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Abstract: In this paper, we are interested in the estimation of locally stationary processes by the
minimum Hellinger distance estimator (Beran, 1977) in spectral framework. This distance is origi-
nally applied to probability distributions. Here we apply this distance to spectral density functions
belonging to a specified parametric spectral family. We generalize the minimum Hellinger distance
estimation method to processes that only show a locally stationary behaviour. Asymptotic properties
of the estimator are shown. The robustness of the estimator is investigated through a simulation
study. An application on real data is carried out.

1. Introduction

Stationarity is the basic assumption for a general asymptotic theory for identification, estimation
and forecasting in time series analysis. However, in several situations, a nonstationary behaviour is
observed, in practice, on many series. For example, Stărică and Granger (2005), dropped the usual
assumption of global stationarity in the S&P 500 absolute returns, approximated locally nonstation-
ary data generating process by stationary models, and identified the intervals on which stationary
processes provide a good approximation. The method of estimation that they used was that of quasi-
maximum likelihood.
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Suppose we observe data X1, . . . ,XT from some locally stationary process (Xt) with time varying
spectral density f belonging to a specified parametric spectral family F = { fθ : θ ∈Θ⊂Rp}with Θ

a compact subset of Rp. Our objective is to estimate θ . In order to estimate θ for stationary time se-
ries, Hosoya (1974) and Taniguchi (1979) proposed minimising

∫
π

−π

(
log fθ (λ )+ IT (λ )/ fθ (λ )

)
dλ

with respect to θ , where IT (λ ) is the periodogram of the sample X1, ...,XT and λ ∈ [−π,π]. This
function is introduced by Whittle (1953, 1954) and is an approximate Gaussian likelihood func-
tion. For a locally stationary process Xt,T , Dahlhaus (1997) generalizes Whittle’s method based on
the minimisation of this function, by replacing the periodogram IT (λ ) in Whittle’s function by a
local version and integrating over time. As in the stationary case, he approximates the new version
of Whittle’s function by the exact Gaussian likelihood function and estimates the parameter θ by
maximum likelihood estimation.

In fact, for many parametric families of distributions of interest in applications, the maximum
likelihood estimator has full asymptotic efficiency among regular estimators. But, recently, it has
been recognised that maximum likelihood estimators are not, in general, stable under small pertur-
bations in the underlying model. However, an alternative solution to this problem can be found with
Beran (1977). He introduced a new efficient parametric estimator which is intrinsically stable un-
der small perturbations. He proposed as an estimator of θ the value θ̂T in the parameter space Θ

which minimizes the Hellinger distance between fθ and f̂T , where fT , is a suitable non-parametric
estimator of f . He has investigated the asymptotic properties of θ̂T , showing that it is asymptoti-
cally efficient under F and is also minimax robust in a small Hellinger-metric neighbourhood of
F . For the robustness of the minimum Hellinger estimator, see also Hili (1999). Similarly, by using
this estimator for finite mixture models, Cutler and Cordero-Brãna (1996) show that the minimum
Hellinger distance can give sensible results when likelihood fails.

The problem of estimation of the parameter has been the subject of a plentiful literature. However
the case currently studied is the temporal case based on the probability distributions, see Beran
(1977), and Hili (1995, 1996). But the spectral case in presence of nonstationary time series has
been rarely studied, although it is important for many applications (economics, finance, etc.). The
first theoretical results are due, on the one hand, to Dahlhaus (1997) who proposed the Whittle
estimator and, on the other hand, to Ludeña (2000) who proposed one method of estimation for
stationary Gaussian long-range dependent processes based on the log-periodogram.

In this paper, we consider the minimum Hellinger distance estimators (MHD) method to esti-
mate the processes that only show locally stationary behaviour in a spectral framework. The MHD
estimator is introduced by Beran (1977), for independent samples, as a method for simultaneously
achieving robustness and first-order efficiency, see also Tamura and Boos (1986), Simpson (1987,
1989), and Basu and Lindsay (1994). Hili (1995, 2003) extended this method of parametric es-
timation to the case of dependent samples. However, all these studies are realised in probabilistic
approach. Here we use similar arguments to study the local stationary models in a spectral frame-
work.

The paper is organised as follows. Section 2 introduces the notion of local stationarity in the
sense of Dahlhaus (1997). Section 3 presents the minimum Hellinger distance estimation method
as an approach applicable to locally stationary models. In this section, we estimate the parameters
by the minimisation of the Hellinger distance where the usual kernel spectral estimator in global
stationarity is replaced by local kernel spectral estimators. Section 4 contains a simulation study.



MHD ESTIMATION FOR LOCALLY STATIONARY PROCESSES 239

The robustness and the performance of the method are investigated in this section. Section 5 is used
to illustrate our methods on real data. Section 6 provides a discussion of our methods.

2. Locally stationary processes

A triangular array2 of stochastic processes {Xt,T}= {Xt,T , t = 1, . . . ,T}T∈N is called locally station-
ary if Xt,T has time varying infinite order moving average representation

Xt,T =
∞

∑
j=−∞

αt,T ( j)εt− j, (1)

where the εt are independent, identically distributed random variables with Eεt = 0, Eε2
t = 1 and

Eε4
t < ∞ and the time varying coefficients αt,T ( j) satisfy the following smoothness conditions :

H1: there exists a sequence {`( j), j ∈ Z} satisfying

∞

∑
j=−∞

| j|
`( j)

< ∞

such that
sup

1≤t≤T
|αt,T ( j)| ≤ K

`( j)
.

H2: there exists a function α(., j) : (0,1]→ R satisfying, for the same `( j) as in H1,

sup
0<u≤1

|α(u, j)| ≤ K
`( j)

,

sup
0<u,v≤1

|α(u, j)−α(v, j)| ≤ K|u− v|
`( j)

and
sup

1≤t≤T
|αt,T ( j)−α(

t
T
, j)| ≤ K

T `( j)
.

K denotes an arbitrary positive constant which does not depend on T and which can vary from line
to line.
Thus we can define the following stationary process X̃t(u) which is an approximation of Xt,T in a
local neighbourhood around u = t

T :

X̃t(u) =
∞

∑
j=−∞

α(u, j)εt− j.

The time varying spectral density (or spectral evolutive density) of the locally stationary process
Xt,T at time u ∈ [0,1] and frequency λ ∈ [−π,π] is defined by

f (u,λ ) =
1

2π
|A(u,λ )|2, (2)

2 Whose rows correspond to different stochastic processes.
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where A(u,λ )=∑
∞
j=−∞ α(u, j)exp(−iλ j). The function A(u,λ ) : [0,1]×[−π,π]→C with A(u,λ )=

A(u,λ ) is assumed to be a smooth function. See Dahlhaus and Subba Rao (2006), and Sergides and
Paparoditis (2007) for more details.

Consider the observations X1,T , ...,XT,T from the local stationary process (Xt,T )t∈Z defined in
(1). In inferring properties of the underlying locally stationary process, a useful class of statistics
is obtained as functional of the local periodogram. The local periodogram is the periodogram of a
segment of length N of consecutive observations around a time point [uT ], u ∈ (0,1) and is defined
by

IN(u,λ ) =
1

2πN

∣∣∣∣N−1

∑
s=0

X[uT ]−N
2 +s+1,T e−iλ s

∣∣∣∣2, −π ≤ λ ≤ π.

IN is calculated over segments of length N with midpoints t j = S( j−1)+N/2, j = 1, . . . ,M, where
T = S(M−1)+N, S is the shift from segment to segment and M is the number of segments. Specif-
ically S is an integer number and N a multiple of S. Following Dahlhaus (1997), the shift S should,
in general, be as small as possible; so that the theoretical results hold even for S = 1 and N, S and T
fulfil the relation T S4

N4 → 0.

One of the difficulties of nonstationary time series modelling is the development of a satisfactory
asymptotic theory, which is needed in time series to draw statistical inference using finite size sam-
ples. If X1, ...,XT is an arbitrary finite segment of a nonstationary time series, then letting T tend to
infinity, information may be lost at the beginning or middle of the time series. Therefore, a different
type of asymptotic setup is needed for nonstationary time series.

As in the theory of nonparametric regression, it seems natural to develop the asymptotic theory
for nonstationary time series by developing inference procedures over a finite grid. In the follow-
ing sections, we adapt the work of Beran (1977) to develop parameter estimation techniques and
an asymptotic theory for stationary processes in the time case to locally stationary processes in the
frequency case. The interest for this method of parametric estimation is that the MHD estimation
method gives efficient and robust estimators (see Beran, 1977; Hili, 1999). Thus the following sec-
tion is devoted to the generalisation of Hellinger distance estimator method for stationary processes
to locally stationary processes.

3. The minimum Hellinger distance estimator under local sta-
tionarity

In this section we discuss the behaviour of the minimum Hellinger distance in local stationarity.
Consider a sample X1,T , ...,XT,T from a locally stationary process (Xt,T ) defined in (1). To apply
the MHD to the local stationary process, we use the local version of the kernel density which is an
approach to the kernel density in global stationarity.

3.1. Defining the estimator

We define the generalisation of the minimum Hellinger distance to a locally stationary process. We
replace the usual nonparametric density estimator by a local version over data segments (possibly
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overlapping segment) and we integrate over time. We set

dHD
T ( fθ , fN) =

1
M

M

∑
j=1

∣∣∣∣∣∣ f 1/2
θ

(u j, .)− f 1/2
N (u j, .)

∣∣∣∣∣∣
2
,

that is, the distance between fθ and fN is the average of the distances over time between f 1/2
θ

(u j, .)

and f 1/2
N (u j, .), where fθ (u j, .) and fN(u j, .) are respectively the local parametric spectral density

and the local nonparametric spectral density estimator of the process in the jth segment and || · ||2
denotes the L2 norm, e.g., || f ||2 =

(∫
π

−π
| f (λ )|2dλ

)1/2
. In this definition, M is the number of

segments depending on N as defined in previous section.
The value (or values) θ̂ HD

T , based on X1,T ,X2,T , ...,XT,T , is (or are) such that

θ̂
HD
T = argmin

θ∈Θ
dHD

T ( fθ , fN). (3)

Consider observations X1,T , ...,XT,T from the nonstationary process (Xt,T )t∈Z defined in (1). Let
f (u,λ ) be the true spectral density of the process (Xt,T )t∈Z and fθ (u,λ ) ∈ F the local spectral
density of the model chosen. We view

dHD( fθ , f ) =
∫ 1

0

(
1

2π

∫
π

−π

∣∣∣ f 1/2
θ

(u,λ )− f 1/2(u,λ )
∣∣∣2dλ

)1/2

du,

as the distance between the true process with spectral density f (u,λ ) and the model with spectral
density fθ (u,λ ), θ ∈ Θ, a compact subset of Rp. The best approximating parameter value from our
model class then is

θ0 = argmin
θ∈Θ

dHD( fθ , f
)
.

If the model is correct, that is, f = fθ∗ , then it is easy to show that θ0 = θ ∗.
The function dHD

T ( fθ , fN) is now obtained from dHD( fθ , f ) by replacing the integral over time
by (1/M)∑ j and replacing the unknown true spectral density f by the nonparametric estimate fN .
Thus, we suppose that dHD

T ( fθ , fN) is an approximation to the exact distance dHD( fθ , f ) (as in the
case of the minimum Whittle distance estimator, Dahlhaus, 1997).

We now prove under certain regularity conditions that θ̂ HD
T converges to θ0. To simplify the

notation, we set in the sequel dHD
T (θ) = dHD

T ( fθ , fN) and dHD(θ) = dHD( fθ , f ).
For fN(u,λ ) the local nonparametric spectral density estimator of the process, we consider here

Dahlhaus’s (1997) approach by using the kernel estimator. In this case fN(u,λ ), called the local
kernel spectral density, is given by

fN(u,λ ) =
1

NhN

N1

∑
k=−N1

K
(

λ −λk

hN

)
IN(u,λk). (4)

N1 denotes the largest integer less than or equal to N
2 . The discrete frequencies λk are given by

2πk
N

, −N1 ≤ k ≤ N1.

The asymptotic properties of the nonparametric kernel spectral estimator for the local stationary
processes have been studied by, among others, Dahlhaus (1996), Theorem 2.2 and Sergides and
Paparoditis (2007). We will need the following assumptions:



242 FOFANA, DIOP & HILI

H3: K(·) is a symmetric and non-negative function on R such that∫
∞

−∞

K(u)du = 1,
∫

∞

−∞

u2K(u)du = 1 and sup
x
|x||K(x)|< ∞

where K has compact support [−c,c] and K is uniformly Lipschitz with constant LK i.e.
for all x,y ∈ R, |K(x)−K(y)| ≤ LK |x− y|.

H4: The smoothing bandwidth hN satisfies hN→0 such that Nh3
N→∞ and Nh4

N→0 as N→∞.

We remark that the condition Nh3
N→∞ is classical in nonparametric estimation while Nh4

N→0 is the
same as in Beran (1977).

3.2. Asymptotic properties of the MHD estimator

The asymptotic distribution of the MHD estimator is important for making theoretical comparisons
with other estimators and for making valid approximated inferences. We show here the consistency
and asymptotic normality of the MHD estimator θ̂ HD

T defined in (3) and we discuss the robustness
of the estimator.

Let G be the set of all spectral densities with respect to the Lebesgue measure on the real line.
The functional I is defined on G by the requirement that, for any f ∈ G ,

|| f 1/2
I( f )− f 1/2||2 = min

t∈Θ
|| f 1/2

t − f 1/2||2.

Following the approach of Beran (1977), we view the minimum Hellinger distance estimator (MHDE)
of θ as the value at fN of the functional I, where for any f ∈ G , I( f ) is defined by

I( f ) = {θ ∈Θ : || f 1/2
θ
− f 1/2||2 = min

t∈Θ
|| f 1/2

t − f 1/2||}. (5)

I( f ) may be multiple values and we use the notation I( f ) to indicate any one of the possible values,
chosen arbitrarily. As in Theorem 1 of Beran (1977), to ensure existence of I( f ), continuity of
I and uniqueness of I( fθ ) = θ , the following assumptions are needed on the parametric family
{ fθ , θ ∈Θ}:

• Θ is compact subset of Rp

• θ1 6= θ2 implies fθ1 6= fθ2 on a set of a positive Lebesgue measure

• for almost every u and λ , fθ (u,λ ) is continuous in θ .

In the sequel, all limits are taken as T→∞, unless otherwise specified.

3.2.1. Consistency

Suppose that our data X consists of a sample with spectral density f . The consistency of the mini-
mum Hellinger distance estimator follows from the continuity of I. The result is formally stated in
the following theorem.
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Theorem 1 Suppose that f ∈ G is the true spectral density function of Xt,T defined in (1), differ-
entiable in u and λ , that fθ (u,λ ) is continuous in θ for each u and λ and also that I( f ) is unique.
Then, under the assumptions H1 – H4,

θ̂ HD
T →I( f ) in probability.

In particular, if f = fθ0 , then θ̂ HD
T →θ0 in probability.

Proof. To prove the consistency of θ̂ HD
T , we start by proving that

sup
θ∈Θ

|dHD
T (θ)−dHD(θ)|→0 in probability.

Indeed∣∣dHD
T (θ)−dHD(θ)

∣∣= ∣∣∣ 1
M

M

∑
j=1

∣∣∣∣ f 1/2
θ

(u j, .)− f 1/2
N (u j, .)

∣∣∣∣−∫ 1

0

∣∣∣∣ f 1/2
θ

(u, .)− f 1/2(u, .)
∣∣∣∣du

∣∣∣.
Clearly, as M→+∞, the sum and integral here should converge to the same limit, i.e.

1
M

M

∑
j=1

∣∣∣∣ f 1/2
θ

(u j, .)− f 1/2
N (u j, .)

∣∣∣∣∼ ∫ 1

0

∣∣∣∣ f 1/2
θ

(u, .)− f 1/2(u, .)
∣∣∣∣du.

In fact,

∣∣dHD
T (θ)−dHD(θ)

∣∣ ≤ ∣∣∣ 1
M

M

∑
j=1

(∣∣∣∣ f 1/2
θ

(u j, .)− f 1/2
N (u j, .)

∣∣∣∣− ∣∣∣∣ f 1/2
θ

(u j, .)− f 1/2(u j, .)
∣∣∣∣)∣∣∣

+
∣∣∣ 1
M

M

∑
j=1

∣∣∣∣ f 1/2
θ

(u j, .)− f 1/2(u j, .)
∣∣∣∣−∫ 1

0

∣∣∣∣ f 1/2
θ

(u, .)− f 1/2(u, .)
∣∣∣∣du

∣∣∣.
It is obvious that the second term of the above inequality tends to 0 as M→∞. Following the triangle
inequality, the first term of the right-hand side is less than∣∣∣ 1

M

M

∑
j=1

∣∣∣∣ f 1/2(u j, .)− f 1/2
N (u j, .)

∣∣∣∣∣∣∣
which goes to zero as N→ ∞ in probability. Then

sup
θ

∣∣dHD
T (θ)−dHD(θ)

∣∣→0 in probability. (6)

Since dHD(θ) and dHD
T (θ) are respectively minimised by θ0 and θ̂ HD

T , we have

dHD(θ0)≤ dHD(θ̂ HD
T ) and dHD

T (θ̂ HD
T )≤ dHD

T (θ0).

The convergence in (6) implies dHD(θ̂ HD
T )→dHD(θ0) and therefore

θ̂
HD
T →θ0 in probability.

�
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3.2.2. Asymptotic Normality

In this section, we examine the large sample behaviour of I( fN) i.e θ̂ HD
T , where I is the functional

introduced above in (5) and fN is a suitable spectral density estimator. In order to establish the
asymptotic normality of the appropriately normalised estimator θ̂ HD

T , as in Beran (1977), we impose
some smoothness conditions on the model. We need to make the following assumption for sθ = f 1/2

θ
.

Suppose for θ ∈Θ0 ⊂Rp (Θ0 interior of Θ) that sθ is twice differentiable in L2; that is, suppose that
there exist ṡθ (p×1), the vector of first partial derivative with components in L2, and s̈θ (p× p)∈ L2,
the matrix of second partial derivative with components in L2 with respect to θ and which satisfy for
every β in a neighbourhood of zero,

sθ+β (u,λ ) = sθ (u,λ )+β ṡθ (u,λ )+βuβ (u,λ ) (7)

and
ṡθ+β (u,λ ) = ṡθ (u,λ )+β s̈θ (u,λ )+βvβ (u,λ ), (8)

where uβ and vβ tend to zero in L2 as β→0.

Here we extend the results of Hosoya and Taniguchi (1982, p.150) for stationary processes to the
framework of locally stationary processes. Hence the proof is omitted.

Lemma 1 Suppose X1,T , ...,XT,T are realisations of locally stationary process, Assumption H1 – H2

are fulfilled and f (u,λ ) is the Lipschitz continuous function in u. For a 2π-periodic function ψ :
[0,1]× [−π,π]→ C,

JT =
√

T
∫ 1

0

∫
π

−π

ψ(u,λ )
(

IN(u,λ )− f (u,λ )
)

dλdu

has, asymptotically, a normal distribution with zero mean vector and covariance matrix

V = 2π

∫ 1

0

∫
π

−π

ψ(u,−λ )ψ ′(u,λ ) f 2(u,λ )dλdu+2π

∫ 1

0

∫
π

−π

ψ
2(u,−λ ) f 2(u,λ )dλdu.

The following theorem is an extension of the results stated in Theorem 2 of Beran’s paper to the
case of locally stationary processes.

Theorem 2 Suppose that (7) and (8) hold for θ ∈Θ0, for f ∈ G ,

I( f ) exists, is unique, and I( f ) ∈ Θ0. Also, suppose that
∫ 1

0

∫
π

−π

s̈I( f )(u,λ ) f 1/2(u,λ )dλdu is a

nonsingular matrix, and the functional I is continuous at f in the Hellinger topology. Then for every
sequence of spectral densities { fN} converging to f in the Hellinger metric,

I( fN) = I( f )+
1
M

M

∑
j=1

∫
π

−π

ρ f (u j,λ ) f 1/2
N (u j,λ )dλ −

∫ 1

0

∫
π

−π

ρ f (u,λ ) f 1/2(u,λ )dλdu (9)

+aN

(
1
M

M

∑
j=1

∫
π

−π

ṡI( f )(u j,λ ) f 1/2
N (u j,λ )dλ −

∫ 1

0

∫
π

−π

ṡI( f )(u,λ ) f 1/2(u,λ )dλdu
)
,

where

ρ f (u,λ ) =−
[∫ 1

0

∫
π

−π

s̈I( f )(u,λ ) f 1/2(u,λ )dλdu
]−1

ṡI( f )(u,λ )
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and aN is a real p× p matrix which tends to zero as N→∞.
In particular, for f = fθ ,

ρ fθ (u,λ ) =
[∫ 1

0

∫
π

−π

ṡθ (u,λ )ṡ′θ (u,λ )dλdu
]−1

ṡθ (u,λ ). (10)

Proof. We have, following the proof of Theorem 1, the sum
1
M

M

∑
j=1

∣∣∣∣ f 1/2
θ

(u j, .)− f 1/2
N (u j, .)

∣∣∣∣ and

the integral
∫ 1

0

∣∣∣∣ f 1/2
θ

(u, .)− f 1/2(u, .)
∣∣∣∣du converge to the same limit.

Thus, let θ0 = I( f ), θN = I( fN). Since θ0 = I( f )∈Θ0 maximise
∫ 1

0

∫
π

−π

sθ (u,λ ) f 1/2(u,λ )dλdu

and since from (7)

lim
β→0

β
−1
∫ 1

0

∫
π

−π

(
sθ+β (u,λ )− sθ (u,λ )

)
f 1/2(u,λ )dλdu =

∫ 1

0

∫
π

−π

ṡθ (u,λ ) f 1/2(u,λ )dλdu

for every θ ∈Θ0, it follows that

∫ 1

0

∫
π

−π

ṡθ0(u,λ ) f 1/2(u,λ )dλdu = 0.

A similar conclusion applies to ṡθN . Then, using (8)

0 =
1
M

M

∑
j=1

∫
π

−π

ṡθN (u j,λ ) f 1/2
N (u j,λ )dλ

=
1
M

M

∑
j=1

∫
π

−π

(
ṡθ0(u j,λ )+β s̈θ0(u j,λ )+βvβ (u j,λ )

)
f 1/2
N (u j,λ )dλ .

Set β = θN−θ0,

0 =
1
M

M

∑
j=1

∫
π

−π

(
ṡθ0(u j,λ )+(θN−θ0)s̈θ0(u j,λ )+(θN−θ0)vN(u j,λ )

)
f 1/2
N (u j,λ )dλ ,

where vN tends to zero in L2 as β → 0 since θN → θ0.

0 =
1
M

M

∑
j=1

(∫ π

−π

ṡθ0(u j,λ ) f 1/2
N (u j,λ )dλ +

∫
π

−π

(
s̈θ0(u j,λ )+ vN(u j,λ )

)
(θN−θ0) f 1/2

N (u j,λ )dλ

)
.
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Thus, for N sufficiently large,

θN−θ0 =−
1
M

M

∑
j=1

∫
π

−π

ṡθ0(u j,λ ) f 1/2
N (u j,λ )dλ ×

[( 1
M

M

∑
j=1

∫
π

−π

(
s̈θ0(u j,λ )+ vN(u j,λ )

)
f 1/2
N (u j,λ )dλ

)−1

−
(∫ 1

0

∫
π

−π

ṡI( f )(u,λ ) f 1/2(u,λ )dλdu
)−1

+
(∫ 1

0

∫
π

−π

ṡI( f )(u,λ ) f 1/2(u,λ )dλdu
)−1

]
=−

(
1
M

M

∑
j=1

∫
π

−π

ṡθ0(u j,λ ) f 1/2
N (u j,λ )dλ −

∫ 1

0

∫
π

−π

ṡθ0(u,λ ) f 1/2(u,λ )dλdu
)

×
(∫ 1

0

∫
π

−π

ṡI( f )(u,λ ) f 1/2(u,λ )dλdu
)−1

+

(
1
M

M

∑
j=1

∫
π

−π

ṡθ0(u j,λ ) f 1/2
N (u j,λ )dλ −

∫ 1

0

∫
π

−π

ṡθ0(u,λ ) f 1/2(u,λ )dλdu
)

×
[(∫ 1

0

∫
π

−π

ṡI( f )(u,λ ) f 1/2(u,λ )dλdu
)−1
−
( 1

M

M

∑
j=1

∫
π

−π

(
s̈θ0(u j,λ )+ vN(u j,λ )

)
f 1/2
N (u j,λ )dλ

)−1
]
.

If fN→ f , we have θN = I( fN)→θ0 = I( f ) and s̈θ is continuous in θ .
Thus, we have

θN = θ0 +
1
M

M

∑
j=1

∫
π

−π

ρ f (u j,λ ) f 1/2
N (u j,λ )dλ −

∫ 1

0

∫
π

−π

ρ f (u,λ ) f 1/2(u,λ )dλdu

+aN

(
1
M

M

∑
j=1

∫
π

−π

ṡθ0(u j,λ ) f 1/2
N (u j,λ )dλ −

∫ 1

0

∫
π

−π

ṡθ0(u,λ ) f 1/2(u,λ )dλdu
)
,

where

ρ f (u,λ ) =−
[∫ 1

0

∫
π

−π

s̈θ0(u,λ ) f 1/2(u,λ )dλdu
]−1

ṡθ0(u,λ )

and

aN =
(∫ 1

0

∫
π

−π

s̈I( f )(u,λ ) f 1/2(u,λ )dλdu
)−1
−
( 1

M

M

∑
j=1

∫
π

−π

(
s̈θ0(u j,λ )+vN(u j,λ )

)
f 1/2
N (u j,λ )dλ

)−1
.

which goes to zero as N→ ∞. �
Using the representation (9), we now show by the next theorem, under stronger assumptions,

that the MHD estimator θ̂ HD
T = I( fN) has an asymptotically normal distribution. Its proof follows

the main lines of the proof of Theorem 4 in Beran (1977). Hence, it is omitted.

Theorem 3 Suppose f ∈ G is the true spectral density of (Xt)t∈Z defined in (1). Assume that (7)
and (8) hold and ρ has compact support C = [0,1]× [−π,π] on which it is continuous. Suppose f
is twice absolutely continuous and f ′′ with respect to λ is bounded. Suppose I( f ) exists, is unique
and I( f ) ∈ Θ0,

∫
s̈I( f )(u j,λ ) f 1/2(u j,λ )dλ > 0 for every j = 1, ...,M, and ṡI( f ) ∈ L2. Then, under

assumption H2 and the hypotheses of Theorem 1,
√

T (I( fN)− I( f ))→N (0,V )
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where

V =
π

2

∫ 1

0

∫
π

−π

ρ(u,−λ )ρ ′(u,λ ) f (u,λ )dλdu+
π

2

∫ 1

0

∫
π

−π

ρ
2(u,−λ ) f (u,λ )dλdu

with

ρ(u,λ ) =−
[∫ 1

0

∫
π

−π

s̈I( f )(u,λ ) f 1/2(u,λ )dλdu
]−1

ṡI( f )(u,λ ).

In particular, if f = fθ0 , then
√

T (θ̂ HD
T −θ0)→N (0,V )

where

V =
π

2

∫ 1

0

∫
π

−π

[
ṡθ0(u,−λ )ṡ′θ0(u,λ )

]−1sθ0(u,λ )dλdu+
π

2

∫ 1

0

∫
π

−π

[
ṡ2

θ0
(u,−λ )

]−1sθ0(u,λ )dλdu.

3.3. Robustness

The robustness of an estimator is often studied by means of the influence function, IF (Hampel,
1974), defined by

IF(x, f ) = lim
t→0

t−1(I((1− t) f + tδx)− I( f )
)
,

where δx is unit mass at x, I( f ) the functional based on f is defined in (5) and f the true spectral
density of (Xt). This function characterizes local robustness and the breakdown point, which relates
to global robustness. Following Lindsay (1994), the influence function is a very misleading robust-
ness measure for minimum Hellinger distance estimation. An alternative measure of robustness is
the α-influence function, (Beran, 1977). Let fθ ,α(x) = (1−α) fθ (x)+αδ[0,1](x), where δ[0,1](x)
denotes the uniform density on the interval [0,1], θ ∈ Θ and α ∈ [0,1]. The α-influence function,
denoted here by α-IF is defined as

α-IF = α
−1(I( fθ ,α)−θ

)
,

where θ = I( fθ ). The influence function is obtained by taking the limit as α → 0. It was shown
in Beran (1977) that in order to assess the robustness of a functional with respect to the gross-
error model it is necessary to examine the α-influence curve rather than the influence curve except
when the influence curve provides a uniform approximation to the α-influence curve. Analytical
evaluation of α-IF is very difficult, so we calculated the α-IF numerically.

4. Simulation study

In this section, we illustrate the finite-sample performance of the proposed estimator. We present
simulation studies to a time varying autoregressive model which is obviously locally stationary. Let
Xt,T be a solution of the system of difference equations

p

∑
j=0

a j
( t

T

)
Xt− j,T = σ

( t
T

)
εt for t ∈ Z.

The objective is to investigate the accuracy of the proposed estimator and the quality of the Gaussian
approximation of its asymptotic distribution. We also compare the MHD estimator to alternative
approaches.
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4.1. Consistency

We suppose here that a0(u) = 1 and (εt) is a sequence of independent random variables with mean
zero and variance 1. Suppose also that aθ (u) =

(
aθ

1 (u), ...,a
θ
p(u)

)
and σθ (u) depend on a finite

dimensional parameter.
We now carry out some simulations to establish the robustness of the estimation of the parameter

θ using MHD estimator, for finite samples. We present here a simulation example for the estimate
θ̂ HD

T from a locally stationary AR(2)-process

Xt,T +a1(
t
T
)Xt−1,T +a2(

t
T
)Xt−2,T = σ(

t
T
)εt (11)

where the εt are Gaussian random variables with mean zero and variance 1. The autoregressive pa-
rameters ai = ai(

t
T ), i = 1,2 are functions which change over time. As parameters we choose as

in Dahlhaus (1997), a1(u) = −1.8cos(1.5− cos4πu), i.e. a1(u) is time varying, a2(u) = 0.832 for
all 0 ≤ u ≤ 1, i.e. a2(u) is constant over time, σ(u) = 1. We generate T = 128 observations from
the model (11). This choice is motivated by the desire to study the behaviour of the estimator for
moderate or small sample sizes.

Following Adak (1998), Xt,T is locally stationary and its time-dependent spectral density as given
at (2) is

f (u,λ ) =
σ2(u)

2π

∣∣∣∣1+ 2

∑
j=1

a j(u)exp(iλ j)
∣∣∣∣−2

= fθ(u)(λ ).

Now we estimate, from the data generated by (11), the parameter θ = (θ1,θ2,θ3,θ4) such that
a1(u) = −θ1 cos(θ2− cos(4πu)), a2(u) = θ3 and σ2(u) = θ4. We could also choose to model the
coefficients as polynomials with different orders as in Dahlhaus (1997).

The local kernel spectral density estimator defined by (4) was used. To compute the periodogram,
we choose S = 2, N = 16 (i.e., M = 57). For the choice of the kernel function in fN , we use the
density of the N (0,1) distribution. For the choice of the bandwidth h, we select the value of h
which minimizes the Mean Integrated Square Error (MISE) defined as follows

MISE(h) =
∫ 1

0

∫
π

−π

E( fN(u,λ )− f (u,λ ))2 dλdu.

The measure MISE(h) depends on the unknown function f . We are going to estimate it by adopting
the cross-validation rule proposed by Rudemo (1982) and Bowman (1984). In fact, consider the
Integrated square error (ISE) defined by

ISE(h) =
∫ 1

0

∫
π

−π

( fN(u,λ )− f (u,λ ))2 dλdu.

Grégoire (1993) approximate the ISE(h) by the CV (h) criteria, defined by

CV (h) =CV1(h)+
∫ 1

0

∫ 2π

0
f 2(u,λ )dλdu

where
CV1(h) =

∫ 1

0

∫ 2π

0
f 2
N(u,λ )dλdu− 2

N

N

∑
j=1

∫ 1

0
f j
N(u,λ j)IN(u,λ j)du.
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Remark
In general, the cross validation rule may ruin the efficiency of the MHDE in practical implemen-
tation. In Leung, Marriott and Wu (1993), simulation results showed that the conventional cross-
validation rule, equivalent here to

CV (h)≈ ISE(h) =
∫ 1

0

∫
π

−π

( fN(u,λ )− f (u,λ ))2 dλdu,

behaves unsatisfactorily when the data is contaminated with outliers. To solve this problem, a robust
cross-validation rule can be defined as

CV (h) =
∫ 1

0

∫
π

−π

( fN(u,λ )− f (u,λ ))2
ρ(u,λ )dλdu

with ρ(·) is a weight function that we assume known and null outside [0,1]× [0,2π].
To select the spectral bandwidth h, we use the robust cross-validation (CV) rule, defined by :

CV (h) =CV1(h)+
∫ 1

0

∫ 2π

0
f 2(u,λ )ρ(u,λ )dλdu

where

CV1(h) =
∫ 1

0

∫ 2π

0
f 2
N(u,λ )ρ(u,λ )dλdu− 2

N

N

∑
j=1

∫ 1

0
f j
N(u,λ j)IN(u,λ j)ρ(u,λ )du

with

ρ(u,λ ) =


1

2π
on [0,1]× [0,2π]

0 otherwise

where

λ j =
2π j
N

, N =
[N−1

2

]
and f j

N(u,λ ) =
1

NhN

N1

∑
k=−N1

K
(

λ −λk

hN

)
I j
N(u,λk)

with

I j
N(u,λ ) =


IN(u,λ ) if (u,λ ) /∈ [0,1]×]λ j−1,λ j+1[

a(u,λ )IN(0,λ j−1)+b(u,λ )IN(1,λ j−1)+

c(u,λ )IN(0,λ j+1)+d(u,λ )IN(1,λ j+1) otherwise.

a(u,λ ) = αβ , b(u,λ ) = (1−α)β , c(u,λ ) = α(1−β ) and d(u,λ ) = (1−α)(1−β )

where

α =
u−1
0−1

and β =
λ −λ j+1

λ j−1−λ j+1
.

In this way, the spectral bandwidth will be chosen at the point ĥ minimizing the criterion CV :

ĥ = argmin
h

CV (h) = argmin
h

CV1(h).

The results with simulated data are presented in Figures 1 – 2.
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Figure 1: T = 128 realisations of a time varying AR-model.
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Figure 2: True and estimated time varying coefficient a1(u).

From an application of the Monte Carlo method with 3000 replications, we obtain the estimate of
the first AR parameter as shown in Figure 2, the estimate of the second AR parameter as 0.819, and
the estimate of the σ(u) as 1.28.

4.2. Evaluating Gaussian approximation

In this simulation, we present normal plots for the estimators for simulated data from TV-AR(1)
process that has the following form

Xt,T +a1

( t
T

)
Xt−1,T = σ

( t
T

)
εt (12)
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where the εt are Gaussian random variables with mean zero and variance 1 and where Time Varying
parameters have the following expressions : a1(u) = 2cos(0.3 ∗ 2π − sin(0.5u)) and σ(u) = 1 for
0 ≤ u ≤ 1. This model is a modified version of TV-AR(2) in Zhao (2008). In this simulation, we
draw 1000 samples of size n from a normal distribution with parameters a1(u) = 2cos(0.3 ∗ 2π −
sin(0.5u)) and σ(u) = 1. The sample sizes used were n = 100,500,1000. We can see in Figure 3
that, for some selected values u, as the sample size increases the estimates tend to normality.

Figure 3: Normal P-P plots for a1 and σ .
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4.3. Contaminated models

To investigate the robustness of the method when the model is not correctly specified, we propose a
new estimator for θ of fθ . The estimator for I( f ) is defined by the requirement that

dHD( fI( f̂α,N)
, fα) = min

t∈Θ
dHD( ft , f̂α,N)

where f̂α,N = (1−α) f̂N +αδ[0,1] is the contaminated density and δ[0,1] denotes the uniform density
on the interval [0,1] and α ∈ [0,1].

In the MHD estimation of the coefficients of model (11), we replace f̂N by f̂α,N for six particular
values of α . An application of Monte Carlo is shown in Table 1 for the values of â2(u) and σ̂(u)
and, in the following Figure 4, for â1(u). True values are : a2(u) = 0.819 and σ2(u) = 1.28. In
parentheses we have the Mean Absolute Error (MAE).

Table 1: Estimation of a2(u) and σ(u).

α â2(u) σ̂(u)
0.05 0.805 1.007

(0.027) (0.007)
0.1 0.821 1.019

(0.011) (0.019)
0.2 0.737 0.986

(0.095) (0.014)
0.3 0.818 0.962

(0.014) (0.038)
0.4 0.831 1.296

(0.001) (0.296)
0.5 0.826 1.103

(0.006) (0.103)

4.4. Comparison of the MHD method to other methods

To illustrate the gain provided by our estimator, we provide a comparison with two simple estimation
methods. We investigate the performance of the MHD estimator for locally stationary processes and
compare it to Maximum Likelihood (ML) and Cramér-von Mises (CVM) estimators by simulating
1000 different series of size 100, 500 and 1000 from the above time varying AR(2)-process in (11).
The paper by Par and Schucany (1980) provides a reference on the Cramér-von Mises minimum dis-
tance estimation technique. We examine both correctly specified models and contaminated models.
We calculate the root mean squared error (RMSE) of an estimate θ as

RMSE =

√
1
r

r

∑
i=1

(θi−θ)2,

where r is the number of replications performed in the simulation study and θ̂i is the estimate ob-
tained in the ith replication.
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Figure 4: True and estimated time varying coefficient a1(u).
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Table 2: Comparison of Root Mean Squared Error for the uncontaminated data. The reported values
have been calculated using 1000 replication samples.

RMSE
MHDE MLE CVM

T â2(u) σ̂(u) â2(u) σ̂(u) â2(u) σ̂(u)
100 0.8184 1.2796 0.8091 1.3078 0.8083 1.2936

(0.0186) (0.0416) (0.1052) (0.1164) (0.0692) (0.0981)
500 0.8232 1.2930 0.8159 1.3104 0.8056 1.3006

(0.0175) (0.0291) (0.0725) (0.0942) (0.0753) (0.0917)
1000 0.8112 1.2845 0.8190 1.2981 0.8064 1.2916

(0.0148) (0.0273) (0.0143) (0.0268) (0.0146) (0.0281)

Table 3: Comparison of Root Mean Squared Error for the contaminated data. The reported values
have been calculated using 1000 replication samples.

RMSE
MHDE MLE CVM

T α â2(u) σ̂(u) â2(u) σ̂(u) â2(u) σ̂(u)
100 0.01 0.8209 1.2869 0.8271 1.3164 0.8267 1.3126

(0.0183) (0.0365) (0.1030) (0.1139) (0.1103) (0.1163)
0.05 0.8196 1.2776 0.8297 1.3109 0.8291 1.3106

(0.0190) (0.0368) (0.1063) (0.1189) (0.1108) (0.1189)
0.1 0.8186 1.2760 0.8252 1.3069 0.8257 1.2983

(0.0197) (0.0392) (0.1096) (0.1207) (0.1127) (0.1219)
500 0.01 0.8189 1.2926 0.8192 1.3114 0.81904 1.3129

(0.0172) (0.0297) (0.0745) (0.0916) (0.8152) (0.0937)
0.05 0.8184 1.2896 0.8187 1.3012 0.8190 1.3108

(0.0176) (0.0317) (0.0663) (0.0674) (0.0551) (0.0772)
0.1 0.8175 1.3001 0.8189 1.2968 0.8227 1.3062

(0.0280) (0.0425) (0.0472) (0.0674) (0.055) (0.0897)
1000 0.01 0.8109 1.2535 0.8184 1.2864 0.8173 1.2906

(0.0153) (0.0279) (0.0147) (0.0265) (0.0250) (0.0324)
0.05 0.8135 1.2614 0.8172 1.2720 0.8176 1.2783

(0.0172) (0.0284) (0.0168) (0.0279) (0.0170) (0.0296)
0.1 0.8174 1.2745 0.8197 1.2981 0.8191 1.2815

(0.0183) (0.0218) (0.0178) (0.0213) (0.0194) (0.0287)
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The results, for â2(u) and σ̂(u), are summarised in Tables 2 – 3. In Figures 6 – 7 (see Appendix A),
some results concerning â1(u) are represented.
Examining the results of the three methods reported in Table 2, we can see that, for the parameters
a2(u) and σ(u), the performance of the ML and CVM estimators is inferior to that of the MHD
estimator, for the small sample sizes. This observation is consistent with Hasselblad (1969) who
warned that ML estimators have large errors when the sample size becomes small. While, for large
sample sizes, the MHD estimator does slightly worse than the ML and the CVM estimators. The
result obtained compared with the MLE agree with Lindsay (1994) who showed that, usually, the
ML method works better for well-specified models when compared to the MHD method.

Table 3 shows that the MHD estimator is more robust than ML and CVM estimators when the
incorrect model is hypothesised, particularly when the sample size is small. In general, the MHDE
is considerably more efficient than the MLE and the CVME for contaminated data. For small α

(low contamination) if the sample size is small, the MHD estimators are far better than the ML and
the CVM estimators, but if the sample size becomes large the MLE and the CVM estimators are far
better than the MHD estimators. For α increasing, the two methods MHD and ML work in the same
manner and are better than the CVM method.

Our results suggest that the MHDE is quite resistant to large quantities of bad observations.
Concluding, we can say that the MHDE for locally stationary processes is appealing compared

to MLE and CVM with respect to both efficiency and robustness.

5. Application in real data

In this section, we based our analysis on the daily returns of the S&P 500 index

Rt = ln
( Xt

Xt−1

)
= ln(Xt)− ln(Xt−1),

where Xt is the closing level of the index between January 2, 1957 and July 26, 2010. The local
dependence structure of the S&P 500 log-returns was studied by Stărică and Granger (2005) between
January 3, 1928 and May 25, 2000. Our objective here is to fit an ARMA(1,1) model as local
stationary approximation of the dynamics of the returns by using the MHD estimation method.
The intervals of homogeneity corresponding to the ARMA(1,1) local approximation are built using
a goodness-of-fit test based on the statistic defined in Stărică and Granger (2005). The method of
estimation of the ARMA parameters was that of minimum Hellinger distance.

Figure 5 displays the results of local estimation of the ARMA(1,1) process by the minimum
Hellinger distance estimator. From the graph in Figure 5, we conclude that the estimated coeffi-
cients AR and MA are always very closed.

6. Discussion

We have developed a method to estimate locally stationary processes. This method is recommended
since it is stable and can optimize the estimates with respect to both efficiency and robustness. Our
simulation study indicates that the parameters estimated using the Hellinger distance method is very
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Time-Varying AR coefficient (continuous line) and MA coefficient (dotted line).
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Figure 5: Results of locally estimation of the ARMA(1,1) process on the dynamic of returns of the
S&P 500 by the minimum Hellinger distance estimator.

close to that of the estimates using MLE and CVM methods. From the viewpoint of robustness and
efficiency, our simulations show that the MHDE has high efficiency when the data are from the model
family and is more robust than the MLE while still retaining acceptable efficiency when the data are
not from the model family. When compared to another minimum distance estimator, the Cramér-
von Mises minimum distance estimator (CVME), the MHDE is more robust when the contaminant
is moderately far away from the underlying distribution. An illustration of our method to the S&P
500 returns Rt was given. We approximate the data by time varying ARMA(1,1) processes and the
estimation provides good results. Our method is applied to stochastic processes whose margins have
time varying infinite order moving average representation. It will be nice to extend our results to
more general processes.
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Appendix A
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Figure 6: True and estimated time varying coefficient a1(u) by MHDE, MLE and CVM.
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Figure 7: True and estimated time varying coefficient a1(u) by MHDE, MLE and CVM.
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