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Abstract: Based on a type II censored sample, Bayesian estimation for the scale parameter of the
Rayleigh model is carried out under the assumption of the squared error loss function. A generalised
hypergeometric distribution with its versatile shape of tails is introduced as a prior, and beta special
cases are examined. A simulation study is carried out to investigate the sensitivity of four special
cases of this beta prior family in terms of bias, frequentist coverage and mean square error and
to determine their effect on robustness. Prediction bounds are derived for the lifetime of unused
components using this beta prior family. A data set is used to illustrate and support some of the
findings.

1. Introduction

The Rayleigh distribution has been shown to be the survival time distribution for most cancer patients
in some clinical studies as well as for a variety of lifetime models, for which the survival time T is
specified by the probability density function (pdf)

f (t;θ) = 2θ te−θ t2
, (1)

where t > 0 and θ > 0 (see Bhattacharya and Tyagi, 1990). Assume that n1 items from a population
specified by (1) are placed on a life test and the experiment is continued until d deaths occur, for
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some preassigned d (type II censoring). Let t1, ..., td be the first d ordered observations in the random
sample (n1−d), being the number of survivors or patients who were still alive at the end of the study.
The likelihood function conditional on θ is given by

`(t1, ..., td |θ) =
n1!

(n1−d)!
(Πd

i=1ti)2d
θ

de−θT , (2)

where T = Σd
i=1t2

i +(n1−d)t2
d is a complete and sufficient statistic for estimating θ and has a gamma

distribution with parameters d and θ .
Mostert (1999), Soliman (2000), and Dey and Dey (2011) compared Bayesian estimators under

the asymmetric linear exponential loss (LINEX) function and squared error loss (SEL) function for
the Rayleigh model. Dey and Dey (2011) focused on an extension of Jeffreys’ prior using the loss,
introduced by (Al-Bayyati, 2002). Mostert, Bekker and Roux (1998) did a comparative study of the
lifetime parameters for the Rayleigh distribution as the underlying model using both the conjugate
and Jeffreys’ priors under LINEX and squared error loss functions. Dey and Dey (2012) and Dey
and Das (2007) studied the conjugate prior for a completely observed sample from the Rayleigh
model under different loss functions. Ferreira, Bekker and Arashi (2016) studied objective priors for
the Al-Bayyati loss function for this censored model.

As mentioned in Berger (1980), conjugate priors have tails of the same type as the tails of the
likelihood function and may cause certain robustness problems. Priors that have flatter tails than
that of the likelihood function are generally regarded as superior, at least for inference problems.
Conjugate priors as well as classes of non-informative priors have been studied extensively in the
literature. Different loss functions point towards different optimal procedures. A fresh approach
to the above studies for the Rayleigh model is to assume a generalised hypergeometric distribution
(Mathai and Saxena, 1966) as prior for the estimation problem at hand, based on a type II censored
sample. As with this prior it is desirable, as mention by Sebastian (2011), to consider priors that
exhibit flexibility regarding the shape of their tails.

As Gelman (2006) and Gelman (2009) state, non-informative priors can have strong and unde-
sirable implications for inference. Ignoring important information by assuming priors that cannot
elicit that information will lead to inaccurate analysis and inference, hence it is important to assume
a parameter-rich model that will enable one to model appropriate prior beliefs about the parameter
of interest. Computational limitations within the Bayesian framework also no longer present a prob-
lem to analysing any data set with complex prior assumptions; a generalised prior can therefore be
handled with ease in Bayesian inference.

In Section 2, some special cases related to the beta family of this subjective generalised prior
will be reviewed. Sections 3 and 4 present the framework for inference using this proposed prior.
The Bayesian estimator of the parameter of interest is obtained with respect to the squared error
loss function, and prediction bounds are derived for the failure times of a future sample of unused
components. In Section 5, the sensitivity of the estimators is examined in a simulation study and
discussed with respect to the different special cases of this generalised prior, as well as obtaining
the prediction bounds in all the cases. A frequentist approach is used to evaluate the performance of
the various estimators. A real data set illustrates the value added by using the special cases of the
generalised model as prior.
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2. Generalised hypergeometric prior

The generalised hypergeometric pdf (Mathai and Saxena, 1966) is defined as:

g(θ) =
mb−p/mΓ(α)Γ(γ)Γ(δ − p/m)

Γ(p/m)Γ(δ )Γ(α− p/m)Γ(γ− p/m)
θ

p−1
2F1(α,γ;δ ;−1

b
θ

m), (3)

where θ > 0, p > 0,α− p/m > 0,γ− p/m > 0,δ − p/m > 0 and
2F1(α,γ;δ ;− 1

b θ m) is the Gauss hypergeometric function (Erdélyi, 1953, p. 182). The parame-

ters α,γ,δ , p,m and b are restricted to take those values for which
∞∫
0
g(θ)dθ = 1 with g(θ) ≥ 0 for

θ positive. It can be observed that if θ has pdf (3), then

E[θ h] =
bh/mΓ(δ − p/m)Γ((h+ p)/m)Γ(α− (h+ p)/m)Γ(γ− (h+ p)/m)

Γ(p/m)Γ(δ − (h+ p)/m)Γ(α− p/m)Γ(γ− p/m)
,

if
∣∣argb−1

∣∣< π , 0 < (h+ p)/m < 1−max[Re(1−α),Re(1− γ)].

Four special cases of this generalised pdf (3) are given below and will be discussed in the subse-
quent sections. These special cases form the basis of the simulation study that is the focus of Section
5.

(i) Generalised F-distribution: Let γ = δ , and considering reparameterisation α = p+ q in (3),
then

g1(θ) =
mb−p/mΓ(p+q)

Γ(p/m)Γ(p+q− p/m)
θ

p−1(1+
1
b

θ
m)−(p+q), (4)

where θ > 0, p > 0,q > 0, p+q > p/m,b > 0,m > 0. Now

E1[θ ] =
b1/mΓ((1+ p)/m)Γ(p+q− (1+ p)/m)

Γ(p/m)Γ(p+q− p/m)

and

var1(θ) =
b2/mΓ((2+ p)/m)Γ(p+q− (2+ p)/m)

Γ(p/m)Γ(p+q− p/m)
− [E1[θ ]]

2.

(ii) Type I compound gamma distribution (Dubey, 1970, according to Bhattacharya and Tyagi,
1990, it is a beta distribution of the second kind): With γ = δ , m = 1, and considering the
reparameterisation α = p+q in (3), θ has pdf

g2(θ) =
b−pΓ(p+q)

Γ(p)Γ(q)
θ

p−1(1+
1
b

θ)−(p+q), (5)

where θ > 0, p > 0,q > 0,b > 0. Thus

E2[θ ] =
pb

q−1
, (q > 1) (6)
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and

var2(θ) =
b2(p2 + p(q−1))
(q−1)2(q−2)

, (q > 1);(q > 2),

also, a special case of (4) with m = 1.

Bhattacharya and Tyagi (1990) obtained the Bayesian estimators of the mean survival time,
the hazard function, and the survival function with (5) as prior for θ . In their numerical
illustration, the requirement q > 2 has not been met.

(iii) F-distribution: Let γ = δ ,m = 1,α = p+ q and b = q
p . Then it follows from (3) for θ > 0,

that

g3(θ) =
ppΓ(p+q)
qpΓ(p)Γ(q)

θ
p−1(1+

p
q

θ)−(p+q), (7)

where θ > 0, p > 2,q > 0. Hence

E3[θ ] =
q

q−1
, (q > 1)

and

var3(θ) =
q2(p2 + p(q−1))
p2(q−1)2(q−2)

, (q > 1);(q > 2).

(iv) Beta type II distribution: With γ = δ ,m = 1,α = p+q and b = 1 in (3), θ has pdf

g4(θ) =
Γ(p+q)
Γ(p)Γ(q)

θ
p−1(1+θ)−(p+q), (8)

where θ > 0, p > 0,q > 0. Hence

E4[θ ] =
p

q−1
, (q > 1) (9)

and

var4(θ) =
p2 + p(q−1))
(q−1)2(q−2)

, (q > 1);(q > 2),

also here, a special case of (5) with b = 1.

From (6) and (9), it follows that E2[θ ] = bE4[θ ]. Thus it can be said that there are b more (or fewer)
units of input information in the prior density (5) (Pham-Gia, 1994, p. 2179).
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3. Bayesian inference

The likelihood function (2) is combined with the prior density (3) to obtain the posterior density
function

h(θ |T ) =C−1
θ

p+d−1e−θT
2F1(α,γ;δ ;−1

b
θ

m) (10)

and the values of the parameters such that
∞∫
0
h(θ |T )dθ = 1 with h(θ |T )≥ 0 for θ positive.

The following integral representation given by Gupta (1965, p. 100) will be used to find the
normalisation constant C:

∞∫
0

e−λxxν Hk,l
r,s

[
zxσ

∣∣∣∣ (a1,e1), ...,(ar,er)

(c1, f1), ...,(cs, fs)

]
dx (11)

= λ
−ν−1Hk,l+1

r+1,s

[
zλ
−σ

∣∣∣∣ (−ν ,σ),(a1,e1), ...,(ar,er)

(c1, f1), ...,(cs, fs)

]
where σ > 0,Re(λ )> 0,Re(ν +1+σ min ci

fl
)> 0 (i = 1, ...,k), the other conditions of validity are

given in Gupta (1965), and H(·) is the H-function introduced by Fox (1961, p. 408). Therefore

C =

∞∫
0

θ
p+d−1e−θT

2F1(α,γ;δ ;−1
b

θ
m)dθ

=
Γ(δ )

Γ(α)Γ(γ)T (p+d)
H1,3

3,2

[
1

bT m

∣∣∣∣ (1− p−d,m),(1−α,1),(1− γ,1)
(0,1),(1−δ ,1)

]
(12)

by using (11) and the relation

2F1(α,γ;δ ;−1
b

θ
m) =

Γ(δ )

Γ(α)Γ(γ)
T−(p+d)H1,2

2,2

[
1
b

θ
m
∣∣∣∣ (1−α,1),(1− γ,1)

(0,1),(1−δ ,1)

]
(Mathai and Saxena, 1978, p. 11) where m > 0, Re(T )> 0, p+d > 0.

Hence, under the assumption of the squared error loss function, the Bayesian estimator of the
scale parameter θ is simply the posterior mean

θ̂ = T−1
H1,3

3,2

[
1

bT m

∣∣∣∣ (−p−d,m),(1−α,1),(1− γ,1)
(0,1),(1−δ ,1)

]
H1,3

3,2

[
1

bT m

∣∣∣∣ (1− p−d,m),(1−α,1),(1− γ,1)
(0,1),(1−δ ,1)

] (13)

from (10) and (12).
In a similar manner, the variance of the posterior distribution of θ is computed as

var(θ̂) = T−2
H1,3

3,2

[
1

bT m

∣∣∣∣ (−p−d−1,m),(1−α,1),(1− γ,1)
(0,1),(1−δ ,1)

]
H1,3

3,2

[
1

bT m

∣∣∣∣ (1− p−d,m),(1−α,1),(1− γ,1)
(0,1),(1−δ ,1)

] − θ̂
2.
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The posterior density function, the Bayesian estimator and the variance of the posterior distribu-
tion of θ for the special cases will now be discussed.

(i) Generalised F-distribution (4) as prior:

The posterior density function is

h1(θ |T ) =C−1
1 θ

p+d−1e−θT (1+
1
b

θ
m)−(p+q) (14)

where the normalisation constant is

C1 =

∞∫
0

θ
p+d−1e−θT (1+

1
b

θ
m)−(p+q)dθ (15)

=
T−(p+d)

Γ(p+q)
H1,2

2,1

[
1
b

T−m
∣∣∣∣ (1− p−d,m),(1− p−q,1)

(0,1)

]
from (12) with γ = δ and α = p+q.

The constant C1 can also be derived from (11) using the relations (see Mathai and Saxena,
1978, p. 10)

(1+
1
b

θ
m)−(p+q) = 1F0(p+q;−1

b
θ

m)

=
1

Γ(p+q)
H1,1

1,1

[
1
b

θ
m
∣∣∣∣ (1− p−q,1)

(0,1)

]
.

The posterior density function (14) can also be rewritten as a mixture of gamma densities by
using the series expansion of 1F0(·).
The Bayesian estimator of θ is obtained as

θ̂1 = C−1
1

∞∫
0

θ
p+de−θT (1+

1
b

θ
m)−(p+q)dθ

= T−1
H1,2

2,1

[
1
b T−m

∣∣∣∣ (−p−d,m),(1− p−q,1))
(0,1)

]
H1,2

2,1

[
1
b T−m

∣∣∣∣ (1− p−d,m),(1− p−q,1)
(0,1)

]

from (13) with α = p+q and γ = δ , and var(θ̂1) can be derived in a similar way.

(ii) Type I compound gamma distribution (5) as prior:

The posterior density function is

h2(θ |T ) =C−1
2 θ

p+d−1e−θT (1+
1
b

θ)−(p+q) (16)
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with the normalisation constant C2 = bp+dΓ(p+d)ψ(p+d,d−q+1,bT ), where ψ(·) is the
Type II confluent hypergeometric function introduced by Tricomi (Erdélyi, 1953).

C2 can also easily be derived from (15) with m = 1 and known relations (Erdélyi, 1954, p.
375) and (Mathai, 1993, pp. 72, 130, 142). The following are also obtained:

θ̂2 = b(p+d)
ψ(p+d +1,d−q+2,bT )

ψ(p+d,d−q+1,bT )
(17)

and

var(θ̂2) = b2(p+d)(p+d +1)
ψ(p+d +2,d−q+3,bT )

ψ(p+d,d−q+1,bT )
− θ̂

2
2 .

(iii) F-distribution (7) as prior:

As in (ii), it can be shown that the posterior density function and the Bayesian estimator of θ

are as follows:
h3(θ |T ) =C−1

3 θ
p+d−1e−θT (1+

p
q

θ)−(p+q)

where

C3 =

(
q
p

)p+d

Γ(p+d)ψ(p+d,d−q+1,
q
p

T )

and

θ̂3 = (
q(p+d)

p
)

ψ(p+d +1,d−q+2, q
p T )

ψ(p+d,d−q+1, q
p T )

.

(iv) Beta type II distribution (8) as prior:

From (16) and (17), it is clear that the posterior density function of θ is

h4(θ |T ) =C−1
4 θ

p+d−1e−θT (1+θ)−(p+q)

where
C4 = Γ(p+d)ψ(p+d,d−q+1,T )

and

θ̂4 = (p+d)
ψ(p+d +1,d−q+2,T )

ψ(p+d,d−q+1,T )
.

Var(θ̂3) and Var(θ̂4) can be derived with relative ease.

Remark 1 The normalisation constants in all the above expressions of the posterior distributions can
be obtained in a number of mathematical software programs using, for example, the built-in func-
tions for the type II confluent hypergeometric function ψ(·) and the Gauss hypergeometric function
2F1(·). An alternative method that is preferred in this paper is to use MCMC methods and the
Metropolis-Hastings algorithm to obtain variates of the posterior distributions, and hence Bayesian
estimators of the parameters.



202 MOSTERT, BEKKER & ROUX

4. Bayesian prediction bounds

Consider predicting Y1, the time to first failure, in a future sample of size n2. For given θ , the density
of Y1 is

f (y1|θ) =

(
n2

1

)
f (y1)[1−F(y1)]

n2−1

= 2n2θy1e−θn2y2
1 ,

which is again recognised as a Rayleigh distribution with parameter n2θ .

Forming the product of f (y1|θ) with the posterior density function of θ in (10), the predictive
density function of Y1 is

f (y1|t1, ..., td) =C−1
∞∫
0

2n2y1θ
p+de−θ(T+n2y2

1)2F1(α,γ;δ ;−1
b

θ
m)dθ .

The predictive survival function of Y1 is

P(Y1 > y) = 1−P(Y1 ≤ y)

= 1−
y∫
0

C−1
∞∫
0

2n2y1θ
p+de−θ(T+n2y2

1)2F1(α,γ;δ ;−1
b

θ
m)dθdy1

= 1−C−1
∞∫
0

θ
p+d−1e−θT

2F1(α,γ;δ ;−1
b

θ
m)

y∫
0

2n2y1θe−θn2y2
1)dy1dθ

= 1−C−1
∞∫
0

θ
p+d−1e−θT

2F1(α,γ;δ ;−1
b

θ
m)(1− e−θn2y2))dθ

= C−1
∞∫
0

θ
p+d−1e−θ(T+n2y2)

2F1(α,γ;δ ;−1
b

θ
m)dθ

and then the lower 100Λ% prediction bound for Y1 is the value y satisfying the equation

C−1
∞∫
0

θ
p+d−1e−θ(T+n2y2)

2F1(α,γ;δ ;−1
b

θ
m)dθ = Λ,

which can be solved for y using a numerical integration technique or MCMC methods.

Remark 2 Where MCMC methods are used to obtain the posterior distribution of θ (i.e. where
10 000 variates of the posterior have been simulated using the Metropolis-Hastings algorithm), the
prediction density can conveniently be obtained using the fact that Y1 is Rayleigh distributed with
parameter n2θ . The prediction of a future lifetime is obtained by letting n2 = 1 in this procedure.
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5. Illustrations

5.1. Simulation study

A Monte Carlo simulation is carried out in this section to study the performance of the proposed
Bayesian estimators and the characteristics of the posterior distributions using the priors discussed
in Section 2 for different sample sizes (n1 = n = 18 and n1 = n = 35), as well as different values for
a number of actual events d in a sample. Firstly, the performance is evaluated based on the bias and
the mean squared error (MSE) criteria, where the MSE of θ̂ (the Bayesian estimator of θ ) is defined
by

MSE(θ̂) = E[θ̂ −θ ]2 = var(θ̂)+ [bias(θ̂)]2. (18)

Secondly, coverage probabilities are determined for different values of θ under the hypothesis

H0 : θ = θ0.

Random samples from a Rayleigh distribution are generated for different numbers of events, d, to
study the performance of the estimators using bias, MSE and coverage. The hyperparameters of the
different prior distributions are chosen in such a way that the expected value of the prior (see (i) –
(iv)) equates to the true value of the parameter under consideration, with less variation around the
expected value (see, amongst others, Duran and Booker, 1988). This paper studies the sensitivity of
the values of the parameters to errors in specification.

In order to evaluate the performance, 1000 random samples are generated, each of sizes n1 = n=
18, with d = 8,10,12,14,16,18; and n1 = n = 35, with d = 10,15,20,25,30,35, from a Rayleigh
distribution with parameter θ = 2.5. For each generated sample of size n, the sufficient statistic
T is determined for given d values. The 1000 posterior distributions for θ are simulated using
the Metropolis-Hastings algorithm by first simulating 1000 burn-in variates in order to obtain the
10000 variates of the relevant posterior distribution. Table 1 summarises the assigned values of the
hyperparameters in the prior with an expected value around 2.5 to be used in the simulation studies.

Table 1: Hyperparameter values of the prior.
p q b m

g1(θ) : Generalised F-distribution, see (4) 5 4.0 0.526 0.8
g2(θ) : Type I compound gamma distribution, see (5) 5 4.0 1.5 1.0
g3(θ) : F-distribution, see (7) 1 1.667 1.667 1.0
g4(θ) : Beta type II distribution, see (8) 8 4.2 1.0 1.0

The posterior means were determined, and MSE and bias were calculated using (18) for the θ0

values, chosen as increments between 1.7 and 3.0, which are indicated above the markers on all
the graphs reflecting MSE and bias. Figure 1 summarises the results for prior (4) when using the
posterior mean as Bayesian estimator with sample sizes of 18, while Figure 2 summarises the results
for sample sizes of 35.
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Figure 1: Bias versus MSE for the posterior mean using prior (4), adjusted for censoring (n = 18).

It is evident that bias and MSE vary less and are closer to zero for (a) larger sample sizes and
(b) if θ0 under H0 is close to the true parameter (2.5) in (18), when considering different censoring
scenarios (numbers of events d). It was also evident in the simulation results that for larger number
of events d, the MSE remained fairly constant for a particular d value, but bias decreased overall θ0

in (18). The larger d values in these graphs are the ones indicated with the smaller MSEs.
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Figure 2: Bias versus MSE for the posterior mean using prior (4), adjusted for censoring (n = 35).

For each of the initial generated 1000 random samples of size n, a (1−α)100% credible interval
from the posterior was obtained to determine whether a particular θ0 under H0 is contained in that
interval.

Figure 3: Coverage at α = 5% using prior (4).
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The relative frequency was determined at α = 0.05, and Figure 3 shows the corresponding cov-
erage at 5% for different sample size scenarios and only the extreme censoring schemes in this study,
meaning that for other values of d, the coverage was observed between these extremes.

Figure 3 shows that for smaller numbers of events (d), the posterior seems less sensitive towards
the true parameter, θ = 2.5.

Comparisons are also done for the other priors, and Figures 4 and 5 summarise the results for
prior (5) when using the posterior mean as Bayesian estimator for sample sizes of 18 and 35 respec-
tively.

Figure 4: Bias versus MSE for the posterior mean using prior (5), adjusting for censoring (n = 18).

It is evident, as was the case with prior (4), that bias and MSE vary less and are closer to zero
for (a) larger sample sizes and (b) if θ0 is close to the true parameter in (18) when considering the
different censoring scenarios (number of events d). It was also evident in the simulation results that
for larger numbers of events d, the MSE and bias decreased overall θ0 in (18). It is also evident
that bias and MSE yield lower values for than for prior (5) than for prior (4). Figure 6 shows the
corresponding coverage for different sample size scenarios and the extreme censoring schemes in
this study.
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Figure 5: Bias versus MSE for the posterior mean using prior (5), adjusting for censoring (n = 35).

Figure 6: Coverage at α = 5% using prior (5).

Figure 6 illustrates the sensitivity of Bayesian inference for θ outside the interval [2.25;2.70]
with the effect of a larger sample size.
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The posterior mean was then determined using prior (7), and MSE and bias were calculated using
(18) for different and predetermined θ0 values in H0. Figures 7 and 8 summarise the results for prior
(7) when using the posterior mean as Bayesian estimator for sample sizes 18 and 35 respectively,
while Figure 9 shows the corresponding coverage for different sample size scenarios and the extreme
censoring schemes in this study.

Figure 7: Bias versus MSE for the posterior mean using prior (7), adjusting for censoring (n = 18).
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Figure 8: Bias versus MSE for the posterior mean using prior (7), adjusting for censoring (n = 35).

Figure 9: Coverage at α = 5% using prior (7).

Figure 9 illustrates the sensitivity of Bayesian inference for θ outside the interval [2.10;2.60]
with the effect of a larger sample size. It also shows a smaller coverage range compared with using
other priors.
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The posterior mean using prior (8) was finally determined, and MSE and bias were calculated
using (18) for predetermined θ0 values in H0. Figures 10 and 11 summarise the results for prior (8)
using the posterior mean as Bayesian estimator for sample sizes of 18 and 35 respectively, while
Figure 12 shows the corresponding coverage for different sample size scenarios and the extreme
censoring schemes in this study, where similar conclusions can be drawn, as mentioned previously.

Figure 10: Bias versus MSE for the posterior mean using prior (8), adjusting for censoring (n = 18).
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Figure 11: Bias versus MSE for the posterior mean using prior (8), adjusting for censoring (n = 35).

Figure 12: Coverage at α = 5% using prior (8).

The graphs reflecting coverage illustrate the sensitivity of Bayesian inference for θ to sample
size. For values of θ outside the intervals [2.20;2.70], the coverage decreases faster for larger sample
sizes.
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The simulation is extended to incorporate other characteristics of the different posteriors when
censoring is present. Again, sample sizes of n1 = n = 18 and n1 = n = 35 were generated with the
same set-up of events (d) mentioned earlier from the Rayleigh distribution with parameter θ = 2.5.
One thousand such samples were then generated, and the mean sufficient statistic T was calcu-
lated for each data scenario that was used in the simulations. Tables 2 and 3 summarise the results
for different sample sizes, including the posterior mean (Average), the posterior variance (Var),
the Bayesian 95% credible interval (L-2.5% and U-97.5%) and the length of the credible interval
(Length). These results are based on 10000 variates simulated from the relevant posterior distribu-
tions using the Metropolis-Hastings algorithm.

Table 2: Posterior analyses based on random samples of size n1 = 18.
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Table 3: Posterior analyses based on random samples of size n1 = 35.

Values highlighted in bold in Tables 2 and 3 indicate minima. Censoring and sample size play
an important role in the interpretation of results. Light censoring (i.e. more observed actual events)
indicates that less complicated priors may be used, while with heavy censoring some of the priors
with more hyperparameters are more appropriate. Heavier censoring results in greater variance
of assumed parameters under H0 with relative good coverage, provided that the prior is correctly
specified. Correctly specified priors around the true parameter should have only a small variability
for parameters to yield an accurate inference.

The results are in line with the definition of the information ratio between two distributions. (Let
f1(θ) and f2(θ) be two different pdfs for θ . The information ratio between the second and the first
distribution, denoted R2,1

dist , or more conveniently Rdist , is:

Rdist =V1/V2,

where Vi is the variance of fi(θ), i = 1,2 (Pham-Gia, 1994, p.2180). ) Regardless of the complexity
of a specific prior in this family (3), the results are more or less the same for a given mean and
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variance. With the prior information ratio as the criterion, it follows that for prior densities (5)
and (8), Rprior =

var2(θ)
var4(θ)

= b2. If b < 1(> 1), then g2(θ) provides an increase (decrease) in prior

information over g4(θ). Tables 2 and 3 also confirm as expected with var2(θ̂) > var4(θ̂), e.g.
0.5633 > 0.5551. Similar remarks can be made between different combinations of the different prior
pdfs. Heavy censoring yields shorter intervals for priors (4) and (5); in contrast, light censoring
yields yields shorter intervals (i.e. precise inference) for prior (7).

The simulation study about a future lifetime in a second/future sample of size n2 involves a
comparison in which samples are generated (of size n = n1 = 35 and n = n1 = 18) from a Rayleigh
distribution with parameter θ = 2.5. One thousand random samples of size n1 (and d known) were
generated; for each of these 1000 random samples, the predictive density of Y1 is determined by
applying the technique mentioned in remark (Section 4) to each of the 1000 simulated posteriors.
The average quantities over the 1000 repetitions are summarised in Table 4 for a future sample of
size n2 = 10, in Table 5 for a future sample of size n2 = 20 and in Table 6 for a future sample of
size n2 = 30. The characteristics displayed in these tables are the sample information (n1, d and T ),
the lower and upper boundaries of a 95% Bayesian credible interval for future lifetime Y1 (L-2.5%
and U-97.5%), the median of a future lifetime in a sample of size n2 (Med[Y1]), the mean of the
predictive density (E[Y1]), and the probability that a future lifetime is larger than an arbitrary value
of Y1, say y = 10.

Table 4: Predictive density characteristics of Y1; sample size n2 = 10.
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Table 5: Predictive density characteristics of Y1; sample size n2 = 20.

Table 6: Predictive density characteristics of Y1; sample size n2 = 30.

It is evident from Tables 4 to 6 that the lower and upper bounds are relatively insensitive to the
assumed values of p,q,b and m regardless of the size of a future sample. The shorter 95% predictive
intervals for these examples are found to be based on data observed from larger samples and more
actual events d. The posterior probability in the approximate right quartile area is summarised under
P(Y1 > 10), which indicates relatively low sensitivity to the chosen prior.
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5.2. Insulating fluid example

The time to breakdown of an insulating fluid for a given voltage is used to illustrate the findings of
this paper. The original data comprise time to breakdown at five levels of voltage (Nelson, 1982, p.
252). The data used for this paper represent the insulating fluid at 30kV and are given in Table 7
per 4 hour units in time. The original data set was measured in seconds; by rescaling the observed
time units in hours, the simulation study results can coincide with the measurement of time in the
data example. Lifetime values indicated by (*) are type II right censored observations (i.e. d = 10
with n = 12). The sufficient statistic is calculated using the likelihood of the Rayleigh model, (2), as
T = 3.787221.

Table 7: Time to insulating fluid breakdown at 30kV (per 4 hour unit).

0.003472 0.009306 0.012986 0.061250 0.100694 0.102083
0.159028 0.203472 0.290278 1.097222 1.097222* 1.097222*

Table 8 summarises the posterior characteristics of the posterior distributions using the four
different priors with the same hyperparameter values as in the simulation studies (see Table 1),
while Figure 13 displays the Box-and-Whisker plots of the Rayleigh parameter and confirms the
deduction about higher posterior probabilities when using certain priors.

Table 8: Posterior characteristics of the Rayleigh parameter.

Table 8 also confirms as before that var2(θ̂)> var4(θ̂) (i.e. 0.59857 > 0.59030). The same trend of
inference is observed as in the simulation study.

Table 9 presents the summary statistics of the first failure in a future sample of size n2. The
corresponding posterior distributions of the first failure time were obtained from the posterior distri-
butions of the Rayleigh parameter as described in remark 2 (Section 4).

Again, 95% predictive intervals are obtained when future sample sizes increase. It is evident
from Table 9 that the lower and upper bounds are relatively insensitive to the assumed priors regard-
less of the size of a future sample.
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Figure 13: Box-and -Whisker plots representing the posteriors.

Table 9: Posterior characteristics of first future lifetime Y1.

6. Conclusion

In this paper, a generalised hypergeometric prior, with beta special cases, was proposed for the
censored Rayleigh model. A simulation study illustrated that for light censoring (i.e. when more
actual events are observed), less complicated priors may be used, while a more parameter-rich prior
is appropriate for the heavy censoring cases. In conclusion, the sensitivity of Bayesian inference for
the unknown parameter is illustrated when coverage decreases faster for larger sample sizes outside



218 MOSTERT, BEKKER & ROUX

a range of incorrectly assumed parameter values, θ0 under H0. Even with heavy censoring, the
coverage remains high around the true parameter. More censoring present in a data set means that it
is crucial that the correct prior is assumed, which has the ability to correct the estimates.

Acknowledgements

We would like to thank the reviewer and the associate editor for the valuable comments and rec-
ommendations. This work is based upon research supported by the National Research Foundation
South Africa (CPRR 13090132066 grant no. 91497).

References
AL-BAYYATI, H. N. (2002). Comparing Methods of Estimating Weibull Failure Models using Sim-

ulation. Unpublished PhD thesis, Baghdad University: Iraq.
BERGER, J. (1980). A robust generalized Bayes estimator and confidence region for a multivariate

normal mean. The Annals of Statistics, 8 (4), 716–761.
BHATTACHARYA, S. K. AND TYAGI, R. K. (1990). Bayesian survival analysis based on the

Rayleigh model. Trabajos de Estadistica, 5 (1), 81–92.
DEY, S. AND DAS, M. K. (2007). A note on prediction interval for a Rayleigh distribution: Bayesian

approach. American Journal of Mathematical and Management Science, 1&2, 43–48.
DEY, S. AND DEY, T. (2011). Rayleigh distribution revisited via extension of Jeffreys prior infor-

mation and a new loss function. REVSTAT, 9 (3), 213–226.
DEY, S. AND DEY, T. (2012). On Bayesian estimation and prediction intervals for a Rayleigh

distribution under conjugate prior. Journal of Statistics Computation and Simulation, 82 (11),
1651–1660.

DUBEY, S. D. (1970). Compound gamma, beta and F distributions. Metrika, 16 (1), 27–31.
DURAN, B. S. AND BOOKER, J. M. (1988). A Bayesian sensitivity analysis when using the beta

distribution as prior. IEEE Transactions on Reliability, 37 (2), 239–247.
ERDÉLYI, A. (1953). Higher Transcendental Functions, volume 1. McGraw-Hill: New York.
ERDÉLYI, A. (1954). Tables of Integral Transforms, volume 1. McGraw-Hill: New York.
FERREIRA, J., BEKKER, A., AND ARASHI, M. (2016). Objective Bayesian estimators for the

right censored Rayleigh distribution: Evaluating the Al-Bayyati loss function. To appear in
REVSTAT.

FOX, C. (1961). The G and H-functions as symmetrical Fourier kernels. Transactions of the Amer-
ican Mathematical Society, 98, 395–429.

GELMAN, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian
Analysis, 1, 515–533.

GELMAN, A. (2009). Bayes, Jeffreys, prior distributions and the philosophy of Statistics. Statistical
Science, 24 (2), 176–178.

GUPTA, K. C. (1965). On the H-function. Annales de la Société scientifique de Bruxelles, T79 (II),
97–106.

MATHAI, A. M. (1993). A Handbook of Generalized Special Functions for Statistical and Physical
Sciences. Clarendon Press: Oxford.



RAYLEIGH MODEL WITH GENERALISED HYPERGEOMETRIC PRIOR 219

MATHAI, A. M. AND SAXENA, R. K. (1966). On a generalized hypergeometric distribution.
Metrika, 11 (2), 127–132.

MATHAI, A. M. AND SAXENA, R. K. (1978). The H-function with Applications in Statistics and
Other Disciplines. John Wiley & Sons: New York.

MOSTERT, P. J. (1999). A Bayesian Method to Analyse Cancer Lifetimes using Rayleigh Models.
Unpublished PhD thesis, University of South Africa: Pretoria, South Africa.

MOSTERT, P. J., BEKKER, A., AND ROUX, J. J. J. (1998). Bayesian analysis of survival data using
the Rayleigh model and LINEX loss. South African Statistical Journal, 32 (1), 19–42.

NELSON, W. (1982). Applied Data Analysis. John Wiley & Sons: Toronto, Canada.
PHAM-GIA, T. (1994). Value of the beta prior information. Communications in Statistics – Theory

and Methods, 23 (8), 2175–2195.
SEBASTIAN, N. (2011). A generalized gamma model associated with a Bessel function. Integral

Transforms and Special Functions, 22 (9), 631–645.
SOLIMAN, A. A. (2000). Comparison of LINEX and quadratic Bayes estimators for the Rayleigh

distribution. Communications in Statistics: Theory and Methods, 29 (1), 95–107.

Manuscript received, 2015-09-15, revised, 2016-03-16, accepted, 2016-03-21.



220


	Introduction
	Generalised hypergeometric prior
	Bayesian inference
	Bayesian prediction bounds
	Illustrations
	Simulation study
	Insulating fluid example

	Conclusion

