
South African Statist. J. (2016) 50, 303 – 312 303

MULTIPLE LINEAR REGRESSION WITH
CONSTRAINED COEFFICIENTS: APPLICATION

OF THE LAGRANGE MULTIPLIER
C. R. Kikawa 1

Department of Mathematics and Statistics, Tshwane University of Technology
e-mail: richard.kikawa@gmail.com

P. H. Kloppers
Department of Mathematics and Statistics, Tshwane University of Technology

Key words: Design matrix, Goal function, Lagrange multiplier, Linear systems, Regression coef-
ficients, Schur complement, System blocking.

Abstract: In this paper, we present two unfamiliar novel estimation techniques (UNET) for the
constrained regression coefficients in the frame-work of a standard multiple linear regression model.
Estimation of a linear regression problem with constraints on the regression coefficients are firstly
derived by minimising a formulated goal function that minimises the total sum of the squared errors,
plus the sum of the linear constraints multiplied by a Lagrangian. We also show that the solution to
the system of equations can be obtained without differentiating the goal function, rather expressed in
terms of the known matrices. This is achieved by employing properties of a blocked linear system.
The UNET is justified by a numerical simulated system of linear equations in 3-dimensions. The
UNET yields estimates that are comparable to those generated by the Schur complement principle.

1. Introduction

Regression analysis is a statistical tool used to investigate relationships between variables (Legendre,
1805). Multiple linear regression (Draper and Smith, 1998) is an approach used to determine the
linear relationship that exists between a set of regression variables (xi) and a given response variable
(y):

Y = β0 +β1X1 + · · ·+βNXN + ε.

The regression coefficients βi’s provide an indication of the effect of the regressors on the outcome
variable. Parameter estimation methods for regression models were first published by Legendre
(1805) in form of least squares. Currently, a number of techniques for estimating the regression
coefficients of a linear problem are well known and for computer enhanced software to do this are
readily available (Draper and Smith, 1998). As a result multiple regression is currently being applied
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to a wider domain of challenges faced in both theoretical and practical arrays (Pazzani and Bay,
2001). The ultimate goal of this application is to obtain information from data, which information is
to guide in decision making and planning purposes.

In practice, multiple regression can produce models that are unreliable to experts due to a con-
fusion on the sign of the regression coefficients (Mullet, 1976). However, this problem is usually
addressed by introducing a constrained form of regression that can produce more acceptable re-
sults (Pazzani and Bay, 2001). However, in the presence of constrained coefficients the estimation
procedures are not straight forward as in the unconstrained model.

In this study, the estimation approaches of a linear regression model with constrained coefficients
are firstly derived by considering minimisation of an objective function that minimises the total
sum of the squared errors plus the sum of the linear constants multiplied by a Lagrange multiplier
(Heath, 2005; Lasdon, 2002; Sokolnikoff and Redheffer, 1966). Secondly, using the properties of
blocked linear systems (Chen, Anderson, Deistler and Filler, 2012; Alanelli and Hadjidimos, 2004;
Axelsson, 1985) a second method estimation approach is derived. In this, the design or influence
matrix (Cardini, 2013; Searle, 1971) of this system is a natural blocked matrix and this property is
used to solve the system. In this solution it is not necessary to differentiate the formulated objective
function, but the solution can be expressed from the constrained part using the known matrices.

We briefly discuss the concepts of blocked linear systems and the solutions there of presented
in the first section of the paper. We also present a revised solution of a multiple linear regression
system.

2. Blocked system of Linear equation

Structures of linear equations with circulant coefficient matrices can be found in a number of appli-
cations. For example, in finite difference approximations to elliptic functions subject to boundary
initial value conditions (Chan and Chan, 1992; Wood, 1971) and in estimations of periodic systems
by employing the splines method (Ahlberg, Nilson and Walsh, 1967; Zavyalov, Kvasov and Mirosh-
nichenko, 1980). For problems involving multidimensional arrays, the coefficients of the design
matrices have a block circulant arrangement (Mingkui, 1987).

Definition 1 We define

Yδ =

 Yδ

...
Yδ+T−1

 ,

Zδ =

 Zδ

...
Zδ+T−1


δ = 0,T,2T, . . . ,
where Yδ ∈ℜp are the explained variables and Zδ ∈ℜm are the explanatory variables.



MULTIPLE LINEAR REGRESSION WITH CONSTRAINED COEFFICIENTS 305

Then, a blocked system of linear equations can be defined by

xδ+T = Abxδ +Bbzδ

Yδ+T =Cbxδ +Dbzδ

where xδ ∈ℜn is the state variable, Ab = AT , Bb = [AT−1BAT−2B . . .B],

Cb =


C

CA
...

CAT

CAT−1

 ,

Db =


C 0 . . . 0

CB D . . . 0
...

...
...

CAT−1B CAT−2B . . . D

 .
We define an operator P such that it satisfies Pxδ = xδ+T ,PYδ =Yδ+T ,PUδ =Uδ+T . In this case

the transfer function of the blocked linear system of equations, see Definition 1 (Chen et al., 2012;
Callier and Desoer, 1994) is given by

W (P) = Db +Cb(PI−Ab)
−1Bb.

Assumption 1: The explained vector has a dimension (P) greater or equal to that of the explanatory
vector (m), that is, (p≥ m) and the normal rank W (P) is m.

We investigate some properties of the blocked linear system and use them to solve a linear system
of equations.

3. Existing results

In this section, the equivalents of some already available results for the linear systems are re-visited.
Consider the system of linear equations:

Ax = y

with matrix An×n and vectors xn×1 and yn×1. Suppose that the system can be blocked into[
A1 A2

A3 A4

][
x1

x2

]
=

[
y1

y2

]
. (1)

Assume that the dimensions of A1 are r× r and for vectors x1 and y1the dimensions are r× 1 and
taking the dimensions of all the other components to be in line with this. If A is non-singular (i.e.
invertible) and [

A1 A2

A3 A4

]−1

=

[
B1 B2

B3 B4

]
,
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the solution to system (1) is given by [
x1

x2

]
=

[
B1 B2

B3 B4

][
y1

y2

]
.

=

[
B1y1 +B2y2

B3y1 +B4y2

]
.

Furthermore, it can be shown that[
A1 A2

A3 A4

]−1

=

[
A−1

1 +A−1
1 A2S−1A3A−1

1 −A−1
1 A2S−1

−S−1A3A−1
1 S−1

]
,

with S = A4−A3A−1
1 A2, known as the Schur complement (Zhang, 2005; Zong, 2009; Boyd and

Vandenberghe, 2004) of A1. The solution of the system (1) now becomes[
x1

x2

]
=

[
A−1

1 y1 +A−1
1 A2S−1A3A−1

1 y1−A−1
1 A2S−1y2

S−1y2−S−1A3A−1
1 y1

]
. (2)

4. Multiple Linear Regression

The solution of a multivariate multi-response linear regression system of equations in which the
design matrices are non-singular (Searle, 1971) is now revisited. For simplicity we only consider a
system with three explanatory variables.

Consider a dataset 
u1 x1 y1 z1

u2 x2 y2 z2
...

...
...

...
un xn yn zn

=
[
u W

]
,

where u is a vector of the explained variables and W the set of explanatory variables. It is known
that for the model

u j = β1x j +β2y j +β3z j + ε j. (3)

The least squares estimation for υυυ> = (β1,β2,β3) that minimizes the objective function

n

∑
j=1

ε
2
j =

n

∑
j=1

(u j−β1x j−β2y j−β3z j)
2 ,

is

υ̂υυ =
(

W>W
)−1

ũ, (4)

where (
W>W

)
=

 ∑x2
j ∑x jy j ∑x jz j

∑x jy j ∑y2
j ∑y jz j

∑x jz j ∑y jz j ∑z2
j

 , (5)
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and

ũ =
(

W>u
)
=

∑x ju j

∑y ju j

∑z ju j

 .
Hence the solution υ̂υυ will exist provided that W is of full column rank, that is, the columns of

the explanatory variables are linearly independent, (Searle, 1971; Wardlaw, 2005; Basilevsky, 1983).
This is a typical multiple regression problem and any statistical software package could be used to
solve the system.

5. New results

5.1. Multiple Linear Regression with constraints

In this section, we consider the derivation of a solution of a multivariate model with constrained
explanatory variables. We take the classical linear model,

u = Xβββ +εεε,

where u = [u1 . . .un]
> is the vector, and X is an n× (n > p) influence or design matrix (Rodriguez-

Yam, Davis and Scharf, 2004) assumed to be of full column rank, the elements in the vector of errors
εεε are assumed to be independent and normally distributed N(0,σ2), and βββ is a vector of coefficients
of the explanatory variables.

Now due to physical conditions on the system, the components of βββ , are required to be linearly
constrained, that is Cβββ = 0, where C is the so called constraint matrix. Now the proposed estimation
of such constrained models are derived using two techniques.

5.1.1. The Differentiation Technique

Again consider a dataset

u j = β1x j +β2y j +β3z j + ε j.

Let us assume that, due to physical conditions, two constraints α1β1 +α2β2 = 0 and θ1β2 +

θ2β3 = 0 with α,θ ∈ R, are to be imposed on the model. The objective function to estimate υ now
is

ℑ =
1
2 ∑(u j−β1x j−β2y j−β3z j)

2 +φ1(α1β1 +α2β2)+φ2(θ1β2 +θ2β3) (6)

with φ1 and φ2 introduced as the Lagrange multiplier (Carpenter, 2005; Sokolnikoff and Redheffer,
1966) . Differentiating (6) with respect to β1,β2,β3,φ1 and φ2 and equating each resultant equation
to zero, we obtain
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∂ℑ

∂β1
= ∑(u j−β1x j−β2y j−β3z j)(−x j)+φ1α1 = 0,

∂ℑ

∂β2
= ∑(u j−β1x j−β2y j−β3z j)(−y j)+φ1α1 +φ2θ1 = 0,

∂ℑ

∂β3
= ∑(u j−β1x j−β2y j−β3z j)(−z j)+φ2θ2 = 0,

∂ℑ

∂φ1
= α1β1 +α2β2 = 0,

∂ℑ

∂φ2
= θ1β2 +θ2β3 = 0.

These equations of the objective function can be expressed in matrix notation as
∑x2

j ∑x jy j ∑x jz j α1 0
∑x jy j ∑y2

j ∑y jz j α2 θ1

∑x jz j ∑y jz j ∑z2
j 0 θ2

α1 α2 0 0 0
0 θ1 θ2 0 0




β1

β2

β3

φ1

φ2

=


∑xiu j

∑y ju j

∑z ju j

0
0

 . (7)

We note that the 3 by 3 matrix appearing in the upper left side of the first matrix in (7) is the
same as (5) for the unconstrained system.

The constrained part of the objective function (6), φ1(α1β1 +α2β2)+ φ2(θ1β2 + θ2β3, can be
written as

[
β1 β2 β3

]α1 0
α2 θ1

0 θ2

[φ1

φ2

]
≡ υυυ

>Cφφφ ,

with C the constrained matrix.
From this, it is observed that system (7) is determined only by W>W of (5) and C, and hence

can be obtained without differentiating the objective function (6).
The solution for the unknown parameters is


β̂1

β̂2

β̂3

φ̂1

φ̂2

=


∑x2

j ∑x jy j ∑x jz j α1 0
∑x jy j ∑y2

j ∑y jz j α2 θ1

∑x jz j ∑y jz j ∑z2
j 0 θ2

α1 α2 0 0 0
0 θ1 θ2 0 0


−1

∑xiu j

∑y ju j

∑z ju j

0
0

 . (8)

In this case a 5×5 matrix must be inverted to obtain the solution.
Although a system with only three explanatory variables was investigated, the above results can

easily be generalised to higher order systems with more than two constraints.
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5.1.2. The Block System Technique

Considerable work has been done on the estimation of constrained parameters of a linear system
using the blocking technique (Chen et al., 2012; Zong, 2009). However, in this section we present a
modified block system technique involving the Lagrange multiplier (Sawyer, 2002).

From (7) it is easy to see that the system can be blocked into[
W>W C

C> 0

][
υυυ

φφφ

]
=

[
u
0

]
,

with 0 the 2× 2 zero matrix and 0 the 2× 1 zero vector. By (2) it then follows that, with S =

−C>(W>W)−1C the estimations for υυυ and φφφ are:[
υ̂υυ

φ̂φφ

]
=

[
(W>W)−1ũ+(W>W)−1CS−1C>(W>W)−1ũ

−S−1C>(W>W)−1ũ

]
.

In this case, the estimation for υυυ is denoted by υ̂υυ to distinguish it from υ̂υυ in (4). This solution
can be simplified to

φ̂φφ =−S−1C>(W>W)−1ũ, (9)

υ̂υυ = (W>W)−1ũ+(W>W)−1CS−1C>(W>W)−1ũ (10)

= (W>W)−1ũ− (W>W)−1Cφ̂φφ ,

= υ̂υυ− (W>W)−1Cφ̂φφ ,

with υ̂υυ the solution to the unconstrained system given in (4).

6. Numerical application

In this section, we present a numerical study to validate the performance of the proposed derivations.
Consider a dataset,

[
u x y z

]
=



20.6 1 11 5
37.5 5 15 2
51.8 8 18 5
35.8 1 23 7
98.9 15 39 10

115.2 19 42 12
131.6 21 51 13
157.1 25 61 16
190.5 31 75 20
214.5 35 85 23


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Firstly suppose model (3) must be fitted to the data. In this case

W>W =

3929 9532 2538
9532 23656 6324
2538 6324 1701

 , (11)

ũ = W>u =

24434.7
60055.1
16026.9

 ,
υ̂υυ =

 2.67150
1.47429
−0.04514

 ,
and the fitted model is

u j = 2.67150x j +1.17429y j−0.04514z j. (12)

Secondly suppose that two constraints, β1 = 3β2 and β2 =
1
2 β3 must be enforced on the regres-

sion coefficients in (12). In this case the system of equations (7) is,
3929 9532 2538 1 0
9532 23656 6324 −3 1
2538 6324 1701 0 − 1

2
1 3 0 0 0
0 1 − 1

2 0 0




β1

β2

β3

φ1

φ2

=


24434.7
60055.1
16026.9

0
0

 . (13)

It should be noted that (13) is not a typical regression problem, and by (8) the estimated param-
eters are 

3929 9532 2538 1 0
9532 23656 6324 −3 1
2538 6324 1701 0 − 1

2
1 3 0 0 0
0 1 − 1

2 0 0


−1

24434.7
60055.1
16026.9

0
0

=


2.77593
0.9251

1.85062
11.1488
35.9426

 ,
and the fitted model is

u j = 2.77593x j +0.92531y j +1.85062z j +11.1488φ1 +35.9426φ2. (14)

We notice that the enforced constraints are met.
Thirdly, note that the constrained part of the objective function (6) now is

φ1(β1−3β2)+φ2(β2−
1
2

β3) =
[
β1 β2 β3

] 1 0
−3 1
0 − 1

2

[φ1

φ2

]
,

so that the constrained matrix is

C =

 1 0
−3 1
0 − 1

2

 ,
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and the Schur complement is

S =−C>(W>W)−1C =

[ −75637
426920

132791
12808760

132791
12808760

283583
3842280

]
,

with W>W as in (11). By (9) and (10)

φ̂φφ =−S−1C>(W>W)−1ũ =

[
11.1488
35.9462

]
and

υ̂υυ = ũ− (W>W)−1C>φ̂φφ =

2.77593
0.92531
1.85062

 .
So that the model is

u j = 2.77593x j +0.92531y j +1.85062z j +11.1488φ1 +35.9426φ2,

which is the same as in (14).

7. Conclusions

In this paper, two new methods (the differentiation and blocking techniques) have been derived for
estimating the constrained parameters in a multiple linear regression model. A numerical study has
been presented to validate the methods and results obtained are appealing. Although the derivations
in this work have been demonstrated on a system with 3-explanatory variables and two constraints,
these can be generalised to a system with k-explanatory variables and C-constraints, provided that
both the explanatory variables and the constraints are linearly independent.
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