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In this paper, reference and probability-matching priors are derived for the
univariate Student 𝑡-distribution. These priors generally lead to procedures with
properties frequentists can relate to while still retaining Bayes validity. The priors
are tested by performing simulation studies. The focus is on the relative mean
squared error from the posterior median and on the frequentist coverage of the 95%
credibility intervals for a sample of size 𝑛 = 30. Average interval lengths of the
credibility intervals as well as the modes of the interval lengths based on 2 000
simulations are also considered. The performance of the priors is also tested on real
data, namely daily logarithmic returns of IBM stocks.
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1. Introduction
In most applied as well as theoretical research works, the residual terms in linear models are assumed
to be normally distributed. However, such assumptions may not be appropriate in many practical
situations (see, for example, Gnanadesikan and Kettenring, 2005; Zellner, 1976). Many economic
and business data, for example stock return data, exhibit heavy (or fat) tail distributions and cannot
be effectively modelled by the normal distribution. The usual approach is to test for outliers and to
delete them from the data set. However, it is not always easy to identify outliers. Alternatively then,
the Student 𝑡-distribution can be used instead of the normal distribution to model data with heavy (or
fat) tails. The use of the 𝑡-distribution reduces the influence of outliers and thus makes the statistical
analysis more robust (Fonseca et al., 2008). The robustness of the 𝑡-distribution and its suitability to
model outliers have been thoroughly discussed in the literature and it has been applied in disciplines
such as stock return data (Blattberg and Gonedes, 1974; Zellner, 1976), medicine (Liu, 1997), global
navigation satellite systems (Vaneck et al., 1996), finance and biology (Fernández and Steel, 1998)
and portfolio optimisation (Kotz and Nadarajah, 2004). According to Fonseca et al. (2008) the degree
of robustness of the analysis is directly related to the number of degrees of freedom, a, with smaller
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values of a implying a more robust analysis (Villa and Walker, 2014). Since the degree of robustness
of the analysis is related to the number of degrees of freedom, the emphasis of our research will
be mainly on the estimation of a. It should also be noted that this research will not complicate the
analysis with any estimation of linear model slope parameters. The estimation of such parameters is
a trivial extension to the methodology presented, and details of such estimation can be found in von
Maltitz (2015).1

Unfortunately, the estimation of the number of degrees of freedom of the 𝑡-distribution is not easy.
The reason for this is the illogical behaviour of the likelihood function for a for given location and
scale parameters. More precisely, The likelihood function of a does not always tend to zero as a
goes to infinity, but it rather tends to a positive constant. To overcome the fact that the likelihood
function does not vanish in the tail, a prior distribution that tends to zero as a tends to infinity should
be used to form a proper posterior distribution. The uniform prior will result in an improper posterior
distribution for a and can therefore not be used. It is for this reason that non-informative priors are
derived in this paper. For further discussion on proper and improper priors for a (see, for example,
Fonseca et al., 2008, 2014; Vallejos and Steel, 2013; Villa and Walker, 2014).

The manuscript is organised as follows. In Section 2, reference and probability-matching priors
are given for the parameters a, ` and 𝜎2 of the univariate 𝑡-distribution. The proofs of these priors are
given in Appendix A, and in Appendix B it is shown that the priors tend to zero as a tends to infinity,
and that the reference priors result in proper posterior distributions. In Section 3, simulation studies
are performed for the standard 𝑡-distribution (` = 0 and 𝜎2 = 1) based on the non-informative
priors defined in Section 2 and on priors previously proposed. We assess the simulations using
the relative square-rooted mean squared error (

√︁
𝑀𝑆𝐸 (a)/a) from the posterior median and the

frequentist coverage of the 95% credibility intervals for a sample of size 𝑛 = 30. Average interval
lengths based on 2 000 simulations are also considered. An application is given in Section 4.

2. Reference and probability-matching priors
Reference and probability-matching priors generally lead to procedures with properties frequentists
can relate to while still retaining Bayesian validity. The derivation of the reference priors of Berger
and Bernardo (1992) depends on the ordering of the parameters and how the parameter vector is
divided into sub-vectors. The reference prior maximises the difference in information about the
parameters provided by the prior and the posterior (Pearn and Wu, 2005), i.e., the reference prior
provides as little information as possible about the parameters of interest.

The probability-matching prior (another non-informative prior) on the other hand provides accurate
frequentist intervals and is also used for comparisons in Bayesian analysis. Datta and Ghosh (1995)
provided a method for finding probability-matching priors by deriving a differential equation that
a prior must satisfy if the posterior probability of a one-sided credibility interval for a parametric
function and its frequentist probability agree up to𝑂 (𝑛−1), where 𝑛 is the sample size. The following
theorems can now be stated.

1 In short, the mean parameter ` is replaced by a conditional mean 𝑋β, and the degrees of freedom available for estimation is
reduced by the increased dimensions of β. The Gibbs sampling process for β, given in von Maltitz (2015), is not substantially
more complicated than for ` alone, but the added parameterisation is not necessary in research that is solely focused on the
robustness of the error distribution.
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Theorem 2.1. The reference prior for the orderings {a, `, 𝜎2}, {`, a, 𝜎2} and {a, 𝜎2, `} is given by

𝑝2

(
a, `, 𝜎2

)
∝ 𝜎−2

[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 3)
a (a + 1)2

] 1
2

and the reference prior for the orderings {`, 𝜎2, a}, {𝜎2, `, a} and {𝜎2, a, `} is given by

𝑝1

(
`, 𝜎2, a

)
∝ 𝜎−2

[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 5)
a (a + 1) (a + 3)

] 1
2

,

where Γ (·) ,Ψ (·) and Ψ′ (·) are the gamma, digamma and trigamma functions, i.e., Ψ (𝑎) =
𝑑
𝑑𝑎 log Γ (𝑎) and Ψ′ (𝑎) = 𝑑

𝑑𝑎Ψ (𝑎), and the ordering of, for example, {a, `, 𝜎2}, means that a
is considered to be the most important parameter, ` the second most important, and 𝜎2 the least
important parameter.

Proof. See proof in Appendix A.

Theorem 2.2. The prior 𝑝2
(
a, `, 𝜎2) is also a probability-matching prior for a.

Proof. See proof in Appendix A.

Theorem 2.3. The reference priors tend to zero as a tends to infinity.

Proof. See proof in Appendix B.

Theorem 2.4. In the case of the standard univariate 𝑡-distribution the reference priors result in
proper posterior distributions for a.

Proof. See proof in Appendix B.

It should be noted that Wang and Yang (2016) also derived the two one-at-a-time reference priors
𝑝1 (a, `, 𝜎2) and 𝑝2 (a, `, 𝜎2), and proved that 𝑝2 (a, `, 𝜎2) is a first-order probability-matching prior.
The proofs of reference and probability-matching priors (Theorems 2.1 and 2.2) were originally
derived in von Maltitz (2015), an unpublished PhD thesis. The proof of Theorem 2.2 is also given in
an unpublished technical report by van der Merwe et al. (2021).

3. Simulation study
3.1 Priors compared
The Student 𝑡 linear model for independent data 𝑥𝑖 , 𝑖 = 1, 2, . . . , 𝑛, and 𝑛 > 2, is given as follows:

𝑓
(
𝑥𝑖 |`, 𝜎2, a

)
=

Γ
(
a+1
2

)
a

a
2

Γ
(
a
2
)
Γ

(
1
2

)
𝜎

[
a +

( 𝑥𝑖 − `
𝜎

)2
]− 1

2 (a+1)
.

We consider six priors for this model. Let us introduce these as 𝑝𝑖 (a, `, 𝜎2), 𝑖 = 1, 2, . . . , 6. As
mentioned in Theorem 2.1,

𝑝1

(
a, `, 𝜎2

)
∝ 𝜎−2

[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 5)
a (a + 1) (a + 3)

] 1
2
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is a reference prior with respect to the orderings {`, 𝜎2, a}, {𝜎2, `, a} and {𝜎2, a, `}. From the
Fisher information matrix given in (1) in Appendix A, it can be seen that it is also a Jeffreys prior for
a if ` and 𝜎2 are considered to be known. Liu (1997) proposed the prior

𝜋 (a) ∝
[
Ψ′

( a
2

)
− Ψ′

(
a + 𝑑

2

)
− 2𝑑 (a + 𝑑 + 4)
a (a + 𝑑) (a + 𝑑 + 2)

] 1
2

for the multivariate 𝑡-distribution, where 𝑑 is the dimension of the multivariate distribution. The prior
𝜋(a) is obtained by applying Jeffreys’ rule (Box and Tiao, 2011). Villa and Rubio (2018) included it
in their simulation study on objective priors for the number of degrees of freedom of a multivariate
𝑡-distribution. If 𝑑 = 1, 𝜋(a) simplifies to 𝑝1 (a).

The prior

𝑝2

(
a, `, 𝜎2

)
∝ 𝜎−2

[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 3)
a (a + 1)2

] 1
2

,

on the other hand, is a probability-matching prior for a as well as a reference prior for the parameter
orderings {a, `, 𝜎2}, {`, a, 𝜎2} and {a, 𝜎2, `} (see Theorems 2.1 and 2.2).

The prior

𝑝3

(
a, `, 𝜎2

)
∝ 𝜎−2

( a

a + 3

) 1
2
[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 3)
a (a + 1)2

] 1
2

is the independence Jeffreys prior and

𝑝4

(
a, `, 𝜎2

)
∝ 𝜎−3

(
a + 1
a + 3

) 1
2 ( a

a + 3

) 1
2
[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 3)
a (a + 1)2

] 1
2

is the Jeffreys-rule prior. Both of these priors were derived by Fonseca et al. (2008). The Jeffreys-rule
prior is proportional to the square root of the determinant of the Fisher information matrix, while the
independence Jeffreys prior is obtained by assuming that the priors for ` and

(
𝜎2, a

)
are independent,

i.e., 𝑝3
(
a, `, 𝜎2) = 𝑝3 (`) 𝑝3

(
a, 𝜎2) . From the Fisher information matrix defined in (1) it therefore

follows that
𝑝3 (`) ∝

√︁
det [𝐼 (\)]22 ∝ 1

and
𝑝3

(
a, 𝜎2

)
∝

√︃
[𝐼 (\)]11 [𝐼 (\)]33 − [𝐼 (\)]2

13.

The exponential prior 𝑝5
(
a, `, 𝜎2) ∝ 𝜎−2𝑒−ba , where b = 0.1, was derived by Geweke (1993),

but according to Fonseca et al. (2008) and Villa and Walker (2014) this prior is too informative and
is found to dominate the data.

Juárez and Steel (2010) considered a non-hierarchical and a hierarchical prior. The first is a gamma
prior with parameters 1 and 1/100. The hierarchical prior is obtained by considering an exponential
distribution for the scale parameter of the gamma prior with slope parameter 𝑎. In other words,

𝑝6 (a) =
∫ ∞

0
𝑝(a |𝑎)𝑝(𝑎 |𝑑)𝑑𝑎,
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Figure 1. Comparison of the six prior distributions in terms of a.

where 𝑝(a |𝑎) = 𝑎2a𝑒−𝑎a and 𝑝(𝑎 |𝑑) = 𝑑𝑒−𝑎𝑑 . The resulting prior is therefore 𝑝6 (a, `, 𝜎2) ∝
𝜎−22a𝑑/(a + 𝑑)3 for a > 0 and 𝑑 > 0. The parameter 𝑎 controls the mode (𝑑/2) and the median
(1+

√
2)𝑑. Rubio and Steel (2015) mentioned that if 𝑑 = 1.2 then it will be a continuous alternative to

the discrete objective prior proposed by Villa and Walker (2014), so 𝑝6 (a, `, 𝜎2) ∝ 𝜎−22a𝑑/(a + 𝑑)3,
where 𝑑 = 1.2.

Thus, the six priors that are used in the simulation study for comparison are:

1. 𝑝1
(
a, `, 𝜎2) ∝ 𝜎−2

[
Ψ′ ( a

2
) − Ψ′

(
a+1
2

)
− 2(a+5)
a (a+1) (a+3)

] 1
2 ,

2. 𝑝2
(
a, `, 𝜎2) ∝ 𝜎−2

[
Ψ′ ( a

2
) − Ψ′

(
a+1
2

)
− 2(a+3)
a (a+1)2

] 1
2 ,

3. 𝑝3
(
a, `, 𝜎2) ∝ 𝜎−2 (

a
a+3

) 1
2
[
Ψ′ ( a

2
) − Ψ′

(
a+1
2

)
− 2(a+3)
a (a+1)2

] 1
2 ,

4. 𝑝4
(
a, `, 𝜎2) ∝ 𝜎−3

(
a+1
a+3

) 1
2 (

a
a+3

) 1
2
[
Ψ′ ( a

2
) − Ψ′

(
a+1
2

)
− 2(a+3)
a (a+1)2

] 1
2 ,

5. 𝑝5
(
a, `, 𝜎2) ∝ 𝜎−2𝑒−ba , where b = 0.1,

6. 𝑝6
(
a, `, 𝜎2) ∝ 𝜎−2 2a𝑑

(a+𝑑)3 , where 𝑑 = 1.2.

For the standard univariate 𝑡-distribution (` = 0, 𝜎2 = 1), the priors will be denoted by 𝑝𝑖 (a),
𝑖 = 1, 2, . . . , 6. In Figure 1 a visualisation of the priors 𝑝𝑖 (a), 𝑖 = 1, . . . , 6, is given.

It is observed from Figure 1 that 𝑝5 (a) and 𝑝6 (a) differ from the other priors. Even though the
shapes of the densities of priors 𝑝1 (a), 𝑝2 (a), 𝑝3 (a) and 𝑝4 (a) are quite similar, the behaviours of
the resulting posterior distributions can be quite different, especially if the sample sizes are small.

The priors 𝑝𝑖 (a, `, 𝜎2), 𝑖 = 1, 2, . . . , 6, can be written as 𝑝(a, `, 𝜎2) ∝ 𝜎−2𝑐𝑝(a), where 𝑝(a)
is the component of the prior that depends on a. It is proved by Vallejos and Steel (2013) that the
posterior distribution of (a, `, 𝜎2) is not proper if 𝑐 ≥ 1 and the range of a is (0,∞). In particular, the
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Jeffreys-rule prior for which 𝑎 = 3
2 does not lead to a proper posterior distribution. Our simulation

study is however based on the standard univariate 𝑡-distribution (` = 0, 𝜎2 = 1), and as shown by
Fonseca et al. (2008), in this case

𝑝4

(
a, `, 𝜎2

)
∝ 𝜎−3

(
a + 1
a + 3

) 1
2 ( a

a + 3

) 1
2
[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 3)
a (a + 1)2

] 1
2

is a proper density function of a. The Jeffreys-rule prior is therefore included in our simulation study.
The fact that the reference priors result in proper posterior distributions in the case of the standard
univariate 𝑡-distribution and the fact that 𝑝𝑖 (a, `, 𝜎2) = 𝜎−2𝑎𝑝𝑖 (a), 𝑖 = 1, 2, where 𝑎 = 1, should
have been an indication that 𝑝1 (a, `, 𝜎2) and 𝑝2 (a, `, 𝜎2) will lead to proper posterior distributions.
It is therefore not surprising that He et al. (2021) proved that for the Student 𝑡 linear model, for
𝑖 = 1, 2, . . . , 𝑛 and 𝑛 > 2, the posterior distributions of (a, `, 𝜎2) are proper under the reference
priors 𝑝1 (a, `, 𝜎2) and 𝑝2 (a, `, 𝜎2).

3.2 Frequentist properties
In this subsection we summarise the frequentist properties of the priors for a in the case of the
univariate standard 𝑡-distribution. The focus is on the relative square rooted mean squared error
from the median of the posterior distribution of a. The index is denoted by

√︁
𝑀𝑆𝐸 (a)/a, where

𝑀𝑆𝐸 = 𝐸 (a − 𝑚)2, and 𝑚 is the median of the posterior distribution. The frequentist coverage
percentages of the 95% credibility intervals for a sample of size 𝑛 = 30 as well as the interval lengths
and modes of the interval lengths based on 2 000 simulations are also considered.

To describe the simulation procedure more clearly the following should also be mentioned. The
simulation study was done for 25 different values of a, i.e., a = 1, 2, 3, . . . , 25. We start by drawing a
sample of 𝑛 = 30 observations (𝑥1, 𝑥2, . . . , 𝑥𝑛) from a standard 𝑡-distribution (` = 0 and 𝜎2 = 1) with
a degrees of freedom. By using the observations in the sample, the likelihood function is calculated
as

𝐿 (a |𝑥1, . . . , 𝑥𝑛) =

[
Γ

(
a+1
2

)]𝑛
a

𝑛a
2

[
Γ

(
a
2
) ]𝑛 [

Γ
(

1
2

)]𝑛
𝑛∏
𝑖=1

(
a + 𝑥2

𝑖

)− 1
2 (a+1)

.

The posterior distributions 𝑝𝑖 (a |𝑥1, . . . , 𝑥𝑛) , 𝑖 = 1, 2, . . . , 6, are obtained by multiplying the likeli-
hood function with each of the six prior distributions. For each of the six posterior distributions, the
parameter estimates (mean, median, mode, variance, 95% credibility intervals and interval lengths)
are calculated for that simulation run.

For a specific a, this process is replicated 2 000 times. More specifically, this means that 2 000
samples of size 𝑛 = 30 each are drawn from a standard 𝑡-distribution with a degrees of freedom to
obtain 2 000 posterior distribution sets 𝑝𝑖 (a |𝑥1, . . . , 𝑥𝑛), 𝑖 = 1, 2, . . . , 6. The parameter estimates
for each of the 12 000 (= 2 000 × 6) posterior distributions are therefore calculated. This is done for
each of the 25 values of a. In total, 300 000 (= 2 000 × 6 × 25) posterior distributions are used in the
simulation study.

Our focus is on the special case ` = 0 and 𝜎2 = 1 to estimate the degrees of freedom of the Student
𝑡-distribution. Other statisticians, for example Fonseca et al. (2008), Villa and Walker (2014) and
Villa and Rubio (2018), also used the standard 𝑡-distribution in their simulation studies. This might
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Figure 2. Relative root mean squared errors for the posterior median of a.

Table 1. Averages of the relative root mean squared errors for a.

a Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6
Mean (1 to 10) 0.6115 0.5942 0.6445 0.6608 0.7238 0.7596
Mean (11 to 25) 0.4988 0.5067 0.4903 0.4790 0.4378 0.4434

be a limitation of our research, but, from the relationship 𝑥(a, `, 𝜎2) = ` + 𝜎(a, 0, 1) the simulation
results will at least not be affected by changes in the location parameter `. At this stage it is not
clear to us how much changes in the scale parameter 𝜎 will affect the simulation results, although
Villa and Walker (2014) suggest that changes in the scale parameter will not significantly affect the
posterior distributions.

From Table 7 in Appendix D one can argue that reference priors 𝑝1 (a) and 𝑝2 (a) are on average
the two best priors. The prior 𝑝2 (a), which is also a probability-matching prior, is somewhat better
than 𝑝1 (a). The prior 𝑝6 (a) is performing worst in this study. These results are more succinctly
illustrated in Figure 2 and Table 1.

It should be reiterated that researchers are usually interested in 𝑡-distributions with a small number
of degrees of freedom, and from Table 1 it can be seen that 𝑝2 (a) is particularly good if a is small
(1 to 10); For large values of a (11 to 25) we have that 𝑝5 (a) and 𝑝6 (a) seem to be the best priors.
However, it is clear from Figure 2 that for a between two and six the

√︁
𝑀𝑆𝐸 (a)/a values for priors

𝑝5 (a) and 𝑝6 (a) are larger than those of the objective priors.
In Table 8 in Appendix D, the frequentist coverage percentages of the 95% credibility intervals are

given for a sample size of 𝑛 = 30 and 2 000 simulations. These values are illustrated in Figure 3.
According to Fonseca et al. (2008, Figure 2, p. 329), the coverage percentages of the 95%

credibility intervals for a in the case of the Jeffreys-rule prior, are poor for 𝑛 = 30. They also
mentione that for the Geweke prior 𝑝5 (a), the frequentist coverage is much smaller than the nominal
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Figure 3. Frequentist coverage percentages of the 95% credibility intervals for a.

level for small a and is undesirably close to 1 for a > 6. The results of Fonseca et al. (2008) differ
somewhat from our results given in Table 8 and Figure 3. It can be seen that for a ≤ 3 the frequentist
coverage percentage of the Geweke prior is smaller than the nominal level and for a ≥ 4 it is on
average 98.98%. The coverage percentages of the Jeffreys-rule prior 𝑝4 (a), however, do not differ
much from those of the other objective priors (𝑝1 (a), 𝑝2 (a) and 𝑝3 (a)). In the case of the coverage
percentages, the reference (or probability-matching) prior 𝑝2 (a) seems to be the best because it has
on average a 96.86% coverage.

From Table 9 in Appendix D, illustrated in Figure 4, it can be observed that 𝑝2 (a) has the shortest
average interval lengths of all the objective priors. The prior that gives the shortest interval lengths
is however 𝑝5 (a), the Geweke prior, with interval lengths on average two and a half to three times
shorter than those of the objective priors and with a coverage percentage of more than 95%. The
worst performing prior seems to be 𝑝6 (a).

Although the interval lengths of the objective priors for most of the 2 000 simulations are quite
small, a few extremely large lengths can have a big influence on the average interval length. A large
interval length will occur if the observations in the sample are of such a nature that it is not clear if
the data were drawn from a normal or 𝑡-distribution. It is for this reason that the modes of the interval
lengths are given in Table 2 and Figure 5.

As before, the reference priors 𝑝1 (a) and 𝑝2 (a) seem to be the two best priors because the modes
of their interval lengths are in general the smallest. The prior 𝑝2 (a) seems to be somewhat better than
𝑝1 (a). The modes of the interval lengths of the priors 𝑝3 (a) and 𝑝4 (a) (the independence Jeffreys
and the Jeffreys-rule priors) change dramatically for a ≥ 10. From Table 2 it is clear that 𝑝5 (a), the
Geweke prior, is the worst prior for 5 ≤ a ≤ 8. It does well for 1 ≤ a ≤ 4 and seems to do better
than most of the priors for a > 10. The prior 𝑝6 (a) again seems to perform worst in this study.
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Figure 4. Average interval lengths of the 95% credibility intervals for a.

Table 2. Mode of interval lengths of the 95% credibility intervals for a.

a Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6
1 1.3918 0.9694 0.8824 1.0916 1.1767 1.1350
2 2.2132 2.1039 2.2849 2.2145 2.5818 2.2474
3 5.1277 5.1071 2.5923 5.3916 4.1166 5.4524
4 5.5141 5.8186 5.6744 6.1332 7.0209 6.2217
5 5.8345 6.4857 6.3385 6.8614 40.3448 6.9601
6 8.4593 6.7914 7.0016 7.1734 39.8707 7.2716
7 7.1246 6.5109 9.9536 6.8896 42.4445 9.7214
8 6.9421 7.2842 7.8857 10.4286 40.2139 10.5493
9 9.5604 7.1040 10.2161 7.5794 41.2099 162.6129
10 10.6371 9.9450 151.4783 156.0163 40.6707 178.7038
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Figure 5. Mode of interval lengths of the 95% credibility intervals for a.

4. Application
To compare the six priors on real data, the Student 𝑡-distribution will be applied to model daily log
returns of IBM data. The data set contains 2528 observations for the period from the 3rd of January
1969 to the 31st of December 1998. The data are available from the ‘Ecdat’ R package (R Core
Team, 2013; Croissant and Graves, 2020). In Figure 6, a histogram of the data is shown. It is clear
that the data exhibit a heavy (or fat) tail distribution.

By using the prior

𝑝2

(
a, `, 𝜎2

)
∝ 𝜎−2

[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 3)
a (a + 1)2

] 1
2

and Gibbs sampling, the posterior distributions of the parameters `, 𝜎2 and a are obtained and
illustrated in Figures 7, 8 and 9. The resulting posterior estimates of `, 𝜎2 and a for the six priors
are summarised in Tables 3 to 5. The conditional posterior distributions that were used in the Gibbs
sampling procedure are given in Appendix C.

From Tables 3 to 5 it is clear that for this example similar results are obtained with the different
priors due to the large sample size. To obtain a better idea of the differences between the six priors,
a random sample of 𝑛 = 100 observations of the daily log returns of the IBM data are analysed. The
resulting posterior estimates of a for the six priors are summarised in Table 6.

It is interesting to note that the 95% credibility intervals of a for the full data set are on average 4.7
times shorter than those for the sample of 100 observations. This is close to what one would expect
given that confidence/credibility intervals are generally proportional to the square root of the sample
size. In this case

√
2528/√100 ≈ 5, which lines up with the observed value.2 Also, the posterior

distributions in the case of the full data set are more symmetrical.

2 We would like to acknowledge the input of a referee for this comment.
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Figure 6. IBM daily log-returns, 1969-1998.

Figure 7. Posterior distribution of ` using Prior 𝑝2 (a, `, 𝜎2). Mean = 2.76×10−4, Median = 2.71×
10−4, Mode = 2.67×10−4, Var = 8.80×10−8; 95% Equal-tail Interval = (−3.11×10−4; 8.53×10−4).
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Figure 8. Posterior distribution of𝜎2 using Prior 𝑝2 (a, `, 𝜎2). Mean= 1.60×10−4, Median= 1.59×
10−4, Mode = 1.59×10−4, Var = 5.28×10−11; 95% Equal-tail Interval = (1.46×10−4; 1.75×10−4).

Figure 9. Posterior distribution of a using Prior 𝑝2 (a, `, 𝜎2). Mean = 4.29, Median = 4.25, Mode
= 4.19, Var = 0.10; 95% Equal-tail Interval = (3.75; 4.99).
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Table 3. Posterior estimates for ` obtained with
six different priors for a.

Mean Median 95% Credibility
Prior ×104 ×104 Interval ×104

1 2.7244 2.6725 (-3.114; 8.474)
2 2.7593 2.7058 (-3.107; 8.527)
3 2.7595 2.7061 (-3.065; 8.500)
4 2.7234 2.6700 (-3.124; 8.489)
5 2.7174 2.6660 (-3.153; 8.495)
6 2.7457 2.6970 (-3.124; 8.508)

Table 4. Posterior estimates for 𝜎2 obtained with
six different priors for a.

Mean Median 95% Credibility
Prior ×104 ×104 Interval ×104

1 1.6039 1.5962 (1.463; 1.749)
2 1.6021 1.5947 (1.462; 1.747)
3 1.6019 1.5955 (1.462; 1.745)
4 1.6013 1.5939 (1.463; 1.743)
5 1.6049 1.5972 (1.463; 1.750)
6 1.6036 1.5964 (1.464; 1.745)

Table 5. Posterior estimates for a obtained with six different
priors for a.

Prior Mean Median 95% Credibility Interval
1 4.3105 4.2713 (3.7697; 5.0315)
2 4.2869 4.2474 (3.7541; 4.9855)
3 4.2908 4.2568 (3.7631; 4.9795)
4 4.2795 4.2450 (3.7525; 4.9652)
5 4.3126 4.2738 (3.7646; 5.0179)
6 4.2984 4.2650 (3.7678; 4.9703)
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Table 6. Posterior estimates for a obtained with six different
priors for a — random sample of 100 observations.

Prior Mean Median 95% Credibility Interval
1 3.6454 3.33 (1.851; 7.044)
2 3.6118 3.28 (1.797; 7.136)
3 3.7471 3.41 (1.830; 7.217)
4 3.7894 4.43 (1.860; 7.919)
5 4.3722 3.95 (2.064; 9.112)
6 3.9485 3.59 (1.940; 7.561)

5. Discussion
The Student 𝑡-distribution is of great importance for many economic and business data because it
reduces the influence of outliers in model estimation and thus makes statistical analysis more robust.

Unfortunately, the estimation of a, the number of degrees of freedom of the 𝑡-distribution, is not
easy. The reason for this is the illogical behaviour of the likelihood function for a. To overcome the
fact that the likelihood function does not vanish in the tail, a prior distribution that tends to zero as
a tends to infinity should be applied. It is for this reason that two non-informative priors have been
derived for the parameters of the Student 𝑡-distribution, 𝑝1 (a, `, 𝜎2) and 𝑝2 (a, `, 𝜎2). Both of these
priors are reference priors while 𝑝2 (a, `, 𝜎2) is also a probability-matching prior.

Our simulation studies illustrate the good frequentist properties of the posterior distributions
associated with these priors, focusing on the relative square-rooted mean squared error from the
posterior median and the 95% credibility intervals for a sample of size 𝑛 = 30 based on 2 000
simulations. We have compared the frequentist properties of the two reference priors to four other
priors (the Jeffreys-rule prior, the independence Jeffreys prior, the exponential prior and a hierarchical
prior). Overall, the two reference priors seem to give better results, especially if 1 ≤ a ≤ 10. For
𝑛 = 30 our simulation results are for all practical purposes the same as those obtained by He et al.
(2021). These authors also came to the conclusion that the reference priors are the best. However,
they did not do any simulation studies on the “Average Interval Lengths of the 95% Credibility
Intervals for a” or on the “Modes of the Interval Lengths”.

In Section 4 the six priors are compared on a real data set of the daily log-returns of IBM stock. A
sample of 𝑛 = 100 observations is also analysed. The results for the sample show that the posterior
estimates of a for the reference priors, probability matching prior, the Jeffreys-rule prior, and the
independence Jeffreys prior are for all practical purposes the same, but differ somewhat from those
of the exponential and hierarchical priors.

Acknowledgement. The authors would like to thank the editor and reviewers for their valuable
comments, which helped to improve the quality of this paper.

A. Reference and probability-matching priors
This appendix provides derivations for the reference and probability-matching priors for the univariate
Student 𝑡-distribution. As in the case of the Jeffreys priors, the derivations of these priors are based
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on the Fisher information matrix. Differentiation of the log likelihood functions twice with respect
to the unknown parameters and taking expected values give the Fisher information matrix

{𝐼 (\)}𝑖 𝑗 = 𝐸𝑋 | \
[
− 𝜕2

𝜕\𝑖𝜕\ 𝑗
log {𝐿 (θ; x)}

]
,

where θ = [\1, \2, \3]′ = [a, `, 𝜎]′ and

𝐿 (\, x) =
𝑛∏
𝑖=1

𝑓
(
𝑥𝑖 |`, 𝜎2, a

)
=

[
Γ

(
a+1
2

)]𝑛
a𝑛a/2[

Γ
(
a
2
) ]𝑛 [

Γ
(

1
2

)]𝑛
𝜎𝑛

𝑛∏
𝑖=1

[
a +

( 𝑥𝑖 − `
𝜎

)2
]− 1

2 (a+1)
.

Proof of Theorem 2.1. First we prove that

𝑝2

(
a, `, 𝜎2

)
∝ 𝜎−2

[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 3)
a (a + 1)2

] 1
2

.

The Fisher information matrix for the ordering {a, `, 𝜎} is given in Fonseca et al. (2008) as

𝐼 (a, `, 𝜎) =



𝑛
4

[
Ψ′ ( a

2
) − Ψ′

(
a+1
2

)
− 2(a+5)
a (a+1) (a+3)

]
0 −2𝑛

𝜎 (a+1) (a+3)

0 𝑛(a+1)
𝜎2 (a+3) 0

−2𝑛
𝜎 (a+1) (a+3) 0 2𝑛a

𝜎2 (a+3)


(1)

=


𝐹11 𝐹12 𝐹13
𝐹21 𝐹22 𝐹23
𝐹31 𝐹32 𝐹33


.

To calculate the reference prior for the ordering {a, `, 𝜎}, we must first calculate

ℎ1 = 𝐹11 −
[
𝐹12 𝐹13

] [
𝐹22 𝐹23
𝐹32 𝐹33

]−1 [
𝐹21
𝐹31

]

from the information matrix in (1). Therefore,

ℎ1 =
𝑛

4

[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 5)
a (a + 1) (a + 3)

]

−
[

0 −2𝑛
𝜎 (a+1) (a+3)

] [
𝜎2 (a+3)
𝑛(a+1) 0

0 𝜎2 (a+3)
2𝑛a

] [
0

−2𝑛
𝜎 (a+1) (a+3)

]

=
𝑛

4

[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 3)
a (a + 1)2

]

and

ℎ
1
2
1 ∝

[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 3)
a (a + 1)2

] 1
2

.
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Now 𝑝 (a) ∝ ℎ1/2
1 .

Consider [
𝐹11 𝐹12
𝐹21 𝐹22

]
− (𝐹33)−1

[
𝐹13
𝐹23

] [
𝐹31 𝐹32

]
=

[
𝐻11 𝐻12
𝐻21 𝐻22

]
.

Since ℎ2 = 𝐻22 = 𝐹22 − 𝐹23/𝐹32𝐹33 does not contain `, ℎ1/2
2 ∝ 𝑐 and 𝑝(` |a) ∝ 𝑐. Further,

ℎ3 = 𝐹33 = 2𝑛`/𝜎2 (a + 3) and 𝑝(𝜎 |a, `) ∝ ℎ1/2
3 = 𝜎−1.

From this it follows that

𝑝2 (a, `, 𝜎) = 𝑝 (a) 𝑝 (` |a) 𝑝 (𝜎 |a, `) ∝ 𝜎−1
[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 3)
a (a + 1)2

] 1
2

.

Similarly,

𝑝2

(
a, `, 𝜎2

)
∝ 𝜎−2

[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 3)
a (a + 1)2

] 1
2

because it is known that if 𝑝 (𝜎) ∝ 𝜎−1, then 𝑝(𝜎2) ∝ 𝜎−2, and for 𝑝(𝜎) ∝ 𝜎−2 it follows that
𝑝(𝜎2) ∝ 𝜎−3.

By using the Fisher information matrices 𝐼 (a, 𝜎, `) and 𝐼 (`, a, 𝜎) it can be shown that 𝑝2 (a, `, 𝜎)
is also a reference prior for the orderings {a, 𝜎, `} and {`, a, 𝜎}.

Now let us prove that

𝑝1 (𝜎, `, a) ∝ 𝜎−1
[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 5)
a (a + 1) (a + 3)

] 1
2

,

which is equivalent to proving that

𝑝1

(
𝜎2, `, a

)
∝ 𝜎−2

[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 5)
a (a + 1) (a + 3)

] 1
2

.

The Fisher information matrix for the ordering {𝜎, a, `} is given by

𝐼 (𝜎, a, `) =



2𝑛a
𝜎2 (a+3)

−2𝑛
𝜎 (a+1) (a+3) 0

−2𝑛
𝜎 (a+1) (a+3)

𝑛
4

[
𝜓′ ( a
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a (a+1) (a+3)

]
0

0 0 𝑛(a+1)
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=


�̃�11 �̃�12 �̃�13
�̃�21 �̃�22 �̃�23
�̃�31 �̃�32 �̃�33


.

Now,

ℎ̃1 = �̃�11 −
[
�̃�12 �̃�13

] [
�̃�22 �̃�23
�̃�32 �̃�33

]−1 [
�̃�21
�̃�31

]
,
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whence

ℎ̃1 =
2𝑛a

𝜎2 (a + 3) −
[

−2𝑛
𝜎 (a+1) (a+3) 0

] 
𝐴 0

0 𝜎2 (a+3)
𝑛(a+1)




0

−2𝑛
𝜎 (a+1) (a+3)


,

where 𝐴 = 4𝑛−1 [𝜓′ (a/2) − 𝜓′ ((a + 1)/2) − 2(a + 5)/a(a + 1) (a + 3)]−1. Therefore,

ℎ̃1 =
2𝑛a

𝜎2 (a + 3) −
4𝑛2

𝜎2 (a + 1)2 (a + 3)

(
4
𝑛

) [
𝜓′
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2

)
− 𝜓′

(
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2

)
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a (a + 1) (a + 3)

]−1
.

This means that ℎ̃1 ∝ 𝜎−2, so that
ℎ̃

1
2
1 ∝ 𝜎−1 = 𝑝 (𝜎) .

Consider [
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�̃�21 �̃�22

]
− (
�̃�33

)−1
[
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�̃�23

] [
�̃�31 �̃�32

]
=

[
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]
.

Therefore,

�̃� =



2𝑛a
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−2𝑛
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−2𝑛
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𝑛
4

[
𝜓′ ( a

2
) − 𝜓′

(
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)
− 2(a+5)
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]
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𝑛 (a + 1)

[
0
0

] [
0 0

]
,

and hence

ℎ̃
1
2
2 = �̃�

1
2
22 ∝

[
𝜓′

( a
2

)
− 𝜓′

(
a + 1

2

)
− 2 (a + 5)
a (a + 1) (a + 3)

] 1
2

.

We also have that ℎ̃
1
2
3 =

(
�̃�33

) 1
2 ∝ 𝑐, so that

𝑝1 (𝜎, a, `) ∝ 𝜎−1
[
𝜓′

( a
2

)
− 𝜓′

(
a + 1

2

)
− 2 (a + 5)
a (a + 1) (a + 3)

] 1
2

.

By using the Fisher information matrices 𝐼 (`, 𝜎, a) and 𝐼 (𝜎, `, a) it can be shown that 𝑝1 (𝜎, `, a)
is also a reference prior for the orderings {`, 𝜎, a} and {𝜎, `, a}.

■

Proof of Theorem 2.2. To derive the probability-matching prior 𝑃𝑀 (a, `, 𝜎), we need the inverse
of the Fisher information matrix,

𝐼−1 (`, 𝜎, a) =



𝜎2 (a+3)
𝑛(a+1) 0 0

0 𝑛
4𝐷

[
Ψ′ ( a

2
) − Ψ′

(
a+1
2

)
− 2(a+5)
a (a+1) (a+3)

]
2𝑛

𝐷𝜎 (a+1) (a+3)

0 2𝑛
𝐷𝜎 (a+1) (a+3)

2𝑛a
𝐷𝜎2 (a+3)


,
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where

𝐷 =
𝑛2a

2𝜎2 (a + 3)

[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 5)
a (a + 1) (a + 3)

]
− 4𝑛2

𝜎2 (a + 1)2 (a + 3)2

=
𝑛2a

2𝜎2 (a + 3)

[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 3)
a (a + 1)2

]
.

Let 𝑡 (θ) = a, where 𝑡 (θ) is the parameter of interest. From this it follows that 𝜕𝑡 (θ)
𝜕a = 1,

𝜕𝑡 (θ)
𝜕` = 0, 𝜕𝑡 (θ)𝜕𝜎 = 0, and

∇′
𝑡 (θ) =

[
𝜕𝑡 (θ)
𝜕`

𝜕𝑡 (θ)
𝜕𝜎

𝜕𝑡 (θ)
𝜕a

]
=

[
0 0 1

]
.

Therefore,

∇′
𝑡 (θ) 𝐼−1 (θ) =

[
0 2𝑛

𝐷𝜎 (a+1) (a+3)
2𝑛a
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]
,

which means that
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𝑡 (θ) 𝐼−1 (θ) ∇𝑡 (θ)

] 1
2 =

(
2𝑛a

𝐷𝜎2 (a + 3)

) 1
2

.

Hence,

Z ′ (θ) = ∇′
𝑡 (θ) 𝐼−1 (θ)[∇′

𝑡 (θ) 𝐼−1 (θ) ∇𝑡 (θ)
] 1

2

=
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]
=
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2
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1
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1
2 (a+1) (a+3) 1

2

(2𝑛a) 1
2

𝐷
1
2 𝜎 (a+3) 1

2

]
.

This indicates that the probability-matching prior is

𝑝𝑀 (θ) = 𝑝𝑀 (a, `, 𝜎) ∝ 𝐷 1
2
(a + 3) 1

2

a
1
2

∝ 𝜎−1
[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 3)
a (a + 1)2

] 1
2

,

because the differential equation 𝜕
𝜕` [Z1 (θ)𝑝(θ)] + 𝜕

𝜕𝜎 [Z2 (θ)𝑝(θ)] + 𝜕
𝜕a [Z3 (θ)𝑝(θ)] = 0. The

probability-matching prior is therefore the same as the reference priors for the orderings {a, `, 𝜎},
{`, a, 𝜎}, and {a, 𝜎, `}. ■

B. Reference prior behaviour
Proof of Theorem 2.3. The proof is the same as that of Corollary 1 in Fonseca et al. (2008). Consider

[𝑝2 (a)]2 =

[
Ψ′

( a
2

)
− Ψ′

(
a + 1

2

)
− 2 (a + 3)
a (a + 1)2

]
.
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By using Stirling’s asymptotic formula Ψ′ (𝑎) ≈ 𝑎−1 + (2𝑎2)−1, for large 𝑎 it follows that

Ψ′
( a
2

)
≈

( a
2

)−1
+

[
2
( a
2

)2
]−1

=
2
a
+ 2
a2

and

Ψ′
(
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2

)
≈ 2
a + 1

+ 2
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Therefore,
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2
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and

[𝑝2 (a)]2 =
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a2 (a + 1)2 − 2 (a + 3)

a (a + 1)2 =
2

a2 (a + 1)2 = 𝑂
(
a−4

)
.

Therefore, 𝑝2 (a) = 𝑂 (a−2) as a → ∞.
In a similar way it can be proved that [𝑝1 (a)]2 = 2(5a + 3)/a2 (a + 1)2 (a + 3), which means that

𝑝1 (a) = 𝑂 (a−2) as a → ∞. ■

Proof of Theorem 2.4. The proof will be given for 𝑝1 (a). The proof for 𝑝2 (a) follows in a similar
way. The posterior for a is as follows:

𝑝1 (a |𝑑𝑎𝑡𝑎) = �̃�
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,

where �̃� is the normalising constant. We then have that

𝑝1 (a |𝑑𝑎𝑡𝑎) ≤ �̃�
[
Ψ′

( a
2

)] 1
2
Γ

(
a+1
2

)𝑛
a𝑛a/2

Γ
(
a
2
)𝑛 (√

𝜋
)𝑛

[
𝑛∏
𝑖=1

(
a + 𝑥2

𝑖

)]− 1
2 (a+1)

.

Since (aa)𝑛/2 → 1𝑛/2 = 1 if a → 0+, it follows that, if a → 0+, then
[
𝑛∏
𝑖=1

(
a + 𝑥2

𝑖

)]− 1
2 (a+1)

→
[
𝑛∏
𝑖=1

𝑥2
𝑖

]− 1
2

.

It is therefore only necessary to consider

lim
a→0+

[Ψ′ (a)] 1
2 Γ

(
a + 1

2

)𝑛
Γ (a)𝑛 .
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Since Ψ (a) = 𝑑
𝑑a [ln Γ (a)] = Γ′ (a)/Γ (a), it follows that

Ψ′ (a) = Γ′′ (a) Γ (a) − [Γ′ (a)]2

[Γ (a)]2 .

Therefore,

lim
a→0+

[Ψ′ (a)] 1
2

[
Γ

(
a + 1

2

)]𝑛
[Γ (a)𝑛] = lim

a→0+



Γ′′ (a) Γ (a) − [Γ′ (a)]2

[Γ (a)]2 ·

[
Γ

(
a + 1

2

)]2𝑛

[Γ (a)]2𝑛




1
2

. (2)

The following formulae are valid:

−Γ′ (a)
Γ (a) =

1
a
+ 𝛾 +

∞∑︁
𝑛=1

(
1

𝑛 + a − 1
𝑛

)
, a > 0, (3)

where 𝛾 = 0.5772 is Euler’s constant. It can also be shown that if a > 0, we have that
∞∑︁
𝑛=1

(
1

𝑛 + a − 1
𝑛

)
= −Ψ (1 + a) − 𝛾

and

1
Γ (a) = a exp

[
𝛾a −

∞∑︁
𝑘=2

(−1)𝑘 Z (𝑘) a𝑘
𝑘

]
, (4)

where Z (𝑘) is Riemann’s zeta function. Therefore (3) × (4) gives

− Γ′ (a)
[Γ (a)]2 = [1 + a𝛾 − aΨ (1 + a) − a𝛾] × exp

[
𝛾a −

∞∑︁
𝑘=2

(−1)𝑘 Z (𝑘) a𝑘
𝑘

]
.

Since Ψ (1) = −𝛾, it follows that, as a → 0+,

− Γ′ (a)
[Γ (a)]2 → 1.

Therefore,

Γ′ (a)
[Γ (a)]2 → −1. (5)

From (3) it follows that

−Γ′ (a) = Γ (a)
[
1
a
+ 𝛾 − Ψ (1 + a) − 𝛾

]
= Γ (a)

[
1
a
− Ψ (1 + a)

]
, a > 0.

Therefore,

−Γ′′ (a) = Γ′ (a)
[
1
a
− Ψ (1 + a)

]
+ Γ (a)

[
− 1
a2 − Ψ′ (1 + a)

]
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and

−Γ′′ (a)
[Γ (a)]3 =

Γ′ (a)
[Γ (a)]2 · 1

Γ (a)

[
1
a
− Ψ (1 + a)

]
+ 1
[Γ (a)]2

[
− 1
a2 − Ψ′ (1 + a)

]
.

Remember that Ψ′ (1) = 1
6𝜋

2. By making use of (5) and the fact that aΓ (a) → 1 as a → 0+, it
follows that

−Γ′′ (a)
[Γ (a)]3 → (−1) (1 − 0) + (−1 − 0) = −2.

Therefore, as a → 0+,

Γ′′ (a)
[Γ (a)]3 → 2. (6)

Substitute (6) into (2) and assume that 𝑛 ≥ 2. Then,

lim
a→0+



[

Γ′′ (a)
Γ (a) [Γ (a)]2 − Γ′ (a)

[Γ (a)]2 · Γ′ (a)
[Γ (a)]2

]
·

[
Γ

(
a + 1

2

)]2𝑛

[Γ (a)]2𝑛−2




1
2

=
{[

2 − (−1)2] · 0
} 1

2 = 0,

which follows from the fact that Γ( 1
2 ) =

√
𝜋 and 2𝑛 − 2 > 0, therefore

[
Γ

(
a + 1

2

)]2𝑛

[Γ (a)]2𝑛−2 →
(√
𝜋
)2𝑛

∞ = 0,

if 𝑛 ≥ 2. This means that 𝑝1 (a |𝑑𝑎𝑡𝑎) → 0 if a → 0+. A similar proof can be made for
𝑝2 (a |𝑑𝑎𝑡𝑎). ■

C. Gibbs sampling
If 𝑥𝑖 |`, 𝜎2, _𝑖 ∼ 𝑁 (`, 𝜎2/_𝑖), 𝑖 = 1, 2, . . . , 𝑛, and a_𝑖 ∼ 𝜒2

a , then 𝑥𝑖 |`, 𝜎2, a ∼ 𝑡a (`, 𝜎2). If the
prior 𝑝𝑙 (`, 𝜎2, a) ∝ 𝜎−2𝑝𝑙 (a), 𝑙 = 1, 2, 3, 5, 6, is used, then the following conditional posterior
distributions can be derived:

` |𝜎2, 𝐻, x ∼ 𝑁
[
(1′𝐻1)−1 1′𝐻x, 𝜎2 (1′𝐻1)−1

]
, (7)

where 1 = [1, 1, . . . , 1]′, x = [𝑥1, 𝑥2, . . . , 𝑥𝑛]′, and 𝐻 = diag[_1, _2, . . . , _𝑛]′;

𝜎2 |`, 𝐻, x ∼ (x − `1)′ 𝐻 (x − `1)
𝜒2
𝑛

; (8)

_𝑖 |`, 𝜎2, a, 𝑥𝑖 ∼
𝜒2
a+1

a + ( 𝑥𝑖−`
𝜎

)2 , 𝑖 = 1, 2, . . . , 𝑛; (9)
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Figure 10. Likelihood function for a, first sample.

and

𝑝 (a |_1, _2, . . . , _𝑛) ∝ a𝑛a/2

2𝑛a/2
[
Γ

(
a
2
) ]𝑛

[
𝑛∏
𝑖=1

_
1
2 (a−1)
𝑖

]
𝑒−

a
2
∑𝑛

𝑖=1 _𝑖 𝑝 𝑗 (a) . (10)

By using (7), (8), (9) and (10) and then Gibbs sampling, the unconditional posterior distributions of
`, 𝜎2 and a can be obtained.

In the case of 𝑝4 (`, 𝜎2, a) ∝ 𝜎−3𝑝4 (a), the degrees of freedom of the chi-square distribution in
(8) changes to 𝑛 + 1.

D. Complete simulation results
For transparency, the simulation data used for Figures 2 to 4 are given in Tables 7 to 9.

E. Behaviour of the likelihood
During the course of the compilation of this paper, a reviewer had some questions concerning the ill
behaviour of a likelihood, as mentioned in Section 1. A simulation study is presented here to explain
the matter. In particular, we will discuss the behaviour of the likelihood function and the posterior
distributions for two prior distributions, namely 𝑝2 (a) and 𝑝5 (a), the prior distributions that seemed
to perform best in Section 3 for intermediate and extreme degrees of freedom, respectively.

The data in Table 10 represent a sample of 𝑛 = 30 observations drawn from a standard univariate
Student 𝑡-distribution with a = 3 degrees of freedom.

In Figure 10 the strange behaviour of the likelihood function for a is illustrated. All the observations
except one (−2.5400) are concentrated around zero and this might be the reason for this behaviour.
In other words the data in Table 10 are of such a nature that it is impossible for the likelihood function
to distinguish between a normal distribution and a (heavy-tailed) 𝑡-distribution.

According to Fonseca et al. (2008), maximum likelihood estimation for the Student 𝑡-distribution
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Table 7. Relative root mean squared errors (
√︁
𝑀𝑆𝐸 (a)/a) for six priors

for a.

a Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6
1 0.4593 0.4138 0.4707 0.4416 0.5703 0.6153
2 0.8714 0.8408 0.9546 0.9650 1.1661 1.1180
3 0.9264 0.9120 1.0001 1.0280 1.1807 1.1226
4 0.7946 0.7779 0.8377 0.8840 0.9811 1.0013
5 0.6995 0.6991 0.7560 0.7768 0.8525 0.9068
6 0.6202 0.5825 0.6501 0.6563 0.7110 0.7649
7 0.5062 0.5014 0.5335 0.5565 0.5705 0.6498
8 0.4416 0.4316 0.4495 0.4805 0.4620 0.5320
9 0.4055 0.3975 0.4058 0.4268 0.3916 0.4674
10 0.3899 0.3850 0.3871 0.3928 0.3519 0.4180
11 0.4022 0.3961 0.3905 0.3860 0.3367 0.3893
12 0.3982 0.3909 0.3841 0.3802 0.3214 0.3760
13 0.4098 0.4138 0.4069 0.3961 0.3378 0.3698
14 0.4174 0.4341 0.4181 0.4053 0.3510 0.3648
15 0.4385 0.4528 0.4327 0.4242 0.3685 0.3797
16 0.4583 0.4703 0.4508 0.4332 0.3873 0.3942
17 0.4789 0.4918 0.4724 0.4573 0.4143 0.4160
18 0.5107 0.5155 0.5050 0.4819 0.4486 0.4425
19 0.5178 0.5291 0.5021 0.4953 0.4534 0.4510
20 0.5403 0.5473 0.5353 0.5217 0.4875 0.4761
21 0.5581 0.5662 0.5479 0.5359 0.5023 0.4871
22 0.5646 0.5778 0.5541 0.5474 0.5133 0.5032
23 0.5834 0.5896 0.5725 0.5626 0.5327 0.5204
24 0.5978 0.6101 0.5902 0.5764 0.5541 0.5386
25 0.6064 0.6153 0.5921 0.5816 0.5582 0.5418

Mean 0.5439 0.5417 0.5520 0.5517 0.5522 0.5699
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Table 8. Coverage percentages of the 95% credibility intervals for a.

a Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6
1 94.10 94.50 94.20 93.90 91.15 92.75
2 94.25 94.80 93.80 93.95 86.55 92.00
3 97.55 97.15 97.20 96.45 88.65 96.70
4 97.75 97.70 98.60 97.70 97.70 98.80
5 97.10 97.20 97.30 98.05 99.30 98.40
6 97.30 97.15 97.60 98.00 99.40 98.25
7 97.90 97.55 98.20 97.95 99.75 98.55
8 97.30 97.60 97.80 97.75 99.75 98.30
9 98.35 97.65 98.20 97.75 99.30 98.60
10 97.70 97.05 97.80 98.25 98.85 98.20
11 96.90 96.60 97.20 98.30 98.90 97.75
12 97.60 97.15 97.90 98.45 99.75 97.95
13 97.55 97.45 97.80 97.85 99.65 98.55
14 97.80 97.45 98.10 98.10 99.35 98.65
15 97.85 96.80 97.60 98.15 99.10 98.45
16 97.85 97.10 98.50 98.60 99.10 98.35
17 97.75 97.95 98.20 97.85 99.30 98.65
18 97.10 96.30 97.00 97.80 98.90 98.30
19 97.65 97.30 98.00 97.70 99.00 98.25
20 96.80 97.00 96.60 97.80 98.50 97.40
21 95.90 96.30 96.50 97.70 98.10 97.50
22 97.00 96.10 97.50 97.60 98.80 98.15
23 97.15 97.10 98.00 97.05 98.70 97.85
24 96.55 95.55 96.70 98.45 97.40 97.75
25 97.20 97.10 98.40 97.35 99.00 98.60

Mean 97.118 96.864 97.388 97.540 97.758 97.708
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Table 9. Average interval lengths of the 95% credibility intervals for a.

a Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6
1 1.4863 1.4705 1.5211 1.6613 1.6616 1.7346
2 10.9029 10.2188 11.4415 11.4660 8.7877 13.1349
3 27.2776 25.6413 28.6591 27.4616 16.8940 31.0931
4 40.8181 39.1123 42.8603 46.0271 22.6912 49.8889
5 58.0892 54.0122 60.7860 57.8947 27.6600 70.0064
6 66.8981 64.0113 69.8454 70.4983 29.9378 80.6659
7 74.5588 72.6509 77.8293 78.6948 32.0676 91.6501
8 81.3848 78.6516 84.8817 88.3929 33.6076 98.8977
9 84.4323 80.7490 87.9760 94.3561 34.2755 105.0209
10 90.9408 87.5548 94.5730 96.4120 35.2627 109.2556
11 91.3351 87.6219 94.9579 104.1987 35.2547 110.6545
12 97.0578 93.8699 100.7701 103.0313 36.2704 114.0066
13 96.1922 93.0008 99.8689 105.4707 36.1493 117.2605
14 99.1662 95.2863 102.9146 110.7050 36.6309 122.5355
15 101.8962 97.7551 105.7096 108.7843 37.0405 124.0829
16 103.5499 100.0941 107.4031 115.3113 37.3834 126.0403
17 104.6025 100.4079 108.4889 114.0209 37.5741 126.7225
18 102.7811 99.5750 106.6120 115.6712 37.2385 126.3335
19 108.6713 104.4110 112.4989 115.4082 38.0129 129.7908
20 105.8102 102.0438 109.6180 115.2661 37.5957 129.2041
21 107.9256 104.7400 111.7811 115.8514 37.8954 131.9269
22 110.7806 106.7750 114.5896 116.6591 38.3138 132.9114
23 111.1055 107.3003 114.9879 117.8916 38.4163 133.3977
24 110.3250 105.5900 114.1435 120.3860 38.2195 133.3991
25 114.3742 110.4022 118.2419 122.1614 38.8475 137.3235

Mean 84.0945 80.9178 87.3184 90.9473 32.1475 101.8775

Table 10. First sample of 𝑛 = 30 observations from a 𝑡-distribution
with ` = 0, 𝜎2 = 1, and a = 3.

0.1189 0.1150 0.8309 1.0141 −0.9620 0.4662
−2.5400 0.3361 0.8219 0.3253 −0.6136 0.6204
−0.5659 0.3238 −0.1484 −0.8110 0.2741 −0.4700
−0.6983 −1.0854 0.2471 1.1470 −0.3032 0.1980

0.4189 0.3930 −0.2992 1.0051 −0.2657 0.4598
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Figure 11. Posterior of a with prior 𝑝2 (a), first sample. Mean = 22.80; median = 11.57; mode =
4.75; Var = 905.61; 95% equal-tail interval = (2.48, 121.76), length = 119.28; 95% HPD interval =
(1.72, 92.40), length = 90.68.

is very problematic because the likelihood function is ill-behaved for a close to zero and may be
ill-behaved when a → ∞.

Our experience is that for a sample size of 𝑛 = 30 and degrees of freedom a = 3, the poor behaviour
of the likelihood function occurs in more than 50% of the simulation runs.

Consider the following two priors: (i) 𝑝2 (a) ∝ [Ψ′ ( 1
2 a) −Ψ′ ( 1

2 (a + 1)) − 2(a + 3)/a(a + 1)2]1/2,
and (ii) 𝑝5 (a) ∝ 𝑒−0.1a . As mentioned before, 𝑝2 (a) is a reference prior and 𝑝5 (a) is the exponential
prior.

In Figure 11 the posterior distribution 𝑝2 (a |𝑥1, . . . , 𝑥30) for the data in Table 10 is illustrated and
in Figure 14 the posterior distribution 𝑝5 (a |𝑥1, . . . , 𝑥30) for the exponential prior is shown.

From Figure 11 it can be seen that the mode of 4.75 corresponds reasonably well with the true
parameter value of a = 3. Also, the 95% credibility intervals contain the true parameter value of
a = 3. In the case of the exponential prior (Figure 12) the mode of 8.72 is two and a half times as
large as the true parameter and is therefore not a good estimate thereof. The true parameter value is
also not contained in the 95% equal-tailed interval. The behaviour of the likelihood function is also
the reason for the large interval lengths of the 95% credibility intervals.

In Table 11, a second sample of 𝑛 = 30 observations drawn from a standard univariate Student
𝑡-distribution with a = 3 degrees of freedom is illustrated and in Figure 13 the likelihood function is
given.

Figure 13 is an example of a likelihood function that behaves well. The largest values (3.8614,
7.3637) and smallest values (-4.6084, -4.6674) are an indication that the observations are sampled
from a heavy-tailed distribution. The likelihood on its own, however, cannot be used as a posterior
distribution because it is improper.

In Figures 14 and 15 the posterior distributions 𝑝2 (a |𝑥1, . . . , 𝑥30) and 𝑝5 (a |𝑥1, . . . , 𝑥30) are dis-
played for the second sample. It is clear from these figures that, although the 95% credibility intervals
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Figure 12. Posterior of a with prior 𝑝5 (a), first sample. Mean = 16.73; median = 13.88; mode =
8.72; Var = 122.45; 95% equal-tail interval = (3.73, 45.39), length = 41.66; 95% HPD interval =
(2.55, 39.40), length = 36.85.

Table 11. Second sample of 𝑛 = 30 observations from a 𝑡-distribution
with ` = 0, 𝜎2 = 1, and a = 3.

3.8614 −1.1644 1.5364 −1.9872 0.9092 0.2249
1.1924 0.5385 0.8573 1.1897 1.1392 −0.1857
0.8187 7.3637 −1.9517 0.6999 0.4705 −0.6518
1.1640 0.7606 −0.7805 0.9881 −4.6084 −0.8601

−0.6030 −1.1308 −4.6674 −1.5709 −1.3119 −0.8824

Figure 13. Likelihood function for a, second sample.
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Figure 14. Posterior of a with prior 𝑝2 (a), second sample. Mean = 2.02; median = 1.84; mode
= 1.66; Var = 0.55; 95% equal-tail interval = (0.92, 3.77), length = 2.85; 95% HPD interval =
(0.86, 3.56), length = 2.71.

are now much shorter, they do cover the true parameter value.
As mentioned before, the focus of our simulation study in Section 3.2 is on the relative square

rooted mean squared error from the median of the posterior distribution of a and on the frequentist
coverage percentages of the 95% equal-tail credibility intervals for samples of size 𝑛 = 30 based
on 2 000 simulations. The interval lengths are also considered. The relative square rooted mean
squared error is defined by

√︁
𝑀𝑆𝐸 (a)/a, where 𝑀𝑆𝐸 = 𝐸 (a − 𝑚)2 and 𝑚 is the median of the

posterior distribution. The results in Table 7 are based on 2 000 simulations, but now consider only
the two data sets given in Tables 10 and 11, for illustrative purposes. For the posterior distribution
𝑝2 (a |𝑥1, . . . , 𝑥30), 𝐸 (a − 𝑚)2 = 1

2 [(3 − 11.57)2 + (3 − 1.84)2] ≈ 37.4, and the relative square
rooted mean squared error is

√︁
𝑀𝑆𝐸 (a)/a = 1

3 (37.4)1/2 ≈ 2.04. For the posterior distribution
𝑝5 (a |𝑥1, . . . , 𝑥30), 𝐸 (a−𝑚)2 = 1

2 [(3−13.88)2 + (3−2.20)2] ≈ 59.51, and the relative square rooted
mean squared error is

√︁
𝑀𝑆𝐸 (a)/a = 1

3 (59.51)1/2 ≈ 2.57.
Now let us turn to the results in Table 8, based on 2 000 simulations. For illustrative purposes

again, for the two data sets in this appendix, the coverage percentages of the 95% equal-tail credibility
intervals for a are 100% for 𝑝2 (a |𝑥1, . . . , 𝑥30), and 50% for 𝑝5 (a |𝑥1, . . . , 𝑥30).

Now consider the results in Table 9 for the full 2 000 simulations. Again, for illustration, looking
at only the two samples in this appendix, the average interval lengths of the 95% equal-tail credibility
intervals are 1

2 (119.28 + 2.85) ≈ 61.07 for 𝑝2 (a |𝑥1, . . . , 𝑥30), and 1
2 (41.66 + 3.49) ≈ 22.58 for

𝑝5 (a |𝑥1, . . . , 𝑥30).
Finally, the modes in Table 2 are obtained from the histograms of the 2 000 interval lengths for

each a. It makes no sense to look at the modes for only two simulations, so we will not illustrate that
here.
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Figure 15. Posterior of a with prior 𝑝5 (a), second sample. Mean = 2.41; median = 2.20; mode
= 1.96; Var = 0.83; 95% equal-tail interval = (1.09, 4.59), length = 3.49; 95% HPD interval =
(1.01, 4.33), length = 3.32.

References
Berger, J. and Bernardo, J. (1992). On the development of reference priors. Bayesian Statistics,

4, 35–60.
Blattberg, R. C. and Gonedes, N. J. (1974). A comparison of the stable and Student distributions

as statistical models for stock prices. Journal of Business, 47, 244–280.
Box, G. E. P. and Tiao, G. C. (2011). Bayesian Inference in Statistical Analysis. Wiley, New York.
Croissant, Y. and Graves, S. (2020). Ecdat: Data Sets for Econometrics. R package version 0.3-9.

URL: https://CRAN.R-project.org/package=Ecdat
Datta, G. and Ghosh, J. (1995). On priors providing frequentist validity for Bayesian inference.

Biometrika, 82, 37–45.
Fernández, C. and Steel, M. F. J. (1998). On Bayesian modeling of fat tails and skewness. Journal

of the American Statistical Association, 93, 359–371.
Fonseca, T. C. O., Ferreira, M. A. R., and Migon, H. S. (2008). Objective Bayesian analysis for

the Student-𝑡 regression model. Biometrika, 95, 325–333.
Fonseca, T. C. O., Ferreira, M. A. R., and Migon, H. S. (2014). Amendments and corrections:

‘Objective Bayesian analysis for the Student-𝑡 regression model’. Biometrika, 101, 252–252.
Geweke, J. (1993). Bayesian treatment of the independent Student-𝑡 linear model. Journal of Applied

Econometrics, 8, S19–S40.
Gnanadesikan, R. and Kettenring, J. R. (2005). Bayesian computation for logistic regression.

Computational Statistics & Data Analysis, 48, 857–868.
He, D., Sun, D., and He, L. (2021). Objective Bayesian analysis for the Student-𝑡 linear regression.

Bayesian Analysis, 16, 129 – 145.

SIMULATION STUDY OF 𝑡-DISTRIBUTION PRIORS 119



Juárez, M. A. and Steel, M. F. J. (2010). Non-Gaussian dynamic Bayesian modelling for panel
data. Journal of Applied Econometrics, 25, 1128–1154.

Kotz, S. and Nadarajah, S. (2004). Multivariate 𝑡 Distributions and Their Applications. Cambridge
University Press, Cambridge.

Liu, C. (1997). ML estimation of the multivariate t distribution and the EM algorithm. Journal of
Multivariate Analysis, 63, 296–312.

Pearn, W. and Wu, C. (2005). A Bayesian approach for assessing process precision based on
multiple samples. European Journal of Operational Research, 165, 685–695.

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria.
URL: http://www.R-project.org/

Rubio, F. J. and Steel, M. F. J. (2015). Bayesian modelling of skewness and kurtosis with two-piece
scale and shape distributions. Electron. J. Statist., 9, 1884–1912.

Vallejos, C. A. and Steel, M. F. J. (2013). On posterior propriety for the Student-𝑡 linear regression
model under Jeffreys priors.
URL: https://arxiv.org/abs/1311.1454v2

van der Merwe, A. J., von Maltitz, M. J., and Meyer, J. H. (2021). Reference and probability-
matching priors for the parameters of a univariate Student 𝑡-distribution.
URL: http://arxiv.org/abs/2104.07386v1

Vaneck, T. W., Rodriguez-Ortiz, C. D., Schmidt, M. C., and Manley, J. E. (1996). Automated
bathymetry using an autonomous surface craft. NAVIGATION, 43, 407–419.

Villa, C. and Rubio, F. J. (2018). Objective priors for the number of degrees of freedom of
a multivariate 𝑡 distribution and the 𝑡-copula. Computational Statistics & Data Analysis, 124,
197–219.

Villa, C. and Walker, S. G. (2014). Objective prior for the number of degrees of freedom of a 𝑡
distribution. Bayesian Analysis, 9, 197–220.

von Maltitz, M. J. (2015). Extending the Reach of Sequential Regression Multiple Imputation.
Ph.D. thesis, University of the Free State, Bloemfontein, South Africa.

Wang, M. and Yang, M. (2016). Posterior property of Student-𝑡 linear regression model using
objective priors. Statistics & Probability Letters, 113, 23–29.

Zellner, A. (1976). Bayesian and non-Bayesian analysis of the regression model with multivariate
student-t error terms. Journal of the American Statistical Association, 71, 400–405.

Manuscript received 2021-04-28, revised 2022-02-14, accepted 2022-06-16.

120 VAN DER MERWE, VON MALTITZ, MEYER & GROENEWALD


