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Abstract: Clustering of high values occurs in many real situations and affects inference on ex-
tremal events. For stationary dependent sequences, under general local and asymptotic dependence
conditions, the degree of clustering is measured through a parameter called the extremal index. The
estimation of extreme events or parameters is usually based on a k number of top order statistics or
on the exceedances of a high threshold u and is very sensitive to either of these choices. In particular,
the bias increases with a growing k and a decreasing u. The use of the Jackknife methodology may
help reduce bias. We analyse this method through a simulation study applied to several estimators
of the extremal index. An application to real data sets illustrates the results.

1. Introduction

Let {Xn}n≥1 be a stationary sequence with common distribution function (df) F , Mi, j =max(Xi+1, . . . ,X j),
M0, j = M j and Mi, j =−∞ for i > j. We say that {Xn}n≥1 has extremal index θ ∈ [0,1] if, for every
real τ > 0, there exists a sequence of thresholds {un ≡ u(τ)n }n≥1 such that

n(1−F(un))→ τ (1)

and P(Mn ≤ un)→ exp(−θτ), as n→ ∞. A sequence satisfying (1) is usually indicative of nor-
malised levels. The long range dependence condition D(un) of Leadbetter (1974), states that αn,ln →
0, as n→ ∞, for some sequence ln = o(n), where

αn,l = sup{|P(Mi1,i1+p ≤ un,M j1, j1+q ≤ un)−P(Mi1,i1+p ≤ un)P(M j1, j1+q ≤ un) | :

1≤ i1 < i1 + p+ l ≤ j1 < j1 +q≤ n}.

If {Xn}n≥1 satisfies D(un) for each positive τ within normalised levels (1) and P(Mn ≤ un) con-
verges for some τ > 0, then P(Mn ≤ un) → exp(−θτ) for all τ > 0 and {Xn}n≥1 has extremal
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index θ (Leadbetter and Rootzén, 1988). Condition D(un) establishes asymptotic independence as
the extreme values become increasingly distant and is required for the local dependence conditions
D(s)(un) of Chernick, Hsing and McCormick (1991). Indeed, this latter holds for {Xn}n≥1 satisfying
D(un), if for some {bn}n≥1 such that,

bn→ ∞, bnαn,ln → 0, bnln/n→ 0,

as n→ ∞, we have

nP(X1 > un,M1,s ≤ un < Ms,rn)−→n→∞
0,

with {rn = [n/bn]}n≥1 ([x] denotes the integer part of x). Condition D(s)(un) implies D(t)(un) for all
t > s and is implied by

n
rn

∑
j=s+1

P(X1 > un,M1,s ≤ un < X j)−→
n→∞

0.

Condition D
′
(un) of Leadbetter, Lindgren and Rootzén (1983) corresponds to s = 1 and restricts

the occurrence of clusters of exceedances resembling an i.i.d. behaviour. Therefore we have a unit
extremal index. The case s = 2 corresponds to condition D

′′
(un) of Leadbetter and Nandagopalan

(1989). Under this condition, we have clustering of exceedances but a restriction on the occurrence
of upcrossings.

If {Xn}n≥1 satisfies D(s)(un), we also conclude that the extremal index exists, given by

θ = lim
n→∞

θ(un,s)≡ lim
n→∞

P(M1,s ≤ un|X1 > un) (2)

(see Chernick et al., 1991). This interpretation of the extremal index meets O’Brien (1987) charac-
terisation where θ = limn→∞ θ(un,rn), with rn = o(n).

When extending the analysis of i.i.d. sequences to stationary ones the extremal index is a key pa-
rameter that influences the estimation of extremal properties. For instance, missing θ may lead us to
underestimate high quantiles (see, Prata-Gomes and Neves, 2015). The characterisations above con-
cerning existence and derivation of the extremal index allows the development of inference methods.
The most common approach in statistics of extremes is conducted under a semi-parametric frame-
work. The estimators are thus based on a number k of upper order statistics requiring a trade-off
between variance and bias. More precisely, the variance decreases and the bias increases with in-
creasing k. Contributions in the literature towards methods for bias reduction and stability along
a substantial amount of thresholds (avoiding the increment of variance) are welcome. The Gener-
alised Jackknife methodology revealed promising results in this context concerning the estimation of
the extremal index (Gomes, Hall and Miranda, 2008; Prata-Gomes and Neves, 2015; Neves, Gomes,
Figueiredo and Prata-Gomes, 2015). However, the method was only exploited for a simple estimator
that holds under condition D

′′
(un). Financial time series, for instance, are commonly well modelled

by GARCH processes where condition D
′′
(un) is quite implausible to hold (see Ferreira and Fer-

reira, 2015, and references therein). Here we analyse the application of the Jackknife method to
other extremal index estimators which work under the more general condition D(s)(un). The descrip-
tion of the methods is presented in Section 2. Our study is based on intensive simulation comprising
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several models and is conducted in Section 3. In Section 4 we illustrate our work through an appli-
cation to real data sets within the areas of environment and finance. A small discussion concludes
the paper in Section 5.

2. Estimators and Generalised Jackknife method

Classical estimators of θ correspond to the ratio between the number of independent clusters (Cn(un))
and the number of exceedances of a high threshold un (Nn(un)), that is,

θ̂ =
Cn(un)

Nn(un)
. (3)

Different definitions of clusters lead to different estimators. Considering the well-known runs esti-
mator, strongly motivated by O’Brien (1987) characterisation, two different groups of exceedances
of un are identified as independent clusters if there are at least r−1 consecutive observations below
the threshold between them. Thus, the runs estimator is defined by (3) where

Cn(un)≡CR
n (un) =

n−r+1

∑
i=1

1{Xi>un}1{Xi+1≤un} . . .1{Xi+r−1≤un}.

Observe also that the runs estimator corresponds to the empirical counterpart of Chernick et al.
(1991) formulation in (2), by taking r = s. In the sequel we denote it by θ̂ R.

The blocks estimator (Leadbetter, 1983) is also defined by (3), where clusters correspond to
blocks of length rn (rn = o(n)) where at least one exceedance of un occurs. Asymptotic properties
of these estimators are derived in Hsing (1991, 1993) as well as in Smith and Weissman (1994)
and Weissman and Novak (1998), where comparisons lead to the preference of the runs estimator.
Other estimators were also proposed in the literature, e.g., maximum likelihood procedures (Ancona-
Navarrete and Tawn, 2000; Süveges, 2007), a two-threshold estimator (Laurini and Tawn, 2003),
and an intervals estimator (Ferro and Segers, 2003). More recently, “cycled”-type estimators were
derived in Ferreira and Ferreira (2015). More precisely, if {Xn}n≥1 satisfies condition D(s)(un),
we have that {Zn}n≥1 such that Zn =

∨n(s−1)
j=(n−1)(s−1)+1 X j, n ≥ 1, is a sequence of cycles satisfying

condition D(2)(un) and we can estimate θ directly through

θ̂ =
UZ

n (un)

Nn(un)
, (4)

or indirectly through

θ̂ =
θ̂ZNZ

n (un)

Nn(un)
, (5)

where UZ
n (un) and NZ

n (un) are, respectively, the number of upcrossings of un and the number of
exceedances of un within {Z1, . . . ,Z[n/(s−1)]}. The direct and indirect “cycled"-type estimators in
(4) and (5) will be denoted θ̂CD and θ̂CI , respectively. Observe that θ̂ R, θ̂CD and θ̂CI work under
condition D(s)(un) which makes them natural competitors. This was corroborated in the simulation
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study conducted in Ferreira and Ferreira (2015). Moreover, estimators developed under D(2)(un)
can be used to calculate θ̂Z in (5), since {Zn}n≥1 satisfies the condition of the upcrossings, namely
the upcrossings estimator in Nandagopalan (1990), among others (for more details, see Ferreira and
Ferreira, 2015, and references therein).

Resampling techniques like bootstrap and jackknife revealed promising results within extreme
values inference, specially due to the scarce data provided by the tails. With respect to the estima-
tion of θ , these methods have been applied to the Nandagopalan’s estimator and, as far as we know,
they are confined to this latter. The reason for this lies mainly with its simple calculation resulting
in the ratio between the number of upcrossings and the number of exceedances of a large thresh-
old. However, real data is not always likely to satisfy condition D(2)(un). Think, for instance, in
financial time series that usually present high volatility. The bootstrap methodology was analysed
in Prata-Gomes and Neves (2015) and a generalised jackknife estimator was developed in Gomes
et al. (2008). See also Neves et al. (2015) and Prata-Gomes and Neves (2015). Bootstrap is based
on a computer-intensive resampling technique where extracting single observations within an inde-
pendent scheme is replaced by block-resampling in a dependent context. Different ways of blocking
mimics different features of the dependence structure of the data in the resampled one. The block
length is an important parameter and is highly sensitive to the context. Different proposals are found
in Hall, Horowitz and Jing (1995), Lahiri, Furukawa and Lee (2007), among others. A survey on
this topic is presented in Prata-Gomes and Neves (2015).

If we consider un as a deterministic level in [Xn−k:n,Xn−k+1:n), where X1:n ≤ . . . ≤ Xn:n are the
order statistics of sample (X1, . . . ,Xn), we have the estimators as functions of k, i.e., θ̂ ≡ θ̂(k),
k = 1, . . . ,n−1. We are thus reproducing a similar context of a semi-parametric estimation of other
extremal parameters like the well-know tail index. In order to achieve consistency, k≡ kn must be an
intermediate sequence, that is, kn→∞ and kn/n→ 0, as n→∞. The given estimators present strong
bias (see the left panel of Figures 2 – 7), particularly as k increases. The choice of an “optimal"
k is difficult because it requires a trade-off between variance and bias (the variance is large in the
beginning of the tail where few observations are used).

Consider three biased estimators, θ (1), θ (2) and θ (3), for the parameter θ , each one with two
dominant components within the bias, i.e.,

E(θ̂ (i)−θ) = g1(θ)

(
k
n

)
+g2(θ)

(
1
k

)
+o
(

k
n

)
+o
(

1
k

)
, i = 1,2,3, (6)

then the (second order) generalised jackknife (GJ) estimator is defined by

θ̂GJ :=
|M1(θ̂

(1), θ̂ (2), θ̂ (3))|
|M1(1,1,1)|

, (7)

where | · | denotes the determinant of a matrix and

M1(α1,α2,α3) =

 α1 α2 α3

g(1)1 (n) g(2)1 (n) g(3)1 (n)
g(1)2 (n) g(2)2 (n) g(3)2 (n)

 .

This method is developed in Gray and Schucany (1972). It is not difficult to conclude that θ̂GJ is
an unbiased estimator for the parameter θ . In Gomes et al. (2008) we can see an illustration of the
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validity of (6) for some dependent models in the case of the Nandagopalan’s estimator, i.e., the runs
estimator θ̂ R with parameter r = 2. Thus, in accordance with (7), the authors propose a GJ estimator
for the extremal index based on three levels, k, [δk]+ 1 and [δ 2k]+ 1, where δ ∈ (0,1) is a tuning
parameter. More precisely,

θ̂GJ(k) =
|M1(θ̂

R([δ 2k]+1), θ̂ R([δk]+1), θ̂ R(k))|
|M1(1,1,1)|

,

with g(i)1 (n) = δ 3−i and g(i)2 (n) = 1/g(i)1 (n), i = 1,2,3, leading to

θ̂GJ(k,δ ) =
(δ 2 +1)θ̂ R([δk]+1)−δ (θ̂ R([δ 2k]+1)+ θ̂ R(k))

(1−δ )2 . (8)

Here we apply the GJ second order methodology to the runs estimator for any value r, as well as
to the cycled-type estimators θ̂CD and θ̂CI mentioned above. Our analysis consists of an intensive
simulation study applied to several models with diverse dependence structures, namely:

- Max-autoregressive process (MAR): Xi = φXi−1∨εi, with 0< φ < 1, {εi}i≥1 an i.i.d. sequence
of r.v.’s with d.f. Fε(x) = exp(−(1−φ)/x), x > 0 and θ = 1−φ ; we consider φ = 1/2 (θ =

1/2).

- Moving maxima (MM), Xi =
∨

j=0,...,m α jεi− j, with ∑
m
j=0 α j = 1, α j ≥ 0, {εi}i≥1 an i.i.d. sequence

of unit Fréchet distributed r.v.’s and θ = ∨ j=0,...,mα j; we consider m = 3, and two cases:

MM(I): α0 = 1/6, α1 = 1/2, α2 = 1/3 (θ = 1/2);

MM(II): α0 = 1/3, α1 = 1/6, α2 = 1/2 (θ = 1/2).

- Autoregressive Gaussian (AR): Xi = βXi−1 + εi, with |β | < 1, {εi}i≥1 an i.i.d. sequence of
N(0,1−α2) distributed r.v.’s (θ = 1).

- Autoregressive Cauchy (ARCauchy): Xi = βXi−1 + εi, |β | < 1 and θ = 1−β 2; we consider
β =−3/5 (θ = 0.64).

- Uniform autoregressive (ARUnif): Xi = −(1/m)Xi−1 + εi, with {εi}i≥1 an i.i.d. sequence,
P(ε1 = j/m) = 1/m for j = 1, . . . ,m and θ = 1−1/m2; we consider m = 2 (θ = 3/4).

- Bivariate extreme value Markov (MCBEV): P(Xi ≤ x,Xi+1 ≤ y) = exp(−(x1/γ + y1/γ)γ); we
consider γ = 0.5 (θ = 0.328) .

- GARCH(1,1): Xi = σiεi, with σ2
i = α +λX2

i−1 +βσ2
i−1, α,λ ,β > 0, with {εi}i≥1 an i.i.d. se-

quence of standard Gaussian r.v.’s; we consider α = 10−6, λ = 1/4 and β = 7/10 (θ = 0.447).

Figure 1 illustrates a sample path of each model. It is proved in the literature that condition
D
′
(un) holds for AR (Leadbetter et al., 1983), condition D(2)(un) holds for MAR (Hall, 1996) and

MM(I) (Ferreira and Ferreira, 2015) and condition D(3)(un) holds for models MM(II) (Ferreira and
Ferreira, 2015), ARCauchy and ARUnif (Chernick et al., 1991). In Ferreira and Ferreira (2015)
conditions D(4)(un) and D(5)(un) were (empirically) validated for models MCBEV and GARCH(1,1),
respectively.
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Figure 1: Sample paths of models (left-to-right and top-to-bottom): MM(I), MM(II), ARCauchy,
ARUnif, AR, MAR, MCBEV, GARCH.
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We now apply the runs estimator θ̂ R ≡ θ̂ R(k), k = 1, . . . ,n− 1, by taking r = s of the D(s)(un)
condition validated in the respective model, and the same value of s is considered within the cycle-
type estimators θ̂CD ≡ θ̂CD(k) and θ̂CI ≡ θ̂CI(k), k = 1, . . . ,n−1, given in, respectively, (4) and (5).
In each case, we also compute the GJ associated estimator as in (8), by replacing θ̂ R by θ̂CD or θ̂CI ,
accordingly. Observe that θ̂CI is based on the estimation of the extremal index θZ of cycles {Zn}n≥1

where condition D(2)(un) holds and thus we derive θ̂Z through the Nandagopalan’s estimator. In
addition, a second GJ variation of θ̂CI is implemented by applying the GJ estimator only to θ̂Z . We
will use the notation θ̂ R

GJ , θ̂CD
GJ , θ̂CI

GJ and θ̂
CI2
GJ for the respective GJ versions of θ̂ R, θ̂CD and θ̂CI (the

CI2 version corresponds to the second GJ variation referred to above).
It will be found that, in this new context, the GJ methodology continues to fulfil its main goal of

improving the inference by combining information coming from the observed data. In particular, we
will see that the bias assumption in (6) is quite general and reasonable, since the subsequent second
order GJ estimation seems to work for diverse estimators and models.

3. Simulation study

Our study is based on 1000 replicas generated from the models above concerning samples of sizes
n = 500,1000,5000 (we do not consider smaller samples, since they may compromise the perfor-
mance of the cycled-type estimators; see Ferreira and Ferreira, 2015). Previous simulation analy-
sis corroborate the choice δ = 1/4 in (8) suggested in Gomes et al. (2008), and thus we assume
θ̂GJ(k)≡ θ̂GJ(k,1/4).

The sample paths of the estimated absolute bias (abias) and root mean squared error (rmse) for
samples of size n = 1000 are plotted in Figures 2 – 7. In order to evaluate the GJ methodology
when compared to the usual estimation, we also compute indicators of the eventual reduction within
the bias and the rmse, as well as an indicator of the increase in the sample path stability considered
in Gomes et al. (2008). More precisely, we estimate the optimal number of top order statistics to
consider, in the sense of ko = argmink mse(θ̂(k)). The bias reduction, the relative efficiency and the
sample paths stability indicators are thus given by, respectively,

BR =
abiaso

abiasGJ
o

, RE =

√
mseo

mseGJ
o

and SPS =
∑

n−1
k=1 1{abias(θ̂GJ(k))≤0.01}

∑
n−1
k=1 1{abias(θ̂(k))≤0.01}

,

where abiaso ≡ abias(θ̂(ko)), abiasGJ
o ≡ abias(θ̂GJ(kGJ

o )), and similarly for the mse. Observe that
larger values indicate that GJ is the better estimator.

The simulation results are reported in Tables 1 – 3.
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Table 1: Simulation results for n = 500.

R MM(I) MM(II) ARCauchy ARUnif AR MAR MCBEV GARCH
ko 33 30 30 123 1 56 43 24
kGJ

o 416 375 375 124 1 416 165 124
abiaso 0.0146 0.0269 0.0365 0.0082 0.0000 0.0306 0.0587 0.0883
abiasGJ

o 0.0233 0.0294 0.0150 0.0055 0.0000 0.0261 0.0442 0.0813
rmseo 0.0517 0.0642 0.0899 0.0349 0.0000 0.0669 0.0875 0.1200
rmseGJ

o 0.0659 0.0706 0.0807 0.1259 0.0000 0.0784 0.1193 0.1478
BR 0.6266 0.9150 2.4333 1.4909 1.0000 1.1724 1.3281 1.0861
RE 0.7845 0.9093 1.1140 0.2772 1.0000 0.8533 0.7334 0.8119
SPS 22.7692 21.6250 45.2000 0.7857 1.0000 13.0000 1.6000 1.0000

CD MM(I) MM(II) ARCauchy ARUnif AR MAR MCBEV GARCH
ko 28 23 30 55 1 38 170 72
kGJ

o 243 249 244 112 1 246 1662 1249
abiaso 0.0308 0.0232 0.0512 0.0188 0.0090 0.0417 0.0400 0.0780
abiasGJ

o 0.0216 0.0279 0.0054 0.0295 0.0090 0.0149 0.0308 0.0755
rmseo 0.0654 0.0687 0.0967 0.0565 0.0949 0.0811 0.0548 0.0947
rmseGJ

o 0.0823 0.0832 0.0976 0.1345 0.0949 0.0888 0.0481 0.0850
BR 1.4259 0.8315 9.4815 0.6373 1.0000 2.7987 1.2987 1.0331
RE 0.7947 0.8257 0.9908 0.4201 1.0000 0.9133 1.1393 1.1141
SPS 18.8000 18.8300 54.2500 0.5161 1.0000 26.3333 1.0000 2.6667

CI MM(I) MM(II) ARCauchy ARUnif AR MAR MCBEV GARCH
ko 23 23 30 55 1 27 25 16
kGJ

o 248 244 232 112 1 240 165 123
abiaso 0.0343 0.0284 0.0518 0.0188 0.0090 0.0334 0.0551 0.1003
abiasGJ

o 0.0075 0.0046 0.0279 0.0295 0.0090 0.0067 0.0143 0.0416
rmseo 0.0672 0.0676 0.0971 0.0565 0.0949 0.0847 0.0879 0.1338
rmseGJ

o 0.0749 0.0751 0.1031 0.1345 0.0949 0.0848 0.0820 0.1110
BR 4.5733 6.1739 1.8566 0.6373 1.0000 4.9851 3.8531 2.4111
RE 0.8972 0.9001 0.9418 0.4201 1.0000 0.9988 1.0720 1.2054
SPS 44.2000 45.0000 43.7500 0.5161 1.0000 44.4000 1.6667 2.0000

CI2 MM(I) MM(II) ARCauchy ARUnif AR MAR MCBEV GARCH
kGJ

o 247 247 247 248 1 247 165 123
abiasGJ

o 0.0434 0.0587 0.0174 0.0033 0.0090 0.0405 0.0304 0.0639
rmseGJ

o 0.0732 0.0797 0.0897 0.0695 0.0949 0.0754 0.0693 0.0917
BR 0.7903 0.4838 2.9770 5.6970 1.0000 0.8247 1.8125 1.5696
RE 0.9180 0.8482 1.0825 0.8129 1.0000 1.1233 1.2684 1.4591
SPS 3.0000 3.2000 17.7500 0.7097 1.0000 7.0000 2.6667 4.0000
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Table 2: Simulation results for n = 1000.

R MM(I) MM(II) ARCauchy ARUnif AR MAR MCBEV GARCH
ko 73 42 54 246 1 99 121 139
kGJ

o 732 631 708 240 1 804 880 752
abiaso 0.0225 0.0183 0.0417 0.0046 0.0000 0.0309 0.0240 0.0081
abiasGJ

o 0.0165 0.0230 0.0039 0.0037 0.0000 0.0197 0.0077 0.0031
rmseo 0.0414 0.0501 0.0766 0.0259 0.0000 0.0578 0.0496 0.0413
rmseGJ

o 0.0496 0.0550 0.0562 0.0883 0.0000 0.0576 0.0480 0.0559
BR 1.3636 0.7957 10.6923 1.2432 1.0000 1.5685 3.1169 2.6129
RE 0.8347 0.9109 1.3630 0.2933 1.0000 1.0035 1.0333 0.7388
SPS 19.7778 23.2222 46.5000 0.9772 1.0000 16.6129 6.5161 2.4667

CD MM(I) MM(II) ARCauchy ARUnif AR MAR MCBEV GARCH
ko 46 38 47 108 1 55 70 35
kGJ

o 483 471 496 212 1 499 332 247
abiaso 0.0278 0.0218 0.0448 0.0104 0.0080 0.0310 0.0502 0.0822
abiasGJ

o 0.0160 0.0229 0.0040 0.0281 0.0080 0.0190 0.0376 0.0764
rmseo 0.0538 0.0534 0.0814 0.0402 0.0894 0.0705 0.0728 0.1087
rmseGJ

o 0.0600 0.0608 0.0688 0.0981 0.0894 0.0691 0.0884 0.1193
BR 1.7375 0.9520 11.2000 0.3701 1.0000 1.6316 1.3351 1.0759
RE 0.8967 0.8783 1.1831 0.4098 1.0000 1.0203 0.8235 0.9111
SPS 23.4286 25.9091 57.2500 0.9642 2.0000 25.2143 1.2500 4.0000

CI MM(I) MM(II) ARCauchy ARUnif AR MAR MCBEV GARCH
ko 42 33 48 108 1 45 37 24
kGJ

o 496 492 416 212 1 496 332 243
abiaso 0.0344 0.0206 0.0457 0.0104 0.0080 0.0315 0.0430 0.0913
abiasGJ

o 0.0078 0.0049 0.0159 0.0281 0.0080 0.0060 0.0133 0.0349
rmseo 0.0548 0.0517 0.0814 0.0402 0.0894 0.0734 0.0708 0.1210
rmseGJ

o 0.0533 0.0511 0.0761 0.0981 0.0894 0.0583 0.0589 0.0812
BR 4.4103 4.2041 2.8742 0.3701 1.0000 5.2500 3.2331 2.6160
RE 1.0281 1.0107 1.0696 0.4098 1.0000 1.2590 1.2020 1.4901
SPS 43.2727 46.8000 43.7500 0.9643 2.0000 42.5455 2.3333 1.0000

CI2 MM(I) MM(II) ARCauchy ARUnif AR MAR MCBEV GARCH
kGJ

o 499 307 499 499 1 499 331 243
abiasGJ

o 0.0413 0.0438 0.0171 0.0004 0.0080 0.0427 0.0302 0.0594
rmseGJ

o 0.0577 0.0665 0.0639 0.0492 0.0894 0.0604 0.0529 0.0760
BR 0.8329 0.4703 2.6725 26.0000 1.0000 0.7377 1.4238 1.5370
RE 0.9497 0.7774 1.2739 0.8171 1.0000 1.2152 1.3384 1.5921
SPS 7.2727 5.9000 11.7500 1.1071 1.0000 6.9091 2.3333 4.0000
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Table 3: Simulation results for n = 5000.

R MM(I) MM(II) ARCauchy ARUnif AR MAR MCBEV GARCH
ko 211 106 137 1235 1 281 420 646
kGJ

o 3260 2148 3396 1232 1 3048 4275 3760
abiaso 0.0137 0.0116 0.0239 0.0012 0.0000 0.0181 0.0106 0.0008
abiasGJ

o 0.0126 0.0093 0.0024 0.0020 0.0000 0.0117 0.0043 0.0001
rmseo 0.0244 0.0306 0.0466 0.0112 0.0000 0.0344 0.0289 0.0198
rmseGJ

o 0.0248 0.0271 0.0261 0.0388 0.0000 0.0290 0.0222 0.0241
BR 1.0873 1.2473 9.9583 0.6000 1.0000 1.5470 2.4651 8.0000
RE 0.9839 1.1292 1.7854 0.2887 1.0000 1.1862 1.3018 0.8216
SPS 19.1157 29.7808 56.8478 1.0016 2.0000 20.2101 5.2062 2.3590

CD MM(I) MM(II) ARCauchy ARUnif AR MAR MCBEV GARCH
ko 141 106 116 546 1 195 170 72
kGJ

o 2097 1919 2476 1028 1 2368 1662 1249
abiaso 0.0180 0.0147 0.0238 0.0035 0.0010 0.0255 0.0400 0.0780
abiasGJ

o 0.0124 0.0142 0.0065 0.0276 0.0010 0.0149 0.0308 0.0755
rmseo 0.0299 0.0320 0.0493 0.0177 0.0316 0.0427 0.0548 0.0947
rmseGJ

o 0.0296 0.0313 0.0317 0.0500 0.0316 0.0323 0.0481 0.0850
BR 1.4516 1.0352 3.6615 0.1268 1.0000 1.7114 1.2987 1.0331
RE 1.0101 1.0224 1.5552 0.3540 1.0000 1.3220 1.1393 1.1141
SPS 26.5942 29.5636 60.1707 1.0037 2.0000 25.4744 1.0000 2.6667

CI MM(I) MM(II) ARCauchy ARUnif AR MAR MCBEV GARCH
ko 110 87 116 546 1 146 105 54
kGJ

o 2456 2336 1896 1028 1 2468 1664 1247
abiaso 0.0185 0.0131 0.0238 0.0035 0.0010 0.0235 0.0402 0.0829
abiasGJ

o 0.0073 0.0033 0.0094 0.0276 0.0010 0.0083 0.0082 0.0377
rmseo 0.0308 0.0314 0.0493 0.0177 0.0316 0.0435 0.0552 0.0983
rmseGJ

o 0.0235 0.0240 0.0371 0.0500 0.0316 0.0270 0.0267 0.0501
BR 2.5342 3.9697 2.5319 0.1268 1.0000 2.8313 4.9024 2.1989
RE 1.3106 1.3083 1.3288 0.3540 1.0000 1.6111 2.0674 1.9621
SPS 47.6154 49.4000 46.9500 1.0037 2.0000 41.6949 4.3636 4.0000

CI2 MM(I) MM(II) ARCauchy ARUnif AR MAR MCBEV GARCH
kGJ

o 947 672 2451 2464 1 1207 1665 1247
abiasGJ

o 0.0219 0.0206 0.0148 0.0056 0.0010 0.0249 0.0301 0.0606
rmseGJ

o 0.0369 0.0374 0.0319 0.0257 0.0316 0.0382 0.0357 0.0641
BR 0.8447 0.6359 1.6081 0.6250 1.0000 0.9438 1.3355 1.3680
RE 0.8347 0.8396 1.5455 0.6887 1.0000 1.1387 1.5462 1.5335
SPS 8.9808 5.8400 11.8000 1.1284 3.0000 7.4068 1.8182 3.0000
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The AR model has a dependent structure with θ = 1. In these cases, all estimators are biased
since they actually compute θ(k∗) < θ = 1 for some k∗ (see Ancona-Navarrete and Tawn, 2000).
Although the GJ methodology allows for a reduction of the bias and the rmse, it still underestimates
the extremal index.

In the following comments we always exclude this case. Observe that the least rmse produced
by the estimated optimal level Xn−ko:n tends to relapse on the runs estimator, both in its simple
form and based on the GJ procedure. When comparing the usual approach with the respective GJ
procedure, the rmse at the “optimal" level always decreases in the ARCauchy whilst the opposite
occurs with model ARUnif. The improvement is more evident for large sample sizes and models
MAR and MCBEV. In the GARCH model, the runs estimator always presents smaller rmse than the
GJ version. The largest BR, for n≤ 1000, is registered in estimator θ̂CI (except in models ARCauchy
and ARUnif, where this is observed, respectively, in θ̂CD and θ̂CI2 ). For n = 5000 the conclusions
change for models ARCauchy and GARCH where θ̂ R is better. With regards to efficiency, the largest
RE seems mostly associated to the CI and CI2 estimators. The stability indicator is low for model
ARUnif. Indeed, the last line panels of Figures 2, 4 and 6 show no improvement of the GJ method
within a large range of levels in the ARUnif model, suggesting that the bias assumption (6) may not
hold in this case. The largest SPS is observed for estimator CI in the majority of the cases. Although
the GJ method does not necessarily lead to improvements in all values of the indicators nor smaller
bias and rmse at optimal levels, the stability of the trajectories around the true value over a wider
range of levels, observed in Figures 2 – 7, is of vital importance with regard to practical applications.
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Figure 2: Absolute bias (left) and rmse (right), for n= 1000, of θ̂ R (full) and θ̂ R
GJ (dashed) of models

(top-to-bottom): MM(I), MM(II), ARCauchy, ARUnif.
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Figure 3: Absolute bias (left) and rmse (right), for n= 1000, of θ̂ R (full) and θ̂ R
GJ (dashed) of models

(top-to-bottom): AR, MAR, MCBEV, GARCH.
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Figure 4: Absolute bias (left) and rmse (right), for n = 1000, of θ̂CD (full) and θ̂CD
GJ (dashed) of

models (top-to-bottom): MM(I), MM(II), ARCauchy, ARUnif.
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Figure 5: Absolute bias (left) and rmse (right), for n = 1000, of θ̂CD (full) and θ̂CD
GJ (dashed) of

models (top-to-bottom): AR, MAR, MCBEV, GARCH.
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Figure 6: Absolute bias (left) and rmse (right), for n = 1000, of θ̂CI (full), θ̂CI
GJ (dashed) and θ̂

CI2
GJ

(dotted) of models (top-to-bottom): MM(I), MM(II), ARCauchy, ARUnif.
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Figure 7: Absolute bias (left) and rmse (right), for n = 1000, of θ̂CI (full), θ̂CI
GJ (dashed) and θ̂

CI2
GJ

(dotted) of models (top-to-bottom): AR, MAR, MCBEV, GARCH.
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4. Applications

4.1. Environmental data

We consider the daily maximum temperatures registered at Uccle (Belgium) in the period 1901-1999
(http://lstat.kuleuven.be/Wiley/Data/ecad00045TX.txt). In order to keep the stationar-
ity assumption, we consider the July observations, corresponding typically to the warmest month.
See the plotted data in Figure 8. An empirical evaluation of conditions D(s)(un) was conducted in
Ferreira (2015) leading to the choice s = 3. Beirlant, Goegebeur, Segers and Teugels (2004) sug-
gested the run length 4. Both values were considered and the option s = 3 led to closer estimates
of θ ≈ 0.55 derived in the previous reference under parametric modelling. The sample path estima-
tors plotted in Figure 9 thus correspond to this case. We can observe, within the GJ estimators, a
clear decrease of the bias and more stability around the horizontal line corresponding to the referred
estimate θ ≈ 0.55.

0 500 1000 1500 2000 2500 3000

15
20

25
30

35

da
ily

 m
ax

im
um

 te
m

pe
ra

tu
re

s

Figure 8: Uccle temperatures in July during 1901 – 1999.
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Figure 9: Extremal index estimation within Uccle data (from left-to-right): sample paths of θ̂ R, θ̂CD and θ̂CI (full)
and respective GJ versions (dashed); the dotted line in the last panel refers to θ̂

CI2
GJ . The horizontal line corresponds

to the estimate 0.55.
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4.2. Financial data

Financial analysts are often focused on large gains or losses where the clustering phenomena is of
particular concern. We consider the daily closing prices of the Dow Jones index over the period 1996
– 2000 (Figure 10). More precisely, we take a reasonable stationary series by deriving the log-returns
(logarithms of the ratios of successive prices). The analyses performed in Coles (2001) suggests
r = 4 and leads to θ ≈ 0.865. Based on this, we compute the sample paths of the proposed estimators,
plotted in Figure 11. We can see that the GJ estimates oscillate closer around the horizontal line
(θ ≈ 0.865), particularly in the case of the runs estimator.
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Figure 10: Dow Jones daily log-returns during 1996 – 2000.
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Figure 11: Extremal index estimation within Dow Jones index data (from left-to-right): sample paths of θ̂ R, θ̂CD

and θ̂CI (full) and respective GJ versions (dashed); the dotted line in the last panel refers to θ̂
CI2
GJ . The horizontal

line corresponds to the estimate 0.865.
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5. Discussion

The extremal index is a crucial parameter whenever clustering of high values takes place, since it
is implicated in the estimation of rare events such as exceptional high quantiles, return levels or
return periods. Semi-parametric estimators usually bear a large bias, a common feature when we
are limited to the tail. In this paper we analyse the performance of second order GJ methods in
the estimation of the extremal index. We can see that, in several estimators and diverse models, it
accomplishes the expected task of decreasing the bias for a wider range of the trajectory estimates,
a useful feature from a practical point of view and thus a motivation for applications. However, in
dependent sequences with tails resembling i.i.d. structures (θ = 1), the bias reduction is still not
enough. Also, there are dependent structures where the two-dominant components form assumed
for the bias in (6) is not the most convenient. These topics will be the aim of future work.
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