ ∞ is the same). Interestingly, as soon as (13) holds true the limit behaviour does not depend
on the chosen estimator β m. It turns out, however, that the monitoring schemes developed for these
distributional changes are also able to detect changes in the regression coefficient.

Further results including discussion, modifications, proofs, simulations, etc. on these type of
procedures can be found in Hlávka, Hušková, Kirch and Meintanis (2012, 2015). These also include
references for other procedures with the focus on the procedures based on empirical distribution
functions of the estimated residuals and comparison with ours.

Detection of changes in time series of counts

Finally, we briefly mention procedures for detection of changes in time series of counts. Most of
the above procedures can also be used in this situation, but it appears that in this situation it is more
natural to base the procedures on the empirical moment generating functions as mentioned at the
end of the survey paper. Hudecová, Hušková and Meintanis (2015a, b, c) have recently developed
and studied such procedures for changes in integer autoregression (INAR) Poisson autoregression
(PAR). Theoretical results are accompanied by simulations and applications to real data sets.
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First of all, we would like to congratulate the author for writing this interesting and timely review
paper on testing procedures based on the empirical characteristic function. The exposition of the
ideas and methods is necessarily brief, given the wide scope of the paper. So, we strongly encourage
the author to write a monograph on the topic, where main procedures can be developed in detail.
Although it is really hard to add something interesting to this review, we would like to comment
on three issues. The author provides a very limited discussion on the first, but did not consider the
second and third in his paper.

Bootstrap critical values

In spite of the good statistical properties of tests based on the empirical characteristic function (they
are usually consistent against fixed alternatives and able to detect local alternatives converging to
the null hypothesis at the rate n−1/2), these tests possess certain computational difficulties from a
practical point of view. A main problem is the calculation of the critical values of the test, because
the exact null distribution of the test statistic is unknown. In most cases the asymptotic null distribu-
tion does not provide a useful approximation. Moreover, large-sample critical values are extremely
complicated (if not impossible) to compute.

Meintanis and Swanepoel (2007) discussed a parametric bootstrap (PB) procedure, which can be
applied to approximate the critical values consistently under quite general circumstances. The valid-
ity of the PB procedure was shown analytically by the authors. Although very easy to implement, the
PB procedure can become computationally expensive as the sample size, the number of parameters
or the dimension of the data increase. This problem is not specific to goodness-of-fit test based on
the empirical characteristic function, the same problem arises when one instead consider a test based
on comparing the empirical cumulative distribution function (cdf) and a parametric estimator of the
cdf under the null hypothesis.

1 Corresponding author.
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In their paper “Fast goodness-of-fit tests based on the characteristic function”, Jiménez-Gamero
and Kim (2015) proposed to estimate the null distribution of the test statistic consistently through a
weighted bootstrap (WB), in the sense of Burke (2000), Horváth, Kokoszka and Steineback (2000)
and Kojadinovic and Yan (2012). In their numerical examples carried out, the estimated type I
errors were close to the prescribed nominal values. The general consensus reached by all the above-
mentioned authors is that for small samples, the PB usually appears more powerful, and, since it
typically has an acceptable computational cost in that case, it is the recommended approach. The
asymptotic properties of the PB and WB procedures are similar. However, for larger samples, the
use of the PB procedure can become very tedious in practice and the WB procedure appears as a
natural alternative, which is less computational intensive. The following major disadvantages of the
WB, which makes it difficult to apply in practice, should be mentioned:

(a) To perform the WB, so-called multiplier i.i.d. random variables ζ1,ζ2, . . . ,ζn with expectation
zero and variance one, which are independent of the sample X1,X2, . . . ,Xn, are generated for
each bootstrap replication. The question here, which has not yet been addressed in the liter-
ature satisfactorily, is from which distribution should these multipliers be drawn? What is a
best choice?

(b) The WB procedure assumes that θ̂n is an estimator of θ that is asymptotically linear with
influence function l(x;θ), with θ being the true parameter value when the null hypothesis is
true.

Although this condition is satisfied by some commonly used estimators such as quasi maxi-
mum likelihood estimators, method of moment estimators and minimum integrated squared
error estimators, it is generally a difficult (if not impossible) condition to verify, especially
for a more complicated θ̂n. In addition, the function l(x;θ) is usually unknown and has to be
estimated, which can also be an impossible task. Contrary to this, the PB procedure does not
require such an assumption on θ̂n.

The probability weighted characteristic function and goodness-of-fit testing

Recall that the characteristic function (CF) of a random variable X is given by ϕ(t) = E(eitX ), and
the empirical CF (ECF) is defined as

ϕn(t) =
1
n

n

∑
j=1

eitX j ,

where X1,X2, . . . ,Xn are i.i.d. observations on X . Clearly the ECF is an unweighted average and puts
the same weight on observations near the centre of the distribution and on observations at the tails
of the distribution. In the past, standard methods of estimation and testing via the ECF have utilized
the L2-type distance ∫

∞

−∞

|ϕn(t)−ϕ(t)|2wλ (t)dt,

which apart from ϕ(t) and ϕn(t) employs a parametric weight function wλ (·) indexed by the param-
eter λ and satisfying some integrability conditions.
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There has been considerable discussion on wλ (·). In the literature one can find wλ (t)= e−λ |t|β , β =

1,2, as standard choices. However, the proper choice of the weight function (both in terms of the
function itself as well as the choice of the value of λ ) is a difficult problem which affords a solution
only in the case of highly structured models, and even then this solution is computationally demand-
ing. Some discussion on how to estimate λ by the bootstrap, for a given known functional form of
wλ (·), in a goodness-of-fit type setting for a location-scale parametric family of distributions, will
be discussed in Section 3 below.

In order to alleviate the problem of choosing wλ (·), Meintanis, Swanepoel and Allison (2014)
introduced the notion of the probability weighted characteristic function (PWCF) as a generalization
of the usual characteristic function. The authors then suggested a statistically meaningful way of
choosing the weight function in L2-type procedures, thereby reducing the aforementioned problem
to one of only choosing the value of the parameter λ . Specifically for λ ≥ 0, they defined the PWCF
as

χ(t;λ ) =
∫

∞

−∞

W (x;λ t)eitxdF(x),

where F is the cdf of X and the probability weight is given by

W (x;β ) = [F(x)(1−F(x))]|β |, β ∈ R,x ∈ R.

The PWCF has some interesting properties which often relate to the corresponding properties of the
classical CF. Among others, the PWCF characterizes the distribution of a random variable uniquely.

In their paper Meintanis et al. (2014) were primarily interested in applying the PWCF to a
goodness-of-fit type setting by testing that F belongs to a parametric family of distributions {Fθ :
θ ∈Θ}, where Θ is an open subset of Rp, p≥ 1. They defined the empirical PWCF as

χn(t;λ ) =
1
n

n

∑
j=1

Ŵ (X j;λ t)exp(itX j), t ∈ R,

where the estimated probability weight is given by

Ŵ (x;β ) = [F
θ̂n
(x)(1−F

θ̂n
(x))]|β |, β ∈ R,x ∈ R,

and θ̂n = θ̂n(X1, ...,Xn) is a consistent estimator of θ . The empirical PWCF assigns more weight to
observations near the median of the distribution, while observations away from the center receive
progressively less weight. It was shown that empirical PWCF-based test statistics are convenient
from a computational point of view, and that, under general conditions, leads to consistent proce-
dures with a well defined asymptotic null distribution. Moreover, Monte Carlo results indicated that
the new tests compared favorably with more established procedures.

We close this section by noting that there exist several alternative aspects of the PWCF that
deserve further attention:

(i) The study of the empirical PWCF as a stochastic process and proving, e.g., its weak conver-
gence.

(ii) Introduction of a nonparametric version of the PWCF. In this regard a natural idea would be
to replace in the definition of W (x;β ) the cdf F by, e.g., the empirical cdf or an appropriate
kernel estimator of F .
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(iii) Application of the PWCF in semi-parametric and nonparametric inference problems, such as
testing for symmetry and testing for independence.

A data-dependent choice of the tuning parameter λ

In a multitude of goodness-of-fit tests based on the empirical CF an unknown tuning parameter
λ appears, as in the case of the weight functions wλ (t) and W (x;λ t) discussed above. To apply
these tests in practice, a specific choice of λ would be required. Researchers typically approach
this problem by evaluating the power performance of their tests across a grid of values of λ and
then suggest a compromise choice by selecting a value for λ that fares well for the majority of the
alternatives considered. However, even though these fixed values for λ are suggested in the literature,
there is a general agreement that the development of a data-based choice of λ is required for practical
implementation. Further motivation for this choice is that the powers of the tests are often observed
to fluctuate wildly for different alternatives with a fixed choice of the tuning parameter λ .

Allison and Santana (2015) proposed a data-dependent choice for λ , which appears in many
goodness-of-fit test statistics, in an attempt to move away from a fixed choice of the parameter.
Their method is based on the bootstrap and is applicable to a class of distributions for which the
null distribution of the test statistic is independent of unknown parameters. The new method was
investigated by means of a Monte Carlo study and the authors found that the Monte Carlo power of
these tests, using the data dependent choice of λ , compared favorably to the maximum achievable
power for the tests calculated over a grid of values of the tuning parameter λ .

In view of the above discussion, a challenging research problem would be to modify the ideas
and methods by Allison and Santana (2015) in order to apply them to other related areas in which
the CF has been applied, e.g., testing for symmetry, testing for independence, and change-point
detection.

Final remark

This review by Meintanis will contribute much to the research activity of people concerned with
testing procedures based on the empirical CF. It provides a quick and clear insight into the main
ideas, problems and existing results in the area. We would be interested to hear the thoughts of the
author on the above raised issues, and on potential approaches based on the literature surveyed.
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The paper nicely reviews testing procedures based on the empirical characteristic function. The
discussion touches univariate and multivariate tests, the cases of i.i.d. and dependent observations;
the two and k-sample problem. Various technicalities, such as the choice of weights and convergence
under the null and under local alternatives are also discussed. In the review several different sources
are connected and unfolded in an illuminating way.

In particular the discussion relating literature concerning the asymptotic distributions of the test
statistics and the choice of the weights is quite interesting. In my opinion, although goodness-of-fit
tests based on the characteristic function have excellent properties and straightforward extensions to
the multivariate setting, often, an intractable asymptotic null distribution and the necessity to choose
a weight parameter make them hard to apply in practice.

Some solutions in this direction have been proposed by Fernández, Jiménez-Gamero and Castillo
Gutiérrez (2014) and Jiménez-Gamero and Hyoung-Moon (2015) by introducing an approximation
of the test statistics and a weighted bootstrap as already nicely described by prof. Meintanis.

On the other hand, Henze and Zirkler (1990) and Meintanis, Ngatchou-Wandji and Taufer (2015)
have shown, by simulations, the very good agreement, in several cases, of the percentiles of the null
distribution with those of a log-normal distribution with parameters determined from the mean and
variance of the null distribution of the characteristic function-based test statistic. The approximation
already works well for sample sizes as small as 20.

This relationship could be worth of further investigation given the considerable simplification it
could bring to application of goodness-of-fit tests based on the characteristic function.

Finally I’d like to congratulate prof. Meintanis for his excellent review of the topic and I would
ask him to give a brief overlook about possible extensions and future research directions in the area.
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Simos Meintanis presents an interesting and useful survey of testing procedures based on the Em-
pirical Characteristic Function (ECF). The ECF was originally introduced for parameter estimation
of a stable law, i.e. in the situation where a description in terms of characteristic functions is much
simpler than that in terms of distribution functions. It turned out, however, that there was a wide
range of statistical problems where the ECF approach was a competitive alternative for other meth-
ods. Hypothesis testing, in particular, goodness-of-fit testing and testing in the two-sample problem,
is among these problems, and the survey under discussion gives a lot of helpful information.

In this discussion I review some results of two problems concerning statistical testing based on
the ECF. The first problem is testing independence, where the ECF turns out to be a very powerful
tool, and where a number of remarkable results have been obtained during the last decade. The
second problem concerns goodness-of-fit testing based on the ECF and is connected with the fact
that the data are always given in the discretized form and this often must be taken into account.

Testing independence

The problem of testing independence is among those testing problems where the ECF is successfully
used and gives many effective possibilities. Let X j = (X j1, ...,X jd), 1≤ j≤ n, be i.i.d. d-dimensional
random variables. Denote the CF of X j by ϕ(t), t = (t1, ..., td) and the marginal CF of its component
X j,k by ϕk(tk), k = 1, ...,d. The hypothesis of independence of the components can be formulated as

H0 : ϕ(t) =
d

∏
k=1

ϕk(tk) for all t = (t1, ..., td).

Denote the ECF of the sample X1, ...,Xn by ϕ̂(t), t ∈ Rd and the ECF of the sample X1k, ...,Xnk by
ϕ̂k(tk), 1 ≤ k ≤ d. It is natural to use test statistics based on the difference between ϕ̂(t) and the
product ∏

d
k=1 ϕ̂k(tk).

The problem of testing independence was among the first applications of the ECF. In this con-
nection one can refer to De Silva and Griffiths (1980), Csörgő and Hall (1982), Csörgő (1985),
Feuerverger (1993), Kankainen (1995), Kankainen and Ushakov (1998).

The test, proposed by Csörgő (1985), was based on the test statistic

Sn =
√

n

(
ϕ̂(t(n))−

d

∏
k=1

ϕ̂k(t
(n)
k )

)
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where t(n) = (t(n)1 , ..., t(n)d ) were random points selected in a special manner. The hypothesis of
independence is rejected for large deviations of the test statistic from 0. The limit distribution of this
test statistic was obtained under some mild conditions.

Note that in the general case, the considered test is not consistent. Consistent tests were proposed
by Feuerverger (1993), Kankainen (1995), Kankainen and Ushakov (1998). In the partial case d = 2,
two test statistics were proposed by Feuerverger (1993). The first one is

T (1)
n =

∫
∞

−∞

∫
∞

−∞

|ϕ̃(t1, t2)− ϕ̃1(t1)ϕ̃2(t2)|2

(1− e−t2
1 )(1− e−t2

2 )
w(t1, t2)dt1dt2,

where w(t1, t2) is a weight function and ϕ̃ is a slightly modified version of ϕ̂ . The second statistic is

T (2)
n =

∫
∞

−∞

∫
∞

−∞

|ϕ̂(t1, t2)− ϕ̂1(t1)ϕ̂2(t2)|2w(t1, t2)dt1dt2.

For arbitrary d, tests based on the test statistic of the form

∫
Rd
|ϕ̂(t)−

d

∏
k=1

ϕ̂k(tk)|2w(t)dt

were studied in details by Kankainen (1995). See also Hušková and Meintanis (2008) for a brief
review of early papers concerning application of the ECF to testing independence.

Bilodeau and Lafaye de Micheaux (2005) used the ECF for testing independence (or serial in-
dependence) between marginal vectors each of which was normally distributed. These marginal
subvectors are not assumed to be jointly multinormal, therefore independence cannot be tested para-
metrically using covariances. The authors propose a test which is based on the test statistic of the
Cramer-von Mises type. The test is consistent to detect any form of dependence.

Meintanis and Iliopoulos (2008) develop a class of tests for testing multivariate independence
and study their small-sample performance using simulation. The test statistics employ the familiar
equation between the joint characteristic function and the product of component characteristic func-
tions, and may be written in a closed form convenient for computer implementation. Simulations on
a distribution-free version of the new test statistic show that the proposed method compares well to
standard methods of testing independence via the empirical distribution function. The methods are
applied to multivariate observations incorporating data from several major stock-market indices.

An essential advance in the use of the ECF for testing independence has been made in a series of
articles by G. J. Székely and M. L. Rizzo. Székely, Rizzo and Bakirov (2007) defined the distance
covariance and the distance correlation between two random vectors and used them for testing inde-
pendence. Distance covariance and correlation characterize independence, so they equal zero if and
only if the random vectors are independent. They are applicable to random vectors of arbitrary and
not necessarily equal dimension, but first we consider for simplicity the univariate case. Let X and Y
be random variables with characteristic functions ϕX (t), ϕY (s) and the joint characteristic function
ϕX ,Y (t,s). The distance covariance V (X ,Y ) between X and Y is defined as the square root of the
integral ∫

∞

−∞

∫
∞

−∞

|ϕX ,Y (t,s)−ϕX (t)ϕY (s)|2

|ts|2
dtds.
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The distance variance is defined as V (X) = V (X ,X). The distance correlation is

R(X ,Y ) =
V (X ,Y )√
V (X)V (Y )

.

Suppose now that there is a random sample (X1,Y1), ...,(Xn,Yn) — independent copies of the ran-
dom vector (X ,Y ). The empirical distance correlation (or the distance correlation statistic) of this
sample Rn = Rn(X1,Y1, ...Xn,Yn) is defined in the same way as the theoretical distance correlation,
where characteristic functions are replaced by the corresponding empirical characteristic functions.
The test, proposed by Székely et al. (2007), rejects the hypothesis of independence of X and Y for
large values of Rn(X ,Y ). Asymptotic critical values are obtained. The test is consistent against all
dependent alternatives. A Monte Carlo study shows that the proposed test may be more powerful
than the likelihood ratio test. In the normal case, they are quite close in power.

The method was further developed in Székely and Rizzo (2009a), where the notion of covariance
with respect to a stochastic process was introduced. It was shown that the distance covariance coin-
cided with the covariance with respect to the Brownian motion. This gives additional computational
possibilities and simplifications.

Consider now the multivariate case. For random vectors X , Y of arbitrary dimensions p, q,
the distance covariance and correlation are defined and used in a similar way as in the univariate
case, just the denominator |ts|2 under the integral sign is replaced by |t|1+p

p |s|1+q
q , where | · |d is

the Euclidean distance in Rd . The extension of the distance correlation to the problem of testing
independence of random vectors in arbitrary high, not necessarily equal dimensions was developed
by Székely and Rizzo (2013). Suppose that there is a sample (X1,Y1), ...,(Xn,Yn) — independent
copies of the (p+ q)-dimensional random vector (X ,Y ). The authors define the modified distance
correlation statistic R∗n — a certain modification of Rn. The main result is that as p, q tend to
infinity, under the independence hypothesis,

Tn =
√

ν−1 · R∗n√
1− (R∗n)

2

converges in distribution to Student t with ν−1 degrees of freedom, where

ν =
n(n−3)

2
.

For n≥ 10 this limit is approximately standard normal. Using this, the authors obtain a distance cor-
relation t-test for independence of random vectors in arbitrary high dimension. The test is unbiased
for every sample size greater than three and all significance levels. The developed method is applied
to testing independence of two time series.

A further development of the concept of the distance covariance and distance correlation was
made in Székely and Rizzo (2014). Here partial distance covariance and partial distance correlation
are introduced as measures of dependence of two random vectors X , Y , controlling for a third random
vector Z, where X , Y and Z are in arbitrary, not necessarily equal dimensions. A test for zero partial
distance correlation is proposed.
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Binning

It also should be mentioned the problem of binning in goodness-of-fit tests based on ECF. Bin-
ning is a special technique for reduction of computational expenses, which consists of replacing
the original observations by the prebinned data: each observed data value is distributed (with some
weights, possibly negative) among grid points on an equally spaced mesh. Binning is an effective
tool in situations when direct operation with the original sample leads to high computational ex-
penses, that is typical in particular for bootstrap procedures. Meintanis and Ushakov (2004) studied
binned goodness-of-fit tests based on the ECF. Let X1, ...,Xn be i.i.d. random variables drawn from
a location-scale family with parameters α , β and the characteristic function ϕ(t;α,β ). Given a bin
width δ > 0 and bin origin x0, the binned ECF is defined as

ϕ̂n(t) =
1
n

∞

∑
k=−∞

Nkei(x0+kδ )t ,

where Nk is the number of observations in the interval [x0 + kδ −δ/2,x0 + kδ +δ/2].
Let Y1, ...,Yn be normalized data

Yj =
X j− α̂

β̂
,

where α̂ , β̂ are consistent estimators of α , β . Denote the binned ECF of the normalized data by
ψ̂n(t). Meintanis and Ushakov (2004) used two types of binned test statistics

Dδ
n =
√

n sup
|t|≤τ

|ψ̂n(t)−ϕ(t;0,1)|,

T δ
n = n

∫
∞

−∞

|ψ̂n(t)−ϕ(t;0,1)|w(t)dt.

It was shown (under some conditions on τ and w(t)) that the limiting null distributions of these
statistics coincided with those of the ordinary unbinned statistics of the same form. If δ = O(n−1/2),
then the consistency of the unbinned tests imply consistency of the corresponding binned tests. Using
a simulation experiment, Meintanis and Ushakov (2004) demonstrated that the binned versions of
the tests did not essentially lose power compared with their counterparts.
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I would like to thank the Editor, Prof. Sarah Radloff, for giving me the opportunity to write this
review article. A further word of thanks is addressed to all discussants. Some of their comments
nicely complement this review on subjects that were not addressed and hence require a round of
extra thanks. In what follows, and in alphabetic order, I will try to address the comments of the
discussants.

1. The BHEP test and ‘precise’ hypothesis
I wish to thank Norbert Henze for bringing up the normal limit in (1) to our attention. Although I
am aware of Nora Gürtler’s thesis, I am not familiar with the details of its content (it is in German
anyway). In this connection, I just wish to point out that such a limit also appears in Meintanis
and Swanepoel (2007) and Henze and Meintanis (2010). In fact, and apart from the nice power
approximation noted by Prof. Henze, Henze and Meintanis (2010) use Lβ as a descriptive measure
of power and compare the relative performance of an ECF-based test for exponentiality against two
fixed alternative distributions, say F1 and F2, by considering the corresponding curves LF1,β and
LF2,β , over an interval of β -values.

The second comment of Prof. Henze is of an even wider interest. It refers to what Berger and
Delampady (1987) call the principle of precise hypothesis about a parameter. In the more familiar
current context of GOF testing it may also be found in Dette and Munk (1998) where this principle is
applied to an L2-type distance procedure with an asymptotic normal law; see also Borovkov (1998),
§49 & §55, and Lavergne (2014). I am not aware of work related to this approach based on the ECF.
In this regard, it would be interesting to consider all aspects involved with such a decision rule, i.e.,
dependence of power on the values of ∆ and β , and performance with different distributions under
test, as well as its applicability for alternative testing criteria, besides those based on the ECF.

1 On sabbatical leave from the University of Athens.
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2. Change-point detection

I am pleased for the discussion of Marie Hušková which complements this review by considering
ECF-methods for the related problem with change-point detection. Certainly there is room for much
more work in this context. For instance one may combine the two-sample test of Hušková and
Meintanis (2008) to the change-point procedures of Hušková and Meintanis (2006a, 2006b), in
order to construct a detection method for the two-sample change-point problem, a problem which
is relevant in the context of several applied circumstances; see for instance Hlávka and Hušková
(2015). I just wish to add that the interesting aspect of decoupling location from scale changes
is addressed by Steland and Rafajlowicz (2014), and the work of Matteson and James (2014) for
retrospective multiple change-point analysis with multivariate observations.

Another issue of wide interest is testing the so-called martingale difference hypothesis (MDH).
The standard formulation of the MDH is

E(Yt |It−1) = 0, t = 1, . . . , (1)

where It denotes the information set available at time t, and Yt represents first differences of a process
which under this hypothesis forms a martingale sequence. We will not go into detail here but simply
mention that there exists a Fourier formulation of the MDH initially put forward by Bierens (1982)
which closely relates to ECF-based methods. Following this approach Hlávka, Hušková, Kirch and
Meintanis (2014) consider test procedures for the MDH as well as several change-point problems
associated with the MDH.

Finally, in the context of time series of counts, it should be pointed-out that natural precursors of
the procedures mentioned in the discussion of Prof. Hušková are the GOF procedures of Meintanis
and Karlis (2014) and Hudecová, Hušková and Meintanis (2015), both of which are based on the
empirical probability generating function.

3. Resampling and the probability weighted ECF

It should be said from the start that I always favoured the parametric bootstrap (PB) for actually per-
forming ECF-based tests involving unknown parameters. So my discussion on the issue of weighted
bootstrap (WB) vs. PB resampling raised by Jan Swanepoel and James Allison might be a bit biased.
One reason for this bias is that with the power of present day computers, CPU time is often not a
problem. Moreover there is the new suggestion of the warp-speed method by Giacomini et al. (2013)
which essentially suggests ‘one bootstrap for each Monte Carlo’ and hence drastically reduces the
computational cost of calculating the estimator for each bootstrap iteration. While the current theory
of the warp-speed method is restricted to the estimation of a single parameter, Dalla et al. (2016)
and Francq et al. (2015), applied the warp-speed method to much more complicated situations and
to a good effect, which implies wider applicability of the procedure. Regarding the comment on
estimation of the parameter involved, the issue with the WB as I see it is not so much the asymp-
totic linear representation, which is a common assumption in the PB also, but the fact that with the
WB one actually needs to compute l(x;θ) and then consistently estimate it, which is not the case in
the PB. With respect to this, Jiménez-Gamero and Kim (2015) carry out this computation for several
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standard estimators, but the problem still remains with other estimators particularly in more complex
situations. The effect of the choice of the standardized variables ζ j, j = 1, ...,n, on the properties
of the WB implemented test also needs to be addressed, and to that end Jiménez-Gamero and Kim
(2015) are not very helpful as they do not mention, at least to my reading, which sequence they
actually employed in their Monte Catlo study. In a related context however, Ghoudi and Rémillard
(2014) settle for standard normal ζ j and mention nothing about other choices. One might guess that
the impact on test performance is minimal, but then this should somehow also be verified.

At this point I wish to thank Profs. Swanepoel and Allison for bringing up the idea of the prob-
ability weighted ECF (PWECF). As they mention, potential statistical applications of the PWECF
extend far beyond the original strict parametric context of Meintanis, Swanepoel and Allison (2014)
In this direction, Meintanis and Stupfler (2015), Meintanis and Ushakov (2016), and Meintanis, Al-
lison and Santana (2016), present several results for the PWECF, and apply this tool in a variety
of semiparametric, nonparametric problems, and parametric problems with complex data structures,
including some of those mentioned by Swanepoel and Allison.

4. Testing for independence and grouped data

Nikolai Ushakov provides a thorough review of testing procedures for independence, an area where
along with testing for symmetry ECF methods enjoy a definite competitive advantage over other
more standard procedures. The review of Prof. Ushakov is pretty much complete. I just wish to
add the work of Hlávka, Hušková and Meintanis (2011) on testing independence in the context of
nonparametric regression, and the upcoming paper of Leucht, Strauch and Meintanis (2015) which
applies the PWECF for testing independence of several random vectors. The issue raised with binned
or groupd data is also of interest in some applications. I am not aware of any progress in this direction
involving ECF-based procedures. The sole exception appears to be the extention of the BHEP test
for normality to rank set sampling data investigated by Balakrishnan et al. (2013).

5. Outlook and conclusion

I guess Prof. Emanuele Taufer will find much information regarding possible extensions and future
research directions in my responses to the other discussants. In general, the ECF may be applied
to several other statistical problems, besides GOF. Estimation for instance is another broad area
of application of the ECF, and I refer to Braun et al. (2008), Xu and Knight (2011), Wang et al.
(2012), Potgieter and Genton (2013), Kotchoni (2014), Francq and Meintanis (2015), the PhD thesis
of Mofei Jia (2014), and references therein, for a variety of ECF-based estimation methods under
various data generating mechanisms.

In closing, I would like to express the hope that this review will help researchers to take an
interest in this type of methodology, and thus stimulate further developments in this area either in a
similar context as that considered herein or in any other direction.
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