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Abstract: Marginalised models are in great demand by many researchers in the life sciences, partic-
ularly in clinical trials, epidemiology, health-economics, surveys and many others, since they allow
generalisation of inference to the entire population under study. For count data, standard procedures
such as the Poisson regression and negative binomial model provide population average inference
for model parameters. However, occurrence of excess zero counts and lack of independence in em-
pirical data have necessitated their extension to accommodate these phenomena. These extensions,
though useful, complicate interpretations of effects. For example, the zero-inflated Poisson model
accounts for the presence of excess zeros, but the parameter estimates do not have a direct marginal
inferential ability as the base model, the Poisson model. Marginalisations due to the presence of
excess zeros are underdeveloped though demand for them is interestingly high. The aim of this pa-
per, therefore, is to develop a marginalised model for zero-inflated univariate count outcome in the
presence of overdispersion. Emphasis is placed on methodological development, efficient estima-
tion of model parameters, implementation and application to two empirical studies. A simulation
study is performed to assess the performance of the model. Results from the analysis of two case
studies indicate that the refined procedure performs significantly better than models which do not
simultaneously correct for overdispersion and presence of excess zero counts in terms of likelihood
comparisons and AIC values. The simulation studies also supported these findings. In addition, the
proposed technique yielded small biases and mean square errors for model parameters. To ensure
that the proposed method enjoys widespread use, it is implemented using the SAS NLMIXED pro-
cedure with minimal coding efforts.

1. Introduction

Studies involving count data are widespread. They can be found in contemporary research areas
such as clinical trials, epidemiology studies, health-economics, surveys and other experiments in
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biopharmaceutical and bioinformatics. When the response of interest is of count type, the Poisson
regression, which is placed within the generalised linear modelling (GLM) framework (Nelder and
Wedderburn, 1972; McCullagh and Nelder, 1989; Agresti, 2002), is routinely used to model the
effect of covariates on the observed counts. Its application can be found in several research fields.

The most efficient way to make reliable inferences from well designed and executed studies is
to choose an appropriate statistical model which reflects not only the design of the study but also
certain characteristics of the data. The Poisson regression, though popular, fails to address certain
attributes of the data and key design features and has led to several extensions. In the presence
of many zero counts, especially in studies that involve ‘rare’ events, the Poisson regression is far
from optimal. The zero-inflated Poisson (ZIP) model has been proposed to model count data with
excessive zeros. Related to the presence of excess zeros is the phenomenon called overdispersion.
The Poisson distribution, a member of the exponential family of distributions, is noted for having
a strict mean-variance relationship which is often inadequate to capture the variability inherent in
empirical data. In order to allow for inflation of the variance of the outcome, the negative binomial
(NB) model has been developed and applied in many studies. Underdispersion is well possible but
rarely encountered. For underdispersed data, the generalised Poisson, or perhaps the hurdle model
is used. A broad overview of models and estimation methods for overdispersed data can be found in
Hinde and Demétrio (1998a, 1998b). As can be expected, excess zeros and overdispersion do occur
together in practice. The zero-inflated negative binomial (ZINB) model is routinely used to handle
both attributes simultaneously and has also been implemented in several studies (Lord, Washington
and Ivan, 2004; Yau, Lee and Carrivick, 2004).

Despite the useful extensions made to improve the Poisson regression in the presence of many
zeros and overdispersion, interpretation of model parameters is hampered. Precisely, the marginal
interpretation of effects of explanatory variables on the response is lost. Instead, the parameters have
a latent class interpretation. This is because the ZI models assume separate models for the process
generating excess counts and the positive counts. The implication is that, different sets of parameters
are associated with a subpopulation of at-risk or susceptible and a subpopulation of not-at-risk or
non-susceptible groups and hence inference targeted at the entire population is difficult to obtain. An
approach for obtaining direct marginal inference is therefore required for count data with excessive
amounts of zeros.

Heagerty (1999) introduced a technique that does not alter the marginal interpretation of model
parameters when normal random effects are employed to correct for lack of independence in longi-
tudinal binary outcome. This marginalised multilevel model (MMM) defines separately a marginal
mean model and a conditional mean model, and the two models are held together by a so-called
connector function. Iddi and Molenberghs (2012, 2013) extended this marginalised model to ac-
commodate overdispersion (COMMM model) in the presence of subject-specific random effects.
Lee, Joo, Song and Harper (2011) also proposed an extension of the MMM to zero-inflated clus-
tered count data using the hurdle model Mullahy (1986). The form of marginalisation considered by
these authors is over so-called subject-specific random effects, used to handle association in longitu-
dinal or clustered data. Long, Preisser, Herring and Golin (2014) adapted these ideas and proposed
a marginalised model that estimates overall exposure effects in the ZIP model for univariate count
outcome. The marginalised zero-inflated model (MZIP) eliminates the latent class interpretation of
regression coefficients in the traditional ZIP model, and instead, allows for exposure effect on the
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entire population under study. However, this model is not suited for univariate count data exhibit-
ing overdispersion. Therefore, this paper aims to refine the MZIP model to handle marginalisation
in the presence of excess zeros and also encompass overdispersion due to unobserved heterogene-
ity that naturally occur with count data. The modelling framework envisaged takes into account
these attributes of the data as well as permit population average inference of model quantities. This
guarantees efficient estimation of model parameters and ensures that proper statistical inferences are
made leading to valid research conclusions for policy decisions and recommendations. Also, this
will help solve interpretation and implementation challenges faced by many applied analysts.

The rest of the paper is organised in the following order. Section 2 introduces two motivating
datasets; these are analysed in Section 5. A review of existing methodology is provided and the
refined technique presented in Section 3. The maximum likelihood estimation strategy used for
fitting the models is the topic for Section 4. Simulation results are discussed in Section 6. The paper
concludes with final remarks in Section 7.

2. Illustrative case studies

The main purpose of this section is to present two case studies for the illustration of the proposed
methodology and how results compare to existing methods. The data from these studies exhibit both
overdispersion and zero inflated counts which are attributes investigated by the proposed technique
ignoring their clustered or longitudinal nature. These studies are described in turn.

2.1. A clinical trial in epileptic patients

The data are from a randomised, double-blind, parallel group, multi-centre study for the comparison
of placebo with a new anti-epileptic drug (AED), in combination with one or two other AED’s
(Faught, Wilder, Ramsay, Reife, Kramer, Pledger and Karim, 1996). Patients were randomised after
a 12-week stabilisation period for the use of AED’s, and during which the number of seizures were
counted. After that run-in period, 45 patients were assigned to the placebo group, 44 to the new
treatment. Patients were measured weekly and followed (double-blind) during 16 weeks; thereafter
they entered a long-term open-extension study. Some patients were followed for up to 27 weeks.
The outcome of interest is the number of epileptic seizures experienced during the latest week, i.e.,
since the last time the outcome was measured. The research question is whether or not the additional
new treatment reduces the number of epileptic seizures.

In Figure 1, a histogram of the number of epileptic seizures shows a higher proportion of zero
counts accounting for about 33% of the data. Also, a simple descriptive statistics shows a very high
variance of 37.70, as compared to the empirical mean of 3.18, an indication of overdispersion. This
data set is therefore suited for illustrating the proposed model.

2.2. The whitefly study

This data set resulted from a horticultural experiment designed to examine the effect of six methods
of applying insecticide imidacloprid to poinsettia plants. The data have previously been reported
by van Iersel, Oetting, Hall and Kang (2001) and analysed in Hall and Zhang (2004). Using a
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Figure 1: Epilepsy Data. Histogram and individual profiles.

randomised complete block design, treatment (method) was applied to 18 experimental units that
consisted of a trio of 18 poinsettia plants (54 plants in total); repeated measurements were taken
over 12 consecutive weeks. The experimental units were randomly assigned to the 6 treatments in 3
complete blocks. One of the study outcomes of interest here is the number of immature whiteflies
after treatment out of a number of insects caged in one leaf per plant prior to measurement of the re-
sponse. The objective of the study was to investigate the best method to control silver-leaf whiteflies
on the plants.
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Figure 2: Whitefly Data. Means and standard deviations by time (panel 1) and block (panel 2).

Figure 2 shows that at every level of treatment and block, the variance is always higher than
the mean, reflecting overdispersion. In Figure 3, the histogram reveals higher occurrences of zero
immature whiteflies, which cannot be accounted for by the variance function of a Poisson or negative
binomial distribution. It therefore seems sensible to apply the proposed technique.
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Figure 3: Whitefly Data. Histogram of the number of immature whiteflies.

3. Methodology

3.1. Notation

Let Yi be the number of counts for an independent subject i (i = 1,2, . . . ,n). Assume that together
with the response, a set of regressors are recorded for each subject denoted xi j for j = 1,2, . . . , p,
where p is the number of explanatory variables. Another set of covariates is represented as zik

which is a subset of xi j and k ≤ j. In vector notation, the covariates are written as X i and Zi for
the ith individual. Also, let the marginal and conditional expected count be denoted by µi and λi

respectively.

3.2. Background methodology

For independent count outcomes, the commonly used technique to evaluate the effect of explanatory
variables on the response is the traditional Poisson regression. The response variable Yi is assumed
to follow the Poisson distribution with mean µi. The marginal mean is regressed on a set of covariate
X i using a log-link. Thus,

Yi ∼ Poisson(µi)

and
log(µi) = X ′iβββ
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where βββ is a vector of parameters associated with the vector of covariates, X i. The relationship
between the response and the set of predictors is thus captured by βββ .

The Poisson regression model assumes, in its simplest form, that the marginal mean and variance
of the response are equal. This strong assumption, often not tenable for empirical data due to hetero-
geneity introduced in the data when important covariates are omitted from the study, is relaxed by
applying an overdispersed model. A commonly used overdispersed model is the negative binomial
regression model. It assumes that the counts follow a Poisson distribution with conditional mean λi.
This mean is also allowed to follow the gamma distribution with shape and scale parameter a and
b respectively. The resulting marginal distribution is the negative binomial distribution with density
represented by

f (yi) =
Γ(a+ yi)

Γ(a)yi!

(
b

1+b

)yi
(

1
1+b

)a

.

The first two marginal moments, using iterated expectations, are given respectively by

E(Yi) = E{E(Yi|λi)}= ab = µi

Var(Yi) = Var{E(Yi|λi)}+E{Var(Yi|λi)}= µi(1+ kµi).

The parameter k = 1
a is called the overdispersed parameter. When k = 0, the model reduces to the

Poisson model. Since k > 0, the model only models overdispersion, and hence this model cannot be
used to model underdispersion. The NB regression models relate observed predictors to observed
counts by taking log(µi) = X ′i βββ .

Next, the Poisson and NB models assume that zero and non-zero counts are generated from the
same mechanism. However, in the presence of excessive amounts of zero counts, which occur mostly
for rare events, these models are not optimal. This is because they are unable to accommodate the
extra dispersion due to the presence of zeros. The zero-inflated Poisson (ZIP) has been proposed to
address this issue. The model assumes that counts are rather generated by two processes. The first
process generates zero counts with probability πi while the non-zero counts follows the Poisson dis-
tribution with parameter λi and are realised with probability (1−π). In addition, the model assumes
that zero counts are generated from two sources based on the probabilities of the two processes.
Thus,

Yi ∼

{
0 with probability π +(1−π)e−λi ,

yi with probability (1−πi)e−λi λ
yi
i

yi!
, yi ∈ Z+.

The first two moments for ZIP model are given by

E(Yi) = (1−πi)λi = µi

Var(Yi) = λi(1−πi)(1+πiλi).

This reduces to the Poisson model when πi = 0. Note that the variance depends on the probability of
zeros, πi and as πi approaches 1, the variance increases and thus accommodates greater dispersion in
the data. To fit this model, the logistic regression model is used to model the probability πi of zero
counts and the log-linear Poisson(λi) model for the positive realisations. For vector of covariates Zi
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and X i with their associated vector of parameters ααα and βββ respectively, the model specifications are
as follows:

logit(πi) = X ′iααα

and
log(λi) = X ′iβββ .

3.3. Marginal effects and incidence density ratio

Marginal effect allows us to generalize the effects of predictors on the response variable to the
entire population under consideration. Such inferences are based on the parameters associated with
the predictors. In the traditional Poisson or negative binomial models, the regression coefficients
are interpreted in terms of the differences in the logs of the expected counts for a unit change in
the predictor variables or as the log of the ratio of expected counts. Equivalently, the models are
interpreted in terms of incident density (rate) ratio (IDR), obtained by exponentiating the regression
estimates. Let µi, j and xi, j be the mean and jth predictor variable evaluated at j respectively. Also,
let X i( j) be a vector of predictors where the jth variable has been removed from X i with associated
vector of regression coefficients βββ ( j). Then the IDR, the ratio of the marginal expected mean for a
unit increase in the predictor variable xi, j, is given by

E(Yi|xi, j = j+1)
E(Yi|xi, j = j)

=
µi, j+1

µi, j
= exp(β j)

where β j is the parameter associated with the jth predictor. This ratio is thus constant over the
various levels of all other predictors in the regression model.

For the zero-inflated models, the marginal mean µi is of the form:

µi = E(Y ) =
exp(X ′iβββ )

1+ exp(Z′iααα)
.

This depends on parameters associated with predictors in both components of the zero-inflated
model. Assume that the same predictors X i are used in both the logistic and log-linear part of
the models, then the IDR is expressed as

µi, j+1

µi, j
= exp(β j)

1+ exp
(

jα j +X ′i( j)ααα( j)

)
1+ exp

(
( j+1)α j +X ′i( j)ααα( j)

) .
Unlike the Poisson and NB models, the IDR varies across the various levels of the predictors in the
logistic part of the zero-inflated model. Only when α j = 0 is the IDR constant across the levels of
the extraneous predictors. Thus one has to employ a summary measure to obtain a single measure
for IDR for a given predictor in the presence of the other predictors. Next, estimates of the variabil-
ity of the IDR are obtained using the delta method or bootstrap resampling techniques. However,
implementation of these techniques are cumbersome and require additional computational efforts
since they are not readily available in standard software packages.

A recent development by Long et al. (2014) allows analysts to fit a zero-inflated model with
marginal effect of explanatory variables on the expected counts. The model also admits constant IDR
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for a given covariate in the presence of other predictors in both the logistic and the other component
of the model. This model is reviewed in the next section, and an extension to this procedure is
proposed to accommodate overdispersion.

3.4. Proposed methodology

Long et al. (2014) proposed an easy alternative to estimate overall exposure effects in a zero-inflated
Poisson model. Instead of relating the mean of the process generating the positive counts, or the
Poisson mean, λi to predictors using the log-link, they expressed the marginal mean, µi in terms
of predictors. The detailed model specifications are as follows: logit(πi) = Z′iααα , log(λi) = δi and
log(µi) = X ′iβββ where δi is unknown function to be determined from

µi = (1−πi)λi.

After substituting the various expressions and solving for δi, we obtain

δi = X ′iβββ + log(1+ exp(Z′iααα)).

The likelihood function is then modified based on these new expressions and is presented in Sec-
tion 4.

A marginal zero-inflated negative binomial model (MZINB), an extension of the MZIP model,
is carried out to estimating marginal effect predictors on the expected response. An added advantage
to this useful extension is that the model is able to correct for overdispersion due to the presence of
both inflated zero counts and heterogeneity due to the absence of important predictors in the model.
The latter is not addressed by the MZIP model.

The MZINB is also based on the zero-inflated negative binomial (ZINB) model. Let

Yi ∼

 0 with probability πi +(1−πi)p
1
k ,

yi with probability (1−πi)
Γ(yi+

1
k )

Γ( 1
k )yi!

(1− p)yi p
1
k , yi ∈ Z+.

where p = 1
1+kλi

. The marginal mean µi is similar to the mean from the ZIP model. However, the
variance, which depends on the overdispersed parameter k and πi, takes the form

Var(Yi) = λi(1−πi)(1+λi(k+πi)).

Thus, the model flexibly accounts for overdispersion due to the presence of excess zeros and hetero-
geneity due to the absence of omitted important explanatory variables.

To fit the MZINB model, we take µi = exp(X ′iβββ ) as opposed to λi = exp(X ′iβββ ) in the traditional
ZINB. Also, the mean of the positive counts or the negative binomial mean takes the form λi =

exp(δ ). The expression for δi is similarly to that of the MZIP model. The difference between the
two procedures is clearer in their likelihood specification as discussed in Section 4.

4. Estimation

Several estimation routes, such as pseudo-likelihood (Aerts, Geys, Molenberghs and Ryan, 2002;
Molenberghs and Verbeke, 2005), generalised estimating equations (Zeger, Liang and Albert, 1988),
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and Bayesian methodology, are possible in order to estimate the parameters in the models. In this
paper, parameters in the models are estimated following maximum likelihood estimation technique.
This estimation procedure, like many others, obtains a set of parameters that maximize the marginal
likelihood of the data. The likelihood for the marginal zero-inflated Poisson (MZIP) model is written
as:

L(πi,λi|yi) =
n

∏
i=1

I(yi = 0)(1−πi)

[
πi

1−πi
+ e−λi

] n

∏
i=1

I(yi > 0)(1−πi)e−λi
λ

yi
i

yi!
. (1)

Substituting πi = expit(Z′iααα) and λi = exp(δi) = (1+ exp(Z′iααα))exp(X ′iβββ ) into (1), the likelihood in
terms of the parameters ααα and βββ becomes

L(ααα,βββ |yi) =
n

∏
i=1

(
1+ eZ′iααα

)−1
[

n

∏
i=1

I(yi = 0)
(

eZ′iααα + e−
(

1+exp(Z′iααα)
)
exp

(
X ′iβββ

))

×
n

∏
i=1

I(yi = 0)e−
(

1+exp(Z′iααα)
)
exp

(
X ′iβββ

)(
1+ eZ′iααα

)yi e
(
X ′iβββ

)
yi

yi!

 .
For the extended version (MZINB) with overdispersed parameter k, the likelihood is given by

L(πi,λi|yi) =
n

∏
i=1

I(yi = 0)(1−πi)

[
πi

1−πi
+

(
1

1+ kλi

) 1
k
]

×
n

∏
i=1

I(yi > 0)(1−πi)
Γ(yi +

1
k )

Γ( 1
k )yi!

(
1− 1

1+ kλi

)yi
(

1
1+ kλi

) 1
k
. (2)

Substituting expressions for πi and λi into (2) yields

L(ααα,βββ |yi) =
n

∏
i=1

(
1+ eZ′iααα

)−1
[

n

∏
i=1

I(yi = 0)
(

eZ′iααα + p
1
k
i

)

×
n

∏
i=1

I(yi > 0)
Γ(yi +

1
k )

Γ( 1
k )yi!

(1− pi)
yi p

1
k
i

]

where pi =
1

1+k
(

1+exp(Z′iααα)
)
exp(X ′iβββ )

. The maximum likelihood estimates α̂αα,β̂ββ and k̂ are obtained

through numerical maximisation. The asymptotic variance-covariance matrix can be derived from
the likelihood expression. We define the Hessian matrix of the mixed partial second derivatives of
the log-likelihood, l by

H =
∂ 2

∂ηηη i∂ηηη j
l(ηηη)

where ηηη = (ααα,βββ ,k). The Fisher’s information matrix is given by

I(ηηη) =−E(H(ηηη)).

The estimates can be obtained rather easily using the SAS software package procedure NLMIXED.
The procedure allows to specify user defined log-likelihood and it returns, in addition, standard er-
rors of the parameters. The model-based standard errors are produced by taking the square root of
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the inverse of the Fisher’s information matrix. Since the procedure performs all the numerical de-
tails, the applied analyst can avoid deriving close form score equations and the Fisher’s information
matrix.

The fit of the models is assessed using −2Log-likelihood and the Akaike Information Criterion
(AIC; Akaike (1994)). The model with the minimum value for each of the criteria is often considered
the preferred or ‘best’ model. AIC is calculated using the formula AIC = −2Log-likelihood+ 2p
where p is the number of parameters in the model.

5. Analysis of case studies

5.1. Analysis of the epilepsy data

Six models are fitted to the data, and their results are compared. For each of the models, the depen-
dent variable, Yi, is the number of epileptic seizures experienced by patient i which follows either a
Poisson or negative binomial distribution. Treatment and time were treated as independent variables
in the count part of the models and only time in the logistic part of the zero-inflated models follow-
ing the modelling choice of Iddi and Molenberghs (2013). The Poisson, NB, MZIP and MZINB
models can be viewed as ‘marginal’ models because they relate the marginal mean µi to the inde-
pendent variables while in the ZIP and ZINB, the mean of the distribution of the positive counts, λi

is regressed on the predictors. Thus, in the Poisson, NB, MZIP and MZINB models,

log(µi) = β0 +β1Treatmenti +β2Timei.

For the zero-inflated models, the logistic regression model is specified as:

logit(πi) = α0 +α1Timei.

The results of these models, parameter estimates and standard errors, are presented in Table 1.
Generally, all parameters in the logistic-part of the zero-inflated models and the overdispersed pa-
rameter of the negative binomial models were found to be significant. Except for the ZINB model,
Time was found to be significant in the count-part of the models. Treatment was found not to be
significant in the Poisson and NB but significant for the MZIP model. However, the improved MZ-
INB which acknowledged overdispersion, resulted in a non-significant result as the Poisson and NB
model. For the ZIP and ZINB, which have latent class interpretations, both Treatment and Time were
significant for the former and not significant for the later. Results of model selection criteria, log-
likelihood and AIC, vary for the different models. For the marginal models, the proposed MZINB
model yielded the highest likelihood and smallest AIC value. Therefore, the proposed model seems
to perform better than the rest of the marginal model and hence is essential for making inference and
predictions.
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5.2. Analysis of the whitefly data

The outcome of this case study is the number of immature whiteflies, Yi jk for ith treatment in the
jth block measured at the kth week and the independent variables are Treatment, Block and Week.
The explanatory variables are chosen for each components of the zero-inflated models following the
approach of Iddi and Molenberghs (2013). The marginal mean model is given by:

log(µi jk) = β0 +Block j +Treatmenti +βWeekk.

For the ZIP and ZINB models, λi jk rather than µi jk is related to predictors. The probability of zero
counts is modelled by:

logit(πi) = α0 +α1Weekk.

Week is treated as continuous and the other terms represent factor effects. Parameter estimates and
standard errors of the fitted models are presented in Table 2. All treatment levels and the effect of
week were found to be significant in all the models. In addition, all parameters in the zero-inflated
parts were also significant. The effect of Block1 and Block2 was not significant in all the negative
binomial models, whereas only in Block2 do we find a significant effect in the other models. Here
again, in terms of inference, the proposed model results in slightly different parameter estimates and
standard errors from the MZIP model. Although most of the parameters were significant, none of
the block effect was significant in the broader model which properly accounted for overdispersion
and excess zero counts.

It is observed from the model selection criteria that, extending the MZIP model by allowing
overdispersion improved the model fit significantly (smallest AIC and highest likelihood). This
again highlights the importance of acknowledging overdispersion in the model and hence can lead
to better inference about the effect of independent variables on the response.



MODEL FOR OVERDISPERSED COUNT OUTCOME WITH MANY ZEROS 325

Ta
bl

e
2:

W
hi

te
fly

D
at

a.
Pa

ra
m

et
er

es
tim

at
es

(s
ta

nd
ar

d
er

ro
rs

)f
or

th
e

m
od

el
s.

P
oi
ss
on

N
B

Z
IP

Z
IN
B

M
Z
IP

M
Z
IN
B

E
ff
ec
t

P
ar
.

E
st
im

at
e(
s.
e)

E
st
im

at
e(
s.
e)

E
st
im

at
e(
s.
e)

E
st
im

at
e(
s.
e)

E
st
im

at
e(
s.
e)

E
st
im

at
e(
s.
e)

C
ou

nt
P
ar
t

In
te
rc
ep
t

µ
1.
14
05
(0
.0
57
8)
*

0.
59
00
(0
.2
70
9)
*

2.
03
33
(0
.0
64
7)
*

1.
82
46
(0
.1
92
0)
*

0.
64
41
(0
.1
15
4)
*

0.
58
20
(0
.1
97
4)
*

B
lo
ck

1
0.
02
70
(0
.0
40
2)

-0
.0
09
9(
0.
13
87
)

-0
.0
30
5(
0.
04
09
)

-0
.1
22
2(
0.
10
83
)

-0
.0
30
1(
0.
04
09
)

-0
.1
29
2(
0.
10
92
)

B
lo
ck

2
0.
15
35
(0
.0
39
0)
*

0.
00
76
(0
.1
37
5)

0.
08
06
(0
.0
39
7)
*

-0
.0
70
2(
0.
10
76
)

0.
08
17
9(
0.
03
97
)*

-0
.0
70
3(
0.
10
86
)

T
re
at
m
en
t
1

-1
.0
64
2(
0.
07
62
)*

-1
.1
14
1(
0.
18
40
)*

-0
.8
68
4(
0.
07
79
)*

-0
.9
97
8(
0.
15
32
)*

-0
.8
86
8(
0.
07
80
)*

-1
.0
37
3(
0.
15
51
)*

T
re
at
m
en
t
2

-1
.3
63
0(
0.
08
58
)*

-1
.2
62
3(
0.
18
95
)*

-0
.9
22
8(
0.
09
12
)*

-1
.1
88
7(
0.
17
33
)*

-0
.9
16
5(
0.
09
04
)*

-1
.1
74
3(
0.
17
84
)*

T
re
at
m
en
t
3

-2
.0
74
6(
0.
11
69
)*

-1
.9
58
7(
0.
20
88
)*

-1
.5
02
1(
0.
16
86
)*

-1
.9
42
6(
0.
19
49
)*

-1
.4
44
8(
0.
16
20
)*

-1
.9
35
1(
0.
20
12
)*

T
re
at
m
en
t
4

-1
.7
58
7(
0.
10
05
)*

-1
.7
65
8(
0.
19
67
)*

-1
.2
74
4(
0.
11
76
)*

-1
.6
19
8(
0.
18
06
)*

-1
.2
72
4(
0.
11
64
)*

-1
.6
33
7(
0.
18
55
)*

T
re
at
m
en
t
5

1.
35
33
(0
.0
43
1)
*

1.
95
07
(0
.1
78
1)
*

0.
91
86
(0
.0
44
1)
*

1.
02
63
(0
.1
25
2)
*

0.
90
45
(0
.0
44
2)
*

1.
00
82
(0
.1
26
2)
*

W
ee
k

β
0.
09
02
(0
.0
04
8)
*

0.
22
88
(0
.0
19
2)
*

0.
03
53
(0
.0
05
2)
*

0.
06
60
(0
.0
16
6)
*

0.
14
11
(0
.0
10
7)
*

0.
17
68
(0
.0
17
8)
*

Z
er
o-
In
fla

te
d
P
ar
t

In
te
rc
ep
t

α
0

1.
70
12
(0
.2
09
0)
*

1.
66
94
(0
.2
71
6)
*

1.
38
94
(0
.1
52
3)
*

1.
35
54
(0
.2
24
6)
*

W
ee
k

α
1

-0
.2
82
4(
0.
03
05
)*

-0
.3
60
4(
0.
04
82
)*

-0
.2
31
2(
0.
01
95
)*

-0
.3
07
3(
0.
03
94
)*

O
ve
rd
is
pe
rs
io
n

k
=

1 a
1.
35
87
(0
.1
32
2)
*

0.
45
40

(0
.0
68
2)
*

0.
45
77
(0
.0
72
4)
*

-2
Lo

g-
lik
el
ih
oo

d
−

2l
l

41
74
.6

26
92
.7

32
78
.3

26
19
.5

32
79
.7

26
26
.6

A
IC

41
92
.6

27
12
.7

33
00
.3

26
43
.5

33
01
.7

26
50
.6

(∗
)
Si
gn

ifi
ca
nt

at
α
=

0.
05
.
N
ot
e
th
at

Z
IP
/Z

IN
B
an
d
M
Z
IP
/M

Z
IN
B
gi
ve

ve
ry

di
ff
er
en
t
in
fe
re
nc
es
.



326 IDDI & DOKU-AMPONSAH

6. Simulation study

Simulations are carried out in this section to study some properties of the proposed methods and
how it compares with the Poisson, negative binomial, and the marginal zero-inflated Poisson models.
Large datasets are generated from the MZIP and MZINB models under different settings. These are
examined in turn.

6.1. Data generated from the marginal zero-inflated model

This part of the simulation study is aimed at investigating the performance of the models, partic-
ularly, MZINB when data are only overdispersed due to the presence of excess zero counts. The
simulated model utilised the following models similar to that of Long et al. (2014) to allow ease of
comparison:

logit(πi) = α0 +α1xi1 +α2xi2

log(µi) = β0 +β1xi1 +β2xi2

where i = 1, ,n, xi1 ∼Bernoulli(0.5) and xi2 follows a standard lognormal distribution. Zero-inflated
counts were generated with the set of true parameters

(α0,α1,α2,β0,β1,β2) = (0.6,−2,0.25,0.25,0.4,0.25).

For each sample size n = (100,500,1000), 2000 datasets were generated from the marginal ZIP
model and analysed using the four models. Summary quantities; mean estimates, model-based stan-
dard errors and simulation-based standard errors are reported in Table A.1 and Table A.2 (see Ap-
pendix A). The Poisson regression, followed by the NB models, are the worst performers since they
yielded large average bias and MSE as depicted in Figure A.1 (Appendix A) and Figure 4 respec-
tively. Generally, increase in sample size reduces the bias and MSE of the parameter estimates in
all four models. The MZINB model is slightly biased compared to the MZIP model, but this is
compensated by the increase in precision resulting in smaller MSE compared to that of the MZIP
model. This is not surprising given that the data were generated from the MZIP model. However, the
broader MZINB model is able to precisely estimate the parameters as it also addresses the inflation
of zeros and thus produces smaller measure of overall variability.

6.2. Data generated from the marginal zero-inflated negative binomial model

The predictors used in this set of simulation study are similar to those used in Section 6.1. To gen-
erate data from the marginal ZINB model, an additional parameter k is required. The true parameter
values are slightly modified,

α0,α1,α2,β0,β1,β2 = (0.6,−2,0.3,0.25,0.5,0.2).

The impact of different levels of overdispersion is assessed using different values of the overdis-
persed parameter k = 1.5,2.5,4. For each value of k, 2000 simulated datasets were generated from
the marginal ZINB model for different sample sizes, n = (100,200,500,1000) and each of the four
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Figure 4: Plot of MSE against sample size for all models (Data generated from MZIP).

models fitted. Simulation results are presented in Table A.3, Table A.4, Table A.5 for the Poisson and
negative binomial models, in Table A.6, Table A.7, and in Table A.8 (see Appendix) for the MZIP
and MZINB models, for the different values of k respectively. Graph of mean bias and MSE against
sample size are respectively depicted in Figure A.2 and Figure 5. From these results, it is observed
that bias and MSE generally decrease with increasing sample size. Notably, the MSE increases
with increase in overdispersed parameter, but this diminishes with increase in sample size for all the
models. The overdispersed parameter is poorly estimated by the NB model but better estimated by
the proposed MZINB model with further improvements as sample size increases. Obviously, this is
due to the excess zeros ignored by the negative binomial model but accounted for in the MZINB.
Both the Poisson model and the negative binomial models fit poorly, which is evident in the wide
discrepancy between standard errors of parameters and the Monte Carlo-based standard errors, large
bias and MSE. The marginal ZINB model performs better than the rest of the models in terms of
yielding the smallest mean bias as well as MSE for model parameters. It particularly outperform the
MZIP model for all values of k considered.

7. Concluding remarks

It is commonly known that the Poisson regression is overly restrictive because of its mean-variance
relationship and the presence of extra dispersion due to excess zeros. The ZIP and ZINB models
are useful extensions but give different interpretations of model parameters than the base models,
namely, they have latent class rather than marginal interpretation. This paper has proposed an exten-
sion to the marginal ZIP model to address overdispersion. It has been shown, through the analysis
of two case studies, that the extended model helps improve model fit significantly and can help in
drawing valid inference. Through simulation studies, it has been shown that even when data are
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Figure 5: Plot of MSE against sample size for all models (Data generated from MZINB).

generated from the MZIP model, the MZINB model tends to yield small MSE and bias. The MZIP
model performs worse when data are highly overdispersed.

The proposed model, due to its generality, can also be used to test the adequacy of MZIP model,
i.e. by comparing the MZIP to the MZINB, we can test whether or not it is sufficient to use the
MZIP model. If the data do not exhibit overdispersion, i.e. k = 0, then the variance of the MZINB
model reduces to the MZIP model. The marginal zero-inflated models are not a replacement to the
traditional ZIP and ZINB model as the choice between latent class and marginal models will depend
on the research question. If inference is targeted at providing population average inference about the
effect of a variable or treatment, then it is easier and safer to begin with the proposed technique.

The computer program (SAS NLMIXED codes) with user-friendly instructions can be made
available for the reader upon request.

It is worth noting that the proposed methodology is applicable to univariate data. Extension to
correlated data such as longitudinal, repeated measures or clustered data may be required. One needs
to be careful again with interpretation of model parameters when random effects are introduced in the
proposed technique to accommodate association inherent in the data. Such an introduction will result
in subject-specific interpretation instead of population average interpretation. Special techniques will
be needed to obtain marginal inference in the presence of subject-specific random effects (Iddi and
Molenberghs, 2013). We are currently researching extensions to the marginalised ZINB model for
correlated count data exhibiting excessive amount of zeros.
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Figure A.1: Plot of bias against sample size for all models (Data generated from MZIP).
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Table A.3: Results of the Poisson and Negative Binomial Model based on 2000 Simulations from
the MZINB with k = 1.5.

Poisson Negative Binomial
True parameters 0.25 0.5 0.2 0.25 0.5 0.2 1.5
Sample Size Measure β0 β1 β2 β0 β1 β2 k

100 Estimate 0.3092 0.6298 0.0294 0.2857 0.7024 0.0106 5.4097
Std. error 0.1378 0.1509 0.0381 0.4440 0.5114 0.1787 1.2321
SB std. err. 0.5713 0.6114 0.1779 0.5488 0.5846 0.2505 1.1858

200 Estimate 0.3613 0.5897 0.0486 0.3283 0.6104 0.0565 5.7296
Std. error 0.0905 0.1011 0.0221 0.3123 0.3636 0.1183 0.9090
SB std. err. 0.3743 0.4243 0.1114 0.3609 0.3878 0.1741 0.9412

500 Estimate 0.3994 0.5702 0.0564 0.3456 0.5693 0.0832 5.8368
Std. error 0.0544 0.0620 0.0116 0.1955 0.2281 0.0708 0.5792
SB std. err. 0.2359 0.2736 0.0639 0.2238 0.2413 0.1060 0.6369

1000 Estimate 0.4094 0.5656 0.0601 0.3477 0.5498 0.0979 5.8947
Std. error 0.0376 0.0434 0.0073 0.1376 0.1610 0.0490 0.4117
SB std. err. 0.1673 0.1956 0.0436 0.1553 0.1751 0.0735 0.4538

Table A.4: Results of the Poisson and Negative Binomial Model based on 2000 Simulations from
the MZINB with k = 2.5.

Poisson Negative Binomial
True parameters 0.25 0.5 0.2 0.25 0.5 0.2 2.5
Sample Size Measure β0 β1 β2 β0 β1 β2 k

100 Estimate 0.2575 0.7050 0.0010 0.2875 0.7876 -0.0375 6.5425
Std. error 0.1463 0.1587 0.0421 0.4939 0.5651 0.2042 1.5199
SB std. err. 0.7074 0.7483 0.2157 0.6946 0.7131 0.2896 1.1279

200 Estimate 0.3430 0.6371 0.0289 0.3356 0.6353 0.0268 7.7645
Std. error 0.0934 0.1035 0.0237 0.3639 0.4211 0.1396 1.2892
SB std. err. 0.4526 0.5034 0.1313 0.4388 0.4694 0.2003 1.2649

500 Estimate 0.3855 0.6003 0.0454 0.3461 0.5912 0.0616 7.9611
Std. error 0.0556 0.0628 0.0124 0.2269 0.2646 0.0835 0.8285
SB std. err. 0.2683 0.2998 0.0718 0.2534 0.2833 0.1194 0.8805

1000 Estimate 0.3916 0.5978 0.0526 0.3491 0.5738 0.0765 8.0249
Std. error 0.0384 0.0439 0.0079 0.1597 0.1865 0.0579 0.5880
SB std. err. 0.1971 0.2193 0.0470 0.1812 0.2011 0.0826 0.6328

Table A.5: Results of the Poisson and Negative Binomial Model based on 2000 Simulations from
the MZINB with k = 4.0.

Poisson Negative Binomial
True parameters 0.25 0.5 0.2 0.25 0.5 0.2 4.0
Sample Size Measure β0 β1 β2 β0 β1 β2 k

100 Estimate 0.1684 0.7823 -0.0203 0.1770 1.0371 -0.1067 7.1537
Std. error 0.1577 0.1700 0.0456 0.5262 0.5997 0.2233 1.7016
SB std. err. 0.9353 0.9822 0.2331 0.9783 0.9851 0.3289 1.0319

200 Estimate 0.3179 0.6659 0.0082 0.3142 0.7655 -0.0251 9.5471
Std. error 0.0968 0.1071 0.0255 0.4059 0.4685 0.1622 1.6513
SB std. err. 0.5230 0.5784 0.1370 0.5683 0.5915 0.2319 1.2085

500 Estimate 0.3800 0.6090 0.0266 0.3693 0.5982 0.0352 11.0496
Std. error 0.0568 0.0641 0.0135 0.2663 0.3101 0.1012 1.2283
SB std. err. 0.3088 0.3516 0.0770 0.3066 0.3316 0.1382 1.3245

1000 Estimate 0.4016 0.5994 0.0339 0.3802 0.5726 0.0530 11.1191
Std. error 0.0390 0.0444 0.0086 0.1867 0.2181 0.0692 0.8688
SB std. err. 0.2124 0.2429 0.0501 0.2219 0.2387 0.0926 0.9441
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