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Abstract: The kernel multivariate density estimation is an important technique to estimate the mul-
tivariate density function. In this investigation we will use Hellinger Distance as a measure of error
to evaluate the estimator, we will derive the mean weighted Hellinger distance for the estimator,
and we obtain the optimal bandwidth based on Hellinger distance. Also, we propose and study a
new technique to select the matrix of bandwidths based on Hellinger distance, and compare the new
technique with the plug-in and the least squares techniques.

1. Introduction

The univariate kernel density estimators for a random sample X1, X2, . . . , Xn, drawn from a proba-
bility density function f , is

f̂ (x,h) = n−1
n

∑
i=1

kh(x−Xi),

where k is chosen to be a unimodal probability density function that is symmetric about zero.
The general form of the d-variate kernel density estimator, for a random sample X1, X2, . . . , Xn

drawn from a density f , is

f̂ (x,H) = n−1
n

∑
i=1

kH(x−Xi),

where x = (x1,x1, . . . ,xd)
T and Xi = (Xi1,Xi2, . . . ,Xin)

T ,
i = 1,2, . . . ,n. Here k is the unscaled kernel, kH is the scaled kernel and H is the
d × d (fixed) bandwidth matrix, which is non-random, symmetric and positive definite. The scaled
and unscaled kernels are related by kH(x) = |H|−1/2k(H−1/2x). This formulation is a little different
from the univariate case since the 1 × 1 bandwidth matrix is H = h2 so we are dealing with squared
bandwidths here.
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We restrict our attention to kernel functions k that are spherically symmetric probability density
functions. Moreover, we mostly use normal kernels throughout this paper for two reasons: they lead
to smooth density estimates and they simplify the mathematical analysis. The bandwidth selector
plays a central role in determining the performance of kernel density estimators. Thus we wish
to select bandwidths which give the optimal performance which is measured by the closeness of
a kernel density estimate to its target density. There are many possible error criteria from which
to choose. In this investigation we will concentrate on the mean weighted Hellinger distance as a
measure of error. Also, we propose a new technique to select the matrix of bandwidths. A detailed
discussion about the multivariate density estimation and the bandwidth selection techniques can be
found in Anver (2010), Scott (1992) and Wand and Jones (1995).

2. The asymptotic mean weighted Hellinger distance

The common global error criterion is the mean integrated squared error (MISE), which is defined
by:

MISE
{

f̂ (x;H)
}
= E

{
ISE f̂ (.;H)

}
= E

∫ [
f̂ (x;H)− f (x)

]2
dx.

Another technique to measure the error is called the mean weighted Hellinger distance, which is
defined for the univariate case by:

MWHD
{
( f̂ (x;H)

}
= E

∫ [
f̂ 1/2(x)− f 1/2(x)

]2
f (x)dx. (1)

Kanzawa (1995) discussed the relationship between the asymptotic mean Hellinger Distance
(AMHD) and the asymptotic mean integrated square error (AMISE) when f (x) defined on a com-
pact set. Ahmad and Mugdadi (2006) discussed the relation between the asymptotic mean weighted
Hellinger distance (AMWHD) and the AMISE for both f̂ (x) and the estimated kernel distribution
function F̂(x). Mugdadi (2004) used Hellinger distance to derive the bandwidth for the kernel den-
sity estimation of function of observations. Thus, the MWHD for the multivariate kernel density
estimation can be defined by:

MWHD( f̂ (x;H)) = E
∫

( f̂ 1/2(X)− f 1/2(X))2 f (X)dX.

Theorem 1 Using the assumptions:

1. Each entry of H f (.) is piecewise continuous and square integrable.

2. H = Hn is a sequence of bandwidth matrices such that n−1|H|−1/2 and all entries of H approach
zero as n→ ∞. Also, we assume that the ratio of the largest and smallest eigenvalues of H is
bounded for all n.

3. k is a bounded and compactly supported d-variate kernel.

4. f (4)(x) exists.
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The AMWHD{ f̂ (.;H)} is given by:

AMWHD{ f̂ (.;H)}= 1
4

n−1|H|−1/2R(k)+
1

16
µ2(k)2

∫
tr2{HH f (x)}dx.

Proof.
Note that

MWHD( f̂ (.;H)) = E
∫

( f̂ 1/2− f 1/2)2 f (x)dx

=
∫

E f̂ (x) f (x)dx−2
∫

E f̂ 1/2 f 3/2dx+
∫

E f 2(x)dx

= I−2II +R( f ).

However by the multivariate version of Taylor’s theorem

E f̂ (x;H) =
∫

kH(x−y) f (y)dy

=
∫

k(z) f (x−H1/2z)dz

=
∫
{ f (x)− (H1/2z)T D f (x)+

1
2
(H1/2z)T H f (x)(H1/2z)}dz+o{tr(H)}

= f (x)−
∫

zT H1/2D f (x)k(z)dz+
1
2

∫
zT H1/2H f (x)H1/2zk(z)dz+o{tr(H)}

= f (x)+
1
2

tr{H1/2H f (x)H1/2
∫

zzT k(z)dz}+o{tr(H)}

= f (x)+
1
2

µ2(k)tr{HH f (x)}+o{tr(H)}.

Thus
I =

∫
f (x)2dx+

1
2

µ2(k)
∫

tr{HH f (x)} f (x)dx

= R( f )+
1
2

µ2(k)
∫

tr{HH f (x)} f (x)dx.

Next, from the standard analysis of f̂ (x), we have that

f̂ (x) = f (x)+
1
2

µ2(k)tr{HH f (x)}+o{tr(H)}+Z[n−1|H|−1/2R(k) f (x)]1/2

f̂ (x)1/2 = f (x)1/2

{
1+

1
2 f (x)

µ2(k)tr{HH f (x)}+o{tr(H)}

+Z

[
n−1|H|−1/2R(k)

f (x)

]1/2}1/2

.

Thus,

f̂ 1/2(x)∼= f (x)1/2

{
1+

1
4 f (x)

µ2(k)tr{HH f (x)}+
o{tr(H)}

2

+
Z
2

[
n−1|H|−1/2R(k)

f (x)

]1/2}
− w2

8
,
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where

w2 =

[
1
2

f (x)µ2(k)tr{HH f (x)}
]2

+ z2

[
n−1|H|−1/2R(k)

f (x)

]

+ z
1

f (x)
µ2(k)tr{HH f (x)}

[
n−1|H|−1/2R(k)

f (x)

]1/2

.

Thus

E f̂ 1/2(x;H) = f (x)1/2

{
1+

1
4 f (x)

µ2(k)tr{HH f (x)}+
1
2

[
n−1|H|−1/2R(k)

f (x)

]1/2

− 1
32 f (x)2 µ2(k)2tr2{HH f (x)}−

1
8

[
n−1|H|−1/2R(k)

f (x)

]}
.

2II = 2
∫

E f̂ 1/2(x) f
3
2 (x)dx

+2
∫

f 2(x)dx+
µ2(k)

2

∫
f (x)tr{HH f (x)}dx+

∫ [n−1|H|−1/2R(k)
f (x)1/2 f 2(x)

]
dx

−
∫ 1

16
µ2(k)2tr2{HH f (x)}dx− 1

4

∫ [n−1|H|−1/2R(k)
f (x)

]
f 2(x)dx

= 2
∫

f 2(x)dx+
µ2(k)

2

∫
f (x)tr{HH f (x)}dx+

[
n−1|H|−1/2R(k)

]1/2 ∫
f (x)dx

− 1
16

µ2(k)2
∫

tr2{HH f (x)}dx− 1
4

[
n−1|H|−1/2R(k)

]∫
f (x)dx.

Therefore I - 2II + R( f )

= R( f )+
1
2

µ2(k)
∫

tr{HH f (x)} f (x)dx−2R( f )− µ2(k)
2

∫
tr{HH f (x)} f (x)dx

− [n−1|H|−1/2R(k)]−1/2 +
1

16
µ2(k)2

∫
tr2{HH f (x)}dx+

1
4
[n−1|H|−1/2R(k)]+R( f )

=
1
8

µ2(k)2
∫

tr2{HH f (x)}dx− [n−1|H|−1/2R(k)]−1/2 +
1
4
[n−1|H|−1/2R(k)]

=
1
4
[n−1|H|−1/2R(k)]+

1
16

µ2(k)2
∫

tr2{HH f (x)}dx− [n−1|H|−1/2R(k)]1/2.

The theorem is now proved. �
Under the above conditions and in the case where H = h2I we obtain the following corollary:

Corollary 1

AMWHD{ f̂ (.;H)}= n−1h−dR(k)
4

+
1

16
h4

µ2(k)2
∫
{∇2 f (x)}2dx,

where
∇

2 f (x) =
d

∑
i=1

(∂ 2/∂x2
i ) f (x).
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In this case the optimal bandwidth has an explicit formula given by the following corollary.

Corollary 2 Under the conditions of Theorem 1 and in the case of H = h2I, the optimal bandwidth
is given as

hAMWHD =

[
dR(k)

µ2(k)2
∫
{∇2 f (x)}2dx n

]1/(d+4)

.

This can be easily proved by differentiating (1) with respect to h and setting the derivative equal
to zero and solving for h.

3. Data-dependent bandwidth choices

The problem of selecting the scalar bandwidth in univariate kernel density estimation is quite well
understood. A number of methods exist that combine good theoretical properties with strong prac-
tical performance. Many of these techniques can be extended to the multivariate case in a relatively
straight forward fashion if H is constrained to be a diagonal matrix. However, imposing such a
constraint on the bandwidth matrix can result in markedly suboptimal density estimates.

The preceding discussion indicates a need for data-dependent methods for choosing full (i.e un-
constrained) bandwidth matrices. The development of selectors for full H is rather more challenging
than that for diagonal H. In particular, the need to consider the orientation of kernel functions to
the coordinate axes in the former case introduces a problem without a univariate analogue. The ad-
ditional difficulties in selecting full (as opposed to diagonal) bandwidth matrices partly explain the
relatively slow progress in this area of the two major approaches to bandwidth selection, namely the
plug-in method and cross validation (CV) techniques. Only the former has received attention to date
in the context of full bandwidth matrices. Stone (1984) looks at the multivariate least squares cross
validation (LSCV) criterion for the multivariate kernel density estimator. Wand and Jones (1994)
outlined a plug-in selector that can be applied to full bandwidth matrices, but they concentrated
on a diagonal H when presenting methodological particulars. A more detailed account of plug-in
selectors for full H was provided by Duong and Hazelton (2003).

All CV bandwidth matrix selectors aim to estimate MISE, or AMISE, and some combine the
two (modulo a constant) and then minimize the resulting function. The unbiased cross-validation
(UCV) targets MISE and employs the objective function

UCV (H) =
∫

f̂ (x;H)2dx−2n−1
n

∑
i=1

f̂−i(Xi;H),

where
f̂−i(xi;H) = (n−1)−1

n
∑
j 6=i

kH(x−X j),

is a leave-one-out estimator of f . The function UCV (H) is unbiased in the sense that E[UCV (H)]=
MISE[ f̂ (.;H)] - R( f ). It can be expanded to give

UCV (H) = n−2
n

∑
i=1

n

∑
j=1

(kH ∗kH)(Xi−X j)−n−1(n−1)−1
n

∑
i=1

n

∑
j=1

kH(Xi−X j),

where * denotes the convolution. The UCV bandwidth matrix selector ĤUCV is the minimiser of
UCV (H). It is usual to judge the performance of a bandwidth matrix H according to a global error
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criterion for f̂ (x). Next we derive the estimate for the bandwidth matrix H using MWHD as the
error criteria and call it WHCV(H).

WHCV(H) =E
∫ {

f̂ 1/2(x;H)− f 1/2(x)
}2

f (x)dx

=E
{∫

f̂ (x;H) f (x)dx−2
∫

f̂ 1/2(x;H) f 3/2(x)dx+R( f )
}

=E

{∫
f̂ (x;H) f (x)dx−2

n

∑
i=1

f̂ 1/2(xi;H) f̂ 1/2
i (xi)

∫
f (x)dx

}
+R( f ).

Thus the WHC(H) can be estimated by

ˆWHCV (H) =

n
∑

i=1
f̂ (xi)

n
− 2

n

n

∑
i=1

f̂ 1/2
i (xi;H) f̂ 1/2(xi;H)+R( f ).

The WHCV bandwidth matrix selector ĤWHCV is the minimiser of ˆWHCV (H). Minimising of
such function can be done using the Powell Optimization method — an efficient method for finding
the minimum of a function of several variables without calculating derivatives (Powell, 1964).

3.1. Comparing the performance of the WHCV matrix selector with other
bandwidth selectors for normal mixture densities

In order to asses the performance of the new technique to select the matrix of bandwidths we will
simulate from the densities that are displayed in Table 1. These densities represent a wide range of
multivariate densities as shown in Figure 1.

Table 1: Formulas for target densities A – E.

Target Density Formula

A N
([

0
0

]
,

[
0.25 0

0 1

])

B 1
2 N
([

1
0

]
,

[
4/9 0

0 4/9

])
+1/2N

([
−1
0

]
,

[
4/9 0
0 4/9

])

C 1/2N
([

1
−0.9

]
,

[
1 0.9

0.9 1

])
+1/2N

([
−1
0.9

]
,

[
1 0.9

0.9 1

])

D 1/2N
([

1
−1

]
,

[
4/9 14/45

14/45 4/9

])
+1/2N

([
−1
1

]
,

[
4/9 0
0 4/9

])

E N
([

0
0

]
,

[
1 9/10

9/10 1

])
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Figure 1: Contour plots for target densities A – E.
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Bandwidth matrices were selected for 100 random sample generated from the densities in Table
1. The integrated square error (ISE) for each resulting density estimate was recorded. They are
displayed in Figure 2 using box plots with a log scale. The performance of a selector depends
largely on the target density shape. We see that the plug-in bandwidth selector performs well for
densities A, B, D and E. Both CV selectors perform adequately for densities B, D and E, but cannot
compete with the plug-in bandwidth selector on density B and E and to a lesser extent on density
D. For density C one noteworthy aspect is that the performance of WHCV is better than the plug-in
bandwidth selector. LSCV suffers in comparison to WHCV for densities A, B and C, and giving
similar results for D and E.

Performance of bandwidth selectors are more visible and provide a variety of interpretations of
the structure of the data when we plot contour plots. To illustrate this we simulated random samples
for densities A – E in two cases. The first case considers small sample simulations of size 10 for
each density for two instances and the results are given in Figures 3, 5, 7, 9 and 11. For the second
case we looked at comparatively large samples of sizes 200 for each density and results are given in
Figures 4, 6, 8, 10 and 12. Various bandwidth selectors provide a variety of interpretations of the
structure of the data.

Figure 2: Box plots of log(ISE) for bivariate bandwidth selectors.
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Figure 3: Density A: small sample.

Figure 4: Density A: large sample.
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Figure 5: Density B: small sample.

Figure 6: Density B: large sample.
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Figure 7: Density C: small sample.

Figure 8: Density C: large sample.
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Figure 9: Density D: small sample.

Figure 10: Density D: large sample.
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Figure 11: Density E: small sample.

Figure 12: Density E: large sample.
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Figures 3 to 12 give the kernel density estimates using the bandwidth selectors HPI, LSCV and
WHCV. As might be expected, no method is uniformly best for all the densities. Both LSCV and
WHCV cannot compete with the performance of HPI for increasing sample sizes. HPI gives a better
estimate for all the densities for large samples. We see that both CV selectors give very poor estimate
of density B. It is known that CV techniques do not perform well for duplicated data values, which
cannot be the case for poor density B estimate. For small sample size we can see that for densities A,
B and D signs of oversmoothing is displayed with all three bandwidth selectors while for densities E
and C the bimodality is preserved for all three selectors. In the case of density E all three bandwidth
selectors give a better estimate for small sample whereas for density A, the performance is poor.
Computation times were not taken in to consideration because of computing resources. However
HPI running time was much lesser than the other two CV selectors.

3.2. Bivariate real-life data analysis

We now turn to the analysis of data on under-5 mortality (per 1000 live births) and average life
expectancy (in years) for 73 countries with Gross National Income < $1000 per person per year.
The data were obtained from Unicef (United Nations Children’s Fund). A scatter plot of the Unicef
data is given in Figure 13. This dataset has probability mass oriented to the axes. Since the dataset
contains duplicates, LSCV’s estimate was very poor. Therefore we used the smooth cross validation
bandwidth selectors (SCV) as our second choice and the density estimates obtained using Plug-in,
SCV and WHCV are displayed in Figure 14. The plot for SCV has spurious features and the most
noisy whereas the plots for HPI and WHCV are smoother, hence giving better estimates.

Figure 13: Unicef-data Scatterplot.
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Figure 14: Unicef Plots for Bandwidth Selectors.
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4. Conclusion

The selection of full bandwidth matrices for multivariate density estimation raises issues that have
no univariate counterpart. In particular, the orientation of the kernel functions to the coordinate axes
must be determined. Furthermore, intuition drawn from the univariate setting cannot necessarily
be transformed to the multivariate case. The additional difficulties involved in the multivariate case
generate significant scope for further research in full bandwidth matrix selection. Looking further
afield, the use of adaptive kernel density estimators has great potential for multivariate data. While
some progress has been made, this remains a challenging research direction.
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