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Abstract: In this paper a group of l decision makers who are confronted by the problem of choosing
a mutually acceptable solution to a statistical decision problem, is considered. If consensus is not
reached, a solution through compromise is called for. A measure of similarity or agreement between
each pair of decision makers is defined, where this measure can be used to assign weights to the
decision makers. These weights give an indication of the importance of the decision makers in terms
of relative agreement with others in the group. A solution through compromise can be found by
using these weights in the calculation of a randomised decision.

1. Introduction

One of the primary functions of groups is to make decisions. This however can be easier said than
done. Classically, consensus is defined as the full and unanimous agreement of all the decision
makers (DMs) regarding all the possible alternatives (Herrera-Viedma, Herrera and Chiclana, 2002).
The situation of DMs, confronted by the problem to reach consensus or, if not possible, to choose a
mutually acceptable solution to a decision problem, is considered.

DMs have long relied on expert judgement to inform their decision making. Three broad contexts
can be considered (French, 2011): Firstly, the expert problem where a group of experts are asked for
advice by a DM who has the responsibility for the consequences of the decision. Secondly, the group
decision problem where the group itself is jointly responsible and accountable for the decision. In
this case the DMs may wish to combine their judgements in some formal structured way. Lastly, the
textbook problem where it may be required from the group to give their judgements for others to use
in the future in as yet undefined circumstances.

According to French (2011), it is likely that a combination of the contexts will occur and that
a group of DMs might be informed by a group of experts before making their decision. French
(2011) views this as a two stage problem in which each DM listens to the experts and updates his/her
probabilities in the light of their opinions and then the DMs act as a group coming to a decision.
This context is considered in this paper and a method to combine the DM’s judgements is suggested.
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In Section 2 an overview of the elicitation and combination of expert opinion is given and Section
3 deals with the definition of a measure of similarity and the calculation of weights assigned to the
DMs. The general case of more than two outcomes is considered in Section 4 and Section 5 focuses
on utilising these weights in a compromise solution if consensus is not reached.

2. The Elicitation and Combination of Expert Opinion

As in Garisch (2009), consider the situation of l DMs, denoted by DM1,DM2, · · · ,DMl , who are
confronted by the problem to choose a mutually acceptable solution to a statistical decision problem.
If the DMs have widely different preference structures, it seems likely that consensus will not be
reached and that a solution through compromise is called for. Consider a parameter space with two
points, Θ = {θ1,θ2} and let Pi (Θ = θ1) = pi denote the prior probability for DMi that Θ equals θ1,
i = 1,2, · · · , l. The decision space is denoted by D = {d1,d2, · · · ,dn}, where the d j, j = 1,2, · · · ,n,
represent the available decisions. Suppose further each DM has his own utility function. For DMi

this utility function is given in Table 1.

Table 1: Utility function for DMi.

Decisions
d1 d2 · · · dn

Parameter space
θ1 Ui11 Ui12 · · · Ui1n

θ2 Ui21 Ui22 · · · Ui2n

The vector of expected utilities for DMi is denoted by U′i = (Ui1,Ui2, · · · ,Uin), i = 1,2, · · · , l,
where Ui j = Ui1 j pi +Ui2 j (1− pi). Each DM will rank the decisions according to the expected
utilities. The decision with maximum expected utility will be chosen and typically consensus will
not be reached.

Suppose information additional to the prior probabilities of the DMs can be provided by an expert
or a group of experts. According to Cooke and Goosens (2010), the experts may possess valuable
knowledge about the parameters in the subject matter, and they can draw from their vast expertise
in their particular field of interest to assess unknown quantities. The knowledge they can offer is not
certain but the experts can specify “degrees of belief” that can be quantified and aggregated to give
optimal choices of parameters.

Various methods of eliciting and combining expert opinion have been developed over the years
and Cooke’s classical model has been a popular approach for over 20 years. According to Aspinall
(2010) the weighting of the opinion of each expert based on their knowledge and ability to judge
uncertainties relevant to the problem can produce a “rational consensus”. The classical method of
Cooke was developed towards this research effort of obtaining a “rational consensus”, and it has
been used extensively in the field of risk analysis (Ryan, Mazzuchi, Ryan, Lopez De La Cruz and
Cooke, 2012). An expert’s final weight is then given by the normalised product of a calibration score
and an information score. A fundamental assumption of the classical model is that experts’ future
performance can be judged on the basis of how they have performed in the past.

The Traditional Committee method is a behavioural aggregation method where the experts inter-
act to achieve homogeneity of information on the parameters of interest (Cooke and Goosens, 2010).
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The Delphi method is described by Eggstaff, Mazzuchi and Sarkani (2014) as a behavioural tech-
nique that is prone to psychological bias that may affect the validity of the results. In the Paired
Comparison method, Cooke and Goosens (2010) explain that alternatives are compared and ranked
pairwise. According to Mazzuchi, Linzey and Bruning (2008) the Negative Exponential Life (NEL)
model is a popular model based on the paired comparison method for expert judgment analysis.
In the NEL model n components are compared pairwise and then ranked. It can then be analysed
whether each expert is specifying a true preference structure in his/her answers or merely assigning
answers randomly.

According to French (2011) only two of the approaches that he explored earlier stood the test of
time. One is the Bayesian approach and the other Opinion Pooling. Bayesian approaches treat the
expert’s judgements as data for the DM and then seek to develop appropriate likelihood functions
to represent the DM’s relative confidence in the experts. Opinion pools simply weight together the
expert’s judgements using a weighted arithmetic or geometric mean or something more general. Van
Noortwijk, Dekker, Cooke and Mazzuchi (1992) initiated the use of expert judgment analysis within
the maintenance environment. Their procedure involved the Histogram technique, the Supra Bayes
approach and use of the Dirichlet distribution.

According to Herrera-Viedma et al. (2002) each expert has his/her own ideas, attitudes, mo-
tivations, and personality, and it is quite natural to consider that different experts will give their
preferences in a different way. Thus, before the DMs can acquire information from the experts, a
uniform representation of the expert’s preferences must be obtained. In this paper the assumption
is made, as in French (2011) and Garcia and Puig (2004), that the experts are asked to provide
probability judgements.

3. A Measure of Similarity

Suppose information additional to the prior probabilities of the DMs can be provided in the form of
a probability k for the occurrence of the event Θ = θ1. This is denoted by

P(“Θ = θ1”) = k.

According to Garisch and Groenewald (1996) it must be decided beforehand whether to use an
expert or not, thus whether the information provided by the expert will lead to consensus. It is
however not possible to know with certainty if the use of a specific expert will result in consensus,
but the probability can be calculated for each DM. It is suggested that experts with probabilities for
consensus greater than some value β should be consulted.

Suppose the decision dE is added to the decision space by each DM where dE denotes the deci-
sion to consult an expert. The utility function for DMi is now given in Table 2.



288 GARISCH

Table 2: Updated utility function for DMi.

Decisions
d1 d2 · · · dn dE

Parameter space
θ1 Ui11 Ui12 · · · Ui1n Ui1E

θ2 Ui21 Ui22 · · · Ui2n Ui2E

If there is no gain if consensus is reached and no cost involved in the consultation of the expert,

Ui1E =
n

∑
j=1

P [choose d j |Θ = θ1 ]Ui1 j

and

Ui2E =
n

∑
j=1

P [choose d j |Θ = θ2 ]Ui2 j.

As in Garisch and Groenewald (1996), it is assumed that the distributions of k |Θ = θi , i = 1,2 are
as follows:

f (k |Θ = θ1 ) =
Γ(r+ t)

Γ(r)Γ(t)
kr−1 (1− k)t−1

and

f (k |Θ = θ2 ) =
Γ(r+ t)

Γ(r)Γ(t)
kt−1 (1− k)r−1 , 0 < k < 1, r > 0, t > 0.

Thus symmetry of the conditional distributions is assumed and the mean and variance of k |Θ = θ1

are

µ =
r

r+ t

and

σ
2 =

rt

(r+ t)2 (r+ t +1)
,

respectively. Should DMi make use of this information, the posterior probability that Θ = θ1 is

p′i = Pi (Θ = θ1 |k ) =

[
1+
(

1− pi

pi

)(
1− k

k

)r−t
]−1

, i = 1,2, · · · , l.

Again it is likely that consensus will not be reached and a solution through compromise can be
reached by assigning a weight to each DM.

The values of r and t give an indication of the quality or significance of the additional infor-
mation. If r = t then µ = 1/2 and p′i = pi, so the additional information has no value. For r ≫ t,
µ → 1 and for r ≪ t, µ → 0. For small values of σ2 and values of µ significantly different from
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1/2, high quality information is provided. It should be noted that, without loss of generality, it is only
necessary to consider values of k where k > 1/2 .

The quality of the information received from the experts can be measured in many ways. Garcia
and Puig (2004) assume that in addition to each expert opinion being represented by a probability,
it is also associated with a confidence level that expresses the conviction of the expert on its own
judgement. According to Zapata-Vázquez, O’Hagan and Bastos (2014), the usual approach to elicit
knowledge about a set of uncertain proportions which must sum to 1 is to assume that the expert’s
knowledge can be represented by a Dirichlet distribution. So far we only considered the one dimen-
sional case of the Dirichlet distribution, namely the beta distribution. The general case is discussed
in Section 4.

If it is decided to use an expert, the posterior probabilities are calculated. Suppose d j is the
optimal decision for DMi if a ji ≤ p′i ≤ b ji, j = 1,2, · · · ,n, i = 1,2, · · · , l.

Thus, for a specified value of k, k > 1/2 the optimal decision for DMi is d j if

A ji|k ≤ g(µ,σ)≤ B ji|k

where

g(µ,σ) = (2µ−1)
[

µ (1−µ)

σ2 −1
]
,

A ji|k =
ln
[(

pi
1−pi

)(
1−a ji

a ji

)]
ln
( 1−k

k

) ,

and

B ji|k =
ln
[(

pi
1−pi

)(
1−b ji

b ji

)]
ln
( 1−k

k

) , j = 1,2, · · · ,n, i = 1,2, · · · , l.

Then

C ji|k =
{
(µ,σ)

∣∣A ji|k ≤ g(µ,σ)≤ B ji|k
}

denotes, for a given value of k, the set of all pairs (µ,σ) such that d j is the optimal decision for DMi.
For two decision-makers, DMi and DMt , i 6= t, C ji|k ∩C jt|k is the set of all pairs (µ,σ) such that

consensus is reached on d j for a given value of k, while the set

Dit =

{
(k,µ,σ)

∣∣∣∣∣⋃
k

(⋃
j

(
C ji|k ∩C jt|k

))}

contains all triples (k,µ,σ) such that consensus is reached between these two DMs.
Let sit denote the similarity between DMi and DMt . Using a principle similar to the Jaccard

Coefficient, sit can be defined as the number of elements in Dit divided by the number of elements
in the set D of all possible triples (k,µ,σ).

Thus

sit = sti =
|Dit |
|D|

, where 0≤ sit ≤ 1.
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The Jaccard Similarity Coefficient is a statistic used for comparing the similarity and diversity of sets.
A measure of distance or diversity between sets is defined as one minus the similarity coefficient.

These measures of similarity can be used to assign weights to the DMs. The weight assigned to
DMi can be defined as wi =

si.
∑t st.

, where si. = ∑ j 6=i si j, i = 1,2, · · · , l. This weight gives an indication
of the importance of DMi in the group by taking the similarity between DMi and the rest of the DMs,
DM1,DM2, · · · ,DMi−1,DMi+1, · · · ,DMl into account.

It should be noted that, using the similarity measure, various methods are available to calculate
weights. The method suggested in this paper should be viewed as one of a number of approaches
that can be considered. What makes one better than the other may differ from one situation to the
next depending on the experts available, the information that can be obtained from the experts, etc.

Example 1. In this example two DMs are considered and the measure of similarity is calculated.
Consider DM1 with the following utility function given in Table 3.

Table 3: Utility function for DM1.

Decisions
DM1 d1 d2 d3

Parameter space
θ1 5 2 4
θ2 1 4 3

For a prior probability of p1 = 0.7, the optimal decision is d1. Suppose that additional infor-
mation P(“Θ = θ1”) = k = 0.9 for the occurrence of the event “Θ = θ1” is provided. The posterior
probability, and therefore the optimal decision will depend on the values of µ and σ2.

Figure 1 shows which values of µ and σ2 will result in decisions d1, d2, and d3 respectively.

Figure 1: Values of µ and σ2 that will result in decisions d1, d2, and d3 respectively.
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Consider now DM2 with the following utility function given in Table 4.

Table 4: Utility function for DM2.

Decisions
DM2 d1 d2 d3

Parameter space
θ1 11 6 10
θ2 3 5 4

Suppose this second DM has a prior probability of p2 = 0.4, and thus that the optimal decision
is d3. Consider again the additional information k = 0.9 for the occurrence of the event “Θ = θ1”.

Figure 2 shows which values of µ and σ2 will result in decisions d1, d2, and d3 respectively.

Figure 2: Values of µ and σ2 that will result in decisions d1, d2, and d3 respectively.

Thus for additional information k = 0.9, the values of µ and σ2 where consensus will be reached
between DM1 and DM2 are shown in Figure 3.
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Figure 3: Values of µ and σ2 where consensus will be reached between DM1 and DM2.

Figure 4 shows the values of µ and σ2 which will lead to consensus between DM1 and DM2 for
k = 0.6, 0.7, 0.8, and 0.9.

Figure 4: Values of µ and σ2 where consensus will be reached between DM1 and DM2 for k = 0.6,
0.7, 0.8, and 0.9.
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Considering all values of k, where 1/2 ≤ k ≤ 1, the similarity between DM1 and DM2 for this
example is s12 =

|D12|
|D| = 0.4507 and the distance therefore 0.5493.

Example 2. Consider four DMs with prior probabilities 0.7,0.4,0.3, and 0.8 respectively. Suppose
these DMs have the following utility functions given in Tables 5 to 8:

Table 5: Utility function for DM1.

DM1 d1 d2 d3

θ1 5 2 4
θ2 1 4 3

Table 6: Utility function for DM2.

DM2 d1 d2 d3

θ1 11 6 10
θ2 3 5 4

Table 7: Utility function for DM3.

DM3 d1 d2 d3

θ1 10 2 6
θ2 3 9 4

Table 8: Utility function for DM4.

DM4 d1 d2 d3

θ1 4 1 3
θ2 0 4 3

Using the prior probabilities, the optimal decisions for the DMs are d1, d3, d2, and d1 respec-
tively.

The similarities between the DMs can be calculated.

Table 9: Similarities between the DMs.

Similarity
DM1 and DM2 s12 = 0.4507
DM1 and DM3 s13 = 0.2666
DM1 and DM4 s14 = 0.9285
DM2 and DM3 s23 = 0.2981
DM2 and DM4 s24 = 0.3792
DM3 and DM4 s34 = 0.2485

The weight assigned to each DM can also be found (Table 10).

Table 10: Weight assigned to each DM.

Weight
DM1 w1 = 0.3200
DM2 w2 = 0.2193
DM3 w3 = 0.1581
DM4 w4 = 0.3026
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The highest weight is assigned to DM1, so DM1 is most in agreement with the rest of the group
members.

4. The general case of more than two outcomes

Consider a parameter and decision space denoted by Θ = {θ1,θ2, · · · ,θm} and D = {d1,d2, · · · ,dn}
respectively. DMi’s utilities are given in Table 11.

Table 11: General utility function for DMi.

Decision space
d1 d2 · · · dn dE

Pa
ra

m
et

er
sp

ac
e θ1 Ui11 Ui12 · · · Ui1n Ui1E

θ2 Ui21 Ui22 · · · Ui2n Ui2E

...

θm Uim1 Uim2 · · · Uimn UimE

As in Section 3 the decision dE has been added to the decision space for DMi where

UirE =
n

∑
j=1

P [choose d j |Θ = θr ]Uir j i = 1, . . . , l, r = 1, . . . ,m.

The information provided by an expert is now in the form of probabilities k1,k2, · · · ,km′ , where
m′ =m−1, kr =P(“Θ = θr”) , and ∑

m
r=1 kr = 1. According to Zapata-Vázquez et al. (2014) eliciting

expert knowledge about several quantities is a complex task when the quantities exhibit associations
as in the above.

There is a growing use of elicitation to express expert knowledge about uncertain quantities in
the form of probability distributions. For this general case the assumption is made that the expert’s
knowledge can be represented by a Dirichlet distribution conditional on θr. Thus the distribution of
kkk = (k1,k2, · · · ,km′) given Θ = θr, r = 1,2, · · · ,m is a Dirichlet distribution with parameter vector
αααr = (αr1,αr2, · · · ,αrm) and probability density function

f (kkk |Θ = θr ) = c(αααr)
m

∏
j=1

k
αr j−1
j

for k j > 0, ∑
m
j=1 k j = 1, and c(αααr) =

Γ(∑m
i=1 αri)

∏
m
i=1 Γ(αri)

, r = 1,2, · · · ,m.

The means and variances of k1,k2, · · · ,km, are given, respectively, by

E
(
k j
∣∣αr j

)
=

αr j

Nr

and

Var
(
k j
∣∣αr j

)
=

αr j (Nr−αr j)

N2
r (Nr +1)

,
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where Nr = ∑
m
i=1 αri. The k js are correlated and

Cov
(
ki,k j

∣∣αri,αr j
)

= −
αriαr j

N2
r (Nr +1)

.

Consider the first s < m elements of kkk and let k?s+1 = ∑
m
i=s+1 ki = 1−∑

s
i=1 ki. Then according to

the marginal property the distribution of
(
k1,k2, · · · ,ks,k?s+1

)
is Dirichlet, conditional on θr, with

parameter vector
(
αr1,αr2, · · · ,αrs,α

?
r s+1

)
where α?

r s+1 = ∑
m
i=s+1 αri = Nr−∑

s
i=1 α ji. The marginal

distribution of ki is then the beta distribution with parameters αri and Nr−αri.
The Dirichlet family is sometimes parameterised with pri =

αri
Nr

, i = 1,2, · · · ,m and Nr. Accord-
ing to this parameterisation the pris control the means of the kis, while Nr control the overall amount
of uncertainty. We could therefore ask the expert to provide a judgement of the expected value of
each ki conditional on θr together with one further judgement concerned with uncertainty to identify
Nr.

According to Zapata-Vázquez et al. (2014) methods that have been proposed in the literature for
eliciting a Dirichlet distribution can mostly be viewed as suggesting alternative kinds of judgement
of location to identify the pris and alternative kinds of judgement of uncertainty to identify Nr.
For instance, the expert could be asked for a median value of ki because the judgement of equal
probability is generally made more accurately.

One way to identify Nr is simply by eliciting a measure of uncertainty about a single ki. Other
approaches elicit Nr as a measure of the amount of information that the expert have. In Garisch and
Groenewald (2007) the past performance of the expert is used to elicit a beta distribution. This can
be extended to the elicitation of a Dirichlet distribution.

If an expert is consulted, each DM’s prior probability p j = P(Θ = θ j) can be updated and the
posterior probability p′j calculated where kkk |Θ = θr ∼ Dirichlet(αr1,αr2, · · · ,αrm).

Then

p′j = P(Θ = θ j |kkk )

=
f
(
kkk
∣∣Θ = θ j

)
p j

∑
m
t=1 f (kkk |Θ = θt ) pt

=
c(ααα j)∏

m
i=1 k

α ji−1
i p j

∑
m
t=1

(
c(ααα t)

(
∏

m
ν=1 kαtν−1

ν

)
pt

) .
By continuing in the same fashion as in Section 3, (kkk,µµµ,σσσ) can be calculated such that consensus is
reached.

Example 3. Consider the two DMs in Example 1 but now with a parameter space with three points,
Θ = {θ1,θ2,θ3}. Suppose the utility function of DM1 is the following (Table 12).
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Table 12: Utility function for DM1.
Decisions

DM1 d1 d2 d3

Parameter space
θ1 5 2 4
θ2 1 4 3
θ3 2 1 5

For prior probabilities of 0.7,0.2, and 0.1 that Θ equals θ1, θ2, and θ3 respectively, the optimal
decision is d1.

Suppose DM2 has the following utility function (Table 13).

Table 13: Utility function for DM2.

Decisions
DM2 d1 d2 d3

Parameter space
θ1 11 6 10
θ2 3 5 4
θ3 2 4 7

Consider prior probabilities of 0.4,0.1, and 0.5 for DM2 and thus an optimal decision of d3.
Suppose additional information k1 = 0.9, k2 = 0.05, and k3 = 0.05 are provided where ki =

P(“Θ = θi”).
One way to display the results is to consider the posterior probabilities. To calculate the poste-

rior probabilities, the values (kkk,µµµ,σσσ) that will result in consensus must first be found. Given the
additional information, the posterior probabilities of the DMs for θ1, θ2, and θ3 that will result in
consensus are shown in Figure 5.

Figure 5: Posterior probabilities of DM1 and DM2 resulting in consensus for kkk = [0.9,0.05,0.05] .
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The posterior probabilities of the DMs for θ1, θ2, and θ3 that will result in consensus by choosing
decisions 1, 2 and 3 are shown in Figures 6, 7, and 8 respectively.

Figure 6: Consensus, choosing decision 1, for kkk = [0.9,0.05,0.05] .

Figure 7: Consensus, choosing decision 2, for kkk = [0.9,0.05,0.05] .

The similarity between DM1 and DM2 can be calculated. This can be repeated for all DM’s and
used in the assignment of weights. For this example the similarity between DM1 and DM2 is 0.7563.
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Figure 8: Consensus, choosing decision 3, for kkk = [0.9,0.05,0.05] .

5. A Compromise decision

According to “Making Group Decisions” (eXtension.org, 2014) a compromise or randomised deci-
sion is applicable when there are two or more distinct options and the DMs are not in agreement. A
middle position is then created that incorporates ideas from all sides.

According to Bossert and Tan (1995) game theory has provided two approaches to compromise
decisions, namely, axiomatic and strategic models. In the axiomatic approach, originating in Nash
(1950), solution concepts are derived from properties that are considered desirable. In the strate-
gic approach, bargaining problems are formulated explicitly as extensive form games (Rubenstein,
1982).

The solution by compromise, presented by Nash (1950), proceeds logically from certain weak
assumptions to obtain a surprisingly strong conclusion. According to Bossert and Tan (1995), Nash’s
game consists of a single stage in which the players simultaneously announce "demands" in terms
of utilities. If these demands are compatible given the set of feasible utility vectors, then each player
receives the amount he or she demanded; otherwise the disagreement event occurs.

In the compromise or randomised solution presented by Nash (1950) a δδδ must be chosen such
that P(δδδ ) = ∏

l
i=1
[
δδδ
′UUU i
]γi is a maximum, where δδδ is the randomised decision, UUU i is the vector of

expected utilities for DMi, and equal weights γi = 1/l are assigned to the DMs.
Kalai (1977) proposes a non-symmetric Nash solution. This solution satisfies all of Nash’s ax-

ioms (Weerhandi and Zidek, 1981) except the axiom of symmetry. Thus, a weight γi ≥ 0 is assigned
to DMi where ∑

l
i=1 γi = 1.

One method to determine the weights γi would be to call upon the DMs to agree in preliminary
discussions on a choice of γi. This would permit an individual i who lacked confidence in his own
judgment to defer to the group by accepting a small value for γi < 1/l . The method proposed in this
paper is to use the measure of similarity defined in Section 3.
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Example 4. Consider again the four DMs in Example 2. The expected utilities and assigned weights
are given in Table 14

Table 14: Expected utilities and assigned weights.
Expected Utilities Weights
d1 d2 d3 Symmetric Non-symmetric

DM1 3.8 2.6 3.7 0.25 0.3200
DM2 6.2 5.4 6.4 0.25 0.2193
DM3 5.1 6.9 4.6 0.25 0.1581
DM4 3.2 1.6 3.0 0.25 0.3026

The symmetrical Nash solution is displayed in Figure 9.

Figure 9: The symmetrical Nash solution.

The maximum value is 4.4282 and the symmetrical randomised decision is to choose d1 with
probability 1.

Figure 10 shows the non-symmetrical solution.

Figure 10: The non-symmetrical Nash solution.
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The maximum value is 4.1663 and the non-symmetrical randomised decision is the same as the
symmetrical one.

Thus although there is a difference in the maximum values of the symmetrical and non-symmetrical
cases, the randomised decisions are the same and d1 is chosen with probability 1.

Table 15 shows the utilities that can be expected by each DM for the original and the symmetrical/non-
symmetrical cases.

Table 15: Expected utilities.

Decision Makers
DM1 DM2 DM3 DM4

Original 3.8 6.4 6.9 3.2
Symmetrical/Non-symmetrical 3.8 6.2 5.1 3.2

The first row in Table 15 represents the expected utilities of the DMs if they were to make
individual decisions. The table shows that by negotiating and finding a consensus solution through
compromise, there are for two DMs a decline in the expected utilities. It is always the case that the
expected utilities for the compromise decision will be less or equal to those of the individual ones.
By finding a solution through compromise, the outcome will be something that not all will be totally
satisfied with, but that everyone can live with.

6. Conclusion

In this paper l decision makers, each with his/her own utility function, are considered. A mutually
acceptable decision must be found from n possible ones. The prior probabilities of the DMs can be
updated using the information provided by an expert which is presented in the form of a probability.
Experts with probabilities for consensus greater than some cut-off value are then consulted. The
quality of the information received from the expert is measured using the beta distribution for the
case of two possible outcomes and the more general Dirichlet distribution for more than two. The
Jaccard Similarity Coefficient is used to measure similarity or diversity and used to assign weights
to the DMs. These weights indicate the importance of the DMs in the group. The method suggested
in this paper to calculate the weights should be viewed as one of a number of approaches that can be
considered and not as optimal in general. However, this method can produce an optimal result for a
specific case depending on how optimality is defined and on the experts available. Once the weights
are calculated, the compromise solution presented by Nash (1950) is considered.
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