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Abstract: Parametric compositional data analysis in a high dimensional simplex can be performed
by employing the Dirichlet distribution, or alternatively, through the logistic normal distribution if
the Dirichlet is not appropriate. In this paper, a multivariate gamma (MGAM) distribution is pro-
posed as an alternative distribution for compositional data. In addition, the MGAM distribution is
extended to a multivariate extreme value (MEV) distribution and goodness of fit statistics are calcu-
lated for comparison against the logistic normal distribution. An application is considered where the
amount of gas produced from a coal gasication facility depends crucially on the size distribution of
the coal, which is measured as compositional data and characterised by six variables. The observed
sample space is divided into three regions of high (H), standard (S) and low (L) gas production by
choosing appropriate thresholds, and new observations are classified among the regions.

1. Introduction

The amount of gas produced from a coal gasication facility depends crucially on the properties and
the size distribution of the coal being used in the process. Therefore, in order to optimize gas pro-
duction, the relationship between the type of coal and the gas produced must be understood and
quantified. In the current application, data on six coal sizes were observed and it is expressed as
compositional in a five dimensional simplex. The data are not Dirichlet since positive correlations
have been found amongst the variables. Therefore, the logistic normal (LTN) distribution is an alter-
native parametric model to apply (Aitchison, 1986). In this paper, we propose a multivariate gamma
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distribution (MGAM) as an alternative to the LTN. There exists a number of multivariate gamma dis-
tributions in the literature (see for example Prékopa and Szántai, 1978; Patil, Boswell, Ratnaparkhi
and Roux, 1984). However, this distribution presented here is new, and has the advantage that it is
fairly simple to fit to data. It also has the advantage that if the data is heavy tailed, the gamma is a
more appropriate distribution than the logistic normal. It has fewer number of parameters than the
LTN and estimates can easily be obtained. A goodness of fit test is considered using the largest trace
of a difference square matrix between the observed matrix and the simulated data from the specified
distribution. In the case of the LTN, we used the posterior predictive distribution (Geisser, 1983)
instead of the plug-in estimates as in the case of the MGAM. The posterior predictive distribution of
the MGAM is not considered since the distribution is not available explicitly.

The sample of size n = 125 is divided into three groups, namely nH = 23 yielding high (H) gas
production, nS = 84 yielding standard (S) production and nL = 18 yielding low (L) production. The
objective is to classify a new observation as H, S or L. The sample space of the MGAM is partitioned
into the three regions by partitioning the sample space of the trace of the distance measure between an
observation and its simulated equivalent from the model with thresholds derived from the observed
outcomes such that 18% of the observations belong to H, 68% to S and 14% to L.

Zeros do occur, but were considered to be outliers. Therefore, observations containing zeros
were deleted.

2. Multivariate gamma distribution

There exist many definitions of multivariate gamma distributions. The version proposed here is a
generalization of the one defined by de Waal, van Gelder and Beirlant (2004). The definition is as
follows:

Definition: The random variable V (p× 1) is distributed multivariate gamma (MGAM) with
shape parameter α(p×1) and correlation structure (ρi j), i, j = 1, . . . , p if the elements of Z = exp(W )

are distributed independently Gamma(αi,1), i = 1, . . . , p where W = H1/2D−1{logV −ψ(α)}+
ψ(α). D is defined as a matrix square root of Λ =

(
ρi j
√

ψ ′(αi)ψ ′(α j)
)
, i, j = 1, . . . , p. Explicitly,

Λ=D′D and H = diag(ψ ′(α)). ψ(.) refers to the standard digamma function applied independently
to each element of its argument. ψ ′(.) refers to its first derivative, the trigamma function, and diag(.)
refers to the diagonal matrix.

Remarks:

1. E(W ) = ψ(α) and cov(W,W ′) = H.

2. We refer to the distribution of logV as a multivariate extreme value (MEV) distribution with
E(logV ) = ψ(α) and Cov(logV ) = Λ. Cov(.) refers to the covariance matrix. The special
case p = 1 and α = 1 reduces the MGAM of V to the standard exponential distribution with
the distribution of logV known as the extreme value distribution (Kotz and Nadarajah, 2000).

3. It is known that the logΓ(α,β ) distribution belongs to the Pareto class (Beirlant, Goegebeur,
Segers, Teugels, de Waal and Ferro, 2004) with extreme value index 1/α . Therefore, it may be
specified that W = exp(V ) belongs to a class of multivariate Pareto distributions (the Fréchet
domain).
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4. Let us consider the marginal distributions of Vi, i = 1, . . . , p :

a. If p = 1, then V1 ∼Gamma(α1,1) as the matrix inverse becomes a simple reciprocal and
ρ11 = 1.

b. In the case where ρi j = 0, i 6= j, the Vi are distributed independent Gamma(αi,1), as all
matrices become diagonal and the transformation then cancels out trivially.

c. In the general case where ρi j 6= 0 for some i 6= j, the marginal distributions of Vi and Vj

do not appear to follow any standard distribution. See Appendix A for an explanation.

5. Let logV = Σ1/2Y +µ , then Y is distributed as a generalised multivariate gamma distribution
with parameters µ,Σ,α,Λ denoted by GMGAM(µ,Σ,α,Λ), with E(Y ) = µ , Cov(Y,Y ′) = Σ.

6. If µ = 0 and Σ = Ip, we refer to Y ∼MGAM(α,ρ), the multivariate gamma distribution.

7. If ρi j = 0, i 6= j, then Y ∼ GMGAM(α,µ,Σ) defined in de Waal et al. (2004).

8. To fit a MGAM distribution to compositional data on X in the p dimensional simplex, let
Y =− logX and assume Y ∼MGAM(α,ρ).

9. We refer to the distribution of log(Y ) as a multivariate extreme value distribution (MEV).

10. To simulate an x value on X , we need to go backwards in the definition above. The steps are:

a. Generate wi ∈ Gamma(αi,1) independently for each i = 1, . . . , p.

b. Let µi = log(wi) and standardise by subtracting the mean ψ(αi) and dividing by
√

ψ ′(αi),
namely µs = diag−1(

√
ψ ′(α)){µ−ψ(α)}.

c. Transform µs to have covariance Λ and mean ψ(α), namely v = Λ−1/2µs +ψ(α).

d. Let x = exp(−v).

e. Rescale x such that ∑
p
i=1 xi < 1. One way to do this is to divide each element of x by

p−∑
p
i=1 xi. x1, . . . ,xp becomes the required generated compositional observation in the

p dimensional simplex.

3. Two dimensional MGAM

As an illustration we simulated data from a MGAM distribution in two dimensions. Figure 1
shows scatter plots of two sets of data simulated from a MEV distribution with different α’s and
ρ’s. The data is clearly heavy tailed and the marginals are skew distributed. The marginals are
of course gamma distributed. The figures highlight the ability of this distribution to capture some
non-traditional relationships.
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Figure 1: Two sets of size n = 200 simulated from two dimensional MGAM distributions with α =
[2 4], and ρ12 = 0.7 and −0.7, respectively.

4. Application of the MGAM

Consider a MGAM(α,ρ) fit to the compositional data on sizes of coal in a five dimensional simplex.
Let y =− log(x) where x is the (n = 130, p = 5) data matrix and we want to fit a MGAM(α,ρ) to y.
It is however advisable to rather fit a MEV(α,Λ) distribution to z = log(y). The moment estimates
are simple to obtain. Since E log(Y ) = ψ(α), it can be estimated by the mean of z = log(y), say
z̃. From the inverse function α̂ = ψ−1(ỹ), estimates of the shape parameters can be obtained by
numerically calculating the inverse values. Also, since the covariance of Z = log(Y ) is Λ, it is easy
to estimate through standard algorithms. An estimate of ρ can be obtained instead. The estimates
are:

α̂ =
[
1.4700 2.0700 1.8800 4.2100 2.7700

]
,

ρ̂ =


1.0000 −0.7716 −0.4760 −0.0475 −0.3735
−0.7716 1.0000 −0.0954 0.0808 0.2949
−0.4760 −0.0954 1.0000 −0.1252 −0.1743
−0.0475 0.0808 −0.1252 1.0000 −0.1160
−0.3735 0.2949 −0.1743 −0.1160 1.0000

 .

The estimate of Λ becomes Λ̂ =
(
ρ̂i j
√

z̃iz̃ j
)
, i, j = 1, . . . , p.

According to the definition of the MGAM, we need to transform the data y to have marginals
Gamma(α,1). We therefore transform Yi ∼ Gamma(a,b) to Yi ∼ Gamma(αi,1) independently for
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all i = 1, . . . , p. We then have that Z = logY ∼ MEV(α,ρ). Thereafter, we can proceed with the
analysis on z.

We are now able to generate y from MGAM(α,ρ) or z from MEV(α,ρ). The Mahalanobis
distance measure

D(z) =
1
n

trace[(z0− z)′(z0− z)].

between an observed matrix z and a generated z0 from a given model can be used to select α̂ . The
closer z0 gets to z, that is, the smaller D(z), the better the α̂ .

Since D(z) varies from simulation to simulation, 500 z0 values were generated and the distribu-
tion of D(z) considered. Figure 2 shows the empirical cdf of such D(z) values for the above selected
α̂ . It also serves as a goodness of fit check in the sense that it provides the α̂ where the generated z0

is close to the observed z.

Figure 2: Empirical cdf’s of 30 repetitions on distances D between z and a simulated dataset z0 with
500 simulations from MEV(α,ρ). Dotted cdf on D is obtained for the observed z.

4.1. Classification of new observations under the MGAM model

We consider now the classification of a new observation z under the MEV model between three
groups H, S and L on coal sizes. We need a measure to classify a new observation as H, S or L.
As a measure we consider the linear function w = β0 +β1z1 + · · ·+βpzp with zi the MEV variables
and w the percentiles of the cdf of the observed gas production. The sample space of w will then be
divided into three regions representing H, S and L.
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Consider the classification of a new observation z on coal sizes obtained through the transfor-
mations discussed in section 2 under the assumption that Z ∼ MEV(α,ρ). We want to classify the
observation as H, S or L.

Estimates of β ’s defined in the linear function w = β [1z1 . . .zp]
T are obtained through least

squares minimization. From the dataset of n = 112 observations, we get

β̂ =
[
1.5467 0.2394 −0.2877 0.4000 0.1341 0.2767

]
.

The R2 is equal to 0.48 for the linear model. This is increased to 0.56 if interaction terms are included
in the linear function. The specific value of R2 for this example is not meaningful on its own, we
use it merely as a starting point for model comparison. Fitting more complex models in an attempt
to raise this value is possible, but outside the scope of this article.

The empirical cdf of the calculated w’s is shown in Figure 3. Selecting thresholds on the sample
space of w as best guesses, we can specify classification rules: say if w > 2.3 classify the observation
as L, w < 1.6 classify the observation as H and otherwise classify it as S. The thresholds can be
chosen optimally by striving for the outcome on the classification accuracy to be as close as possible
to the real outcomes H = 20, S = 76 and L = 16. The classification results are H = 24, S = 67 and
L = 21 of which 13 H were classified correctly, 55 S were correct and 11 L observations classified
correctly. Adjusting the thresholds, we may get improved classifications. The success rate is 71% .
Although the multiple linear regression model does not fit that well on the MEV variables, it does
contain information on the relationship between the coal sizes and the gas production.

Figure 3: Empirical cdf of W with thresholds dividing the sample space.
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5. Logistic normal

Under the logistic normal model, we assume that X ∼ logistic normal(µ,Σ) or Y ∼ N(µ,Σ) where
Yi = log

(
Xi

1−∑
p
i=1 Xi

)
. It is known (Geisser, 1983) that the predictive distribution of a future Y0 is

multivariate t with n− p degrees of freedom, mean ȳ and precision matrix T = n(n−p)
n2−1 S−1. S =

1
n−1 ∑

n
j=1(y j− ȳ)′(y j− ȳ) is the estimated covariance matrix of Y .

Considering the dataset y (124 × 5) on coal sizes, the estimates of µ and Σ are

ȳ =
[
2.7617 2.1730 2.3919 0.0584 1.5043

]
and

S =


0.6416 0.1496 0.3571 0.3134 0.4040
0.1496 0.6737 0.3751 0.2859 0.5625
0.3571 0.3751 0.7714 0.3239 0.4942
0.3134 0.2859 0.3239 0.8963 0.3551
0.4040 0.5625 0.4942 0.3551 1.1189

 .
A goodness of fit test is employed with measure D(y) = 1

n trace[(y0− y)′(y0− y)].
If y denotes the data and y0 simulated from a multivariate normal with parameters above and

repeated 500 times, the cdf of D(y) is shown in Figure 4.

Figure 4: Empirical cdf of D(y) shown by dots based on 500 simulations. Lines show a few repeti-
tions if normal data is used instead of real data.

The logistic normal fit is also acceptable, as shown in Figure 4 from a few repetitions of simulated
data instead of the data.
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Alternatively, similar to the distance measure above, we can specify

U(Y0) =
1
p
(Y0− ȳ)′T (Y0− ȳ)∼ F(p,n− p).

The statistic U can also be considered as a distance measure between Y0 and the mean ȳ. From
the distribution of U , 95% critical values can be obtained to be able to make a decision on judging
the validity of the model.

We cannot conclude whether the MGAM fits better than the LTN. The objective of the paper is to
show that the MGAM is an alternative distribution to consider and especially for heavier tailed data
it may be more appropriate. For the classification outcomes, the logistic normal model also gives
good results in the following application.

5.1. Classifying a new observation under the LTN model

We will consider the classification of a new observations under the logistic normal model. We use
the linear function w = β0 +β1y1 + · · ·+βpyp for classification. Figure 5 shows the empirical cdf
of w for the observed data with thresholds chosen to classify an observation between H, S and L.
As a classification rule, if w < 1.7, the observation is classified as H, if w > 2.26 as L and as S
otherwise. These thresholds can be optimised by minimising the difference between the outcomes
of the classification on all the data and the observed, namely 20 H, 76 S and 16 L observations.

The two cdf’s of w, the one for the MGAM (Figure 3) and the other for the logistic normal
(Figure 5), are very similar except that the cdf corresponding to the MGAM model has a heavier tail
for H observations.

The classification matrix in Table 1 shows the outcomes.

Table 1: Classification outcome matrix A.

Observed \ Assigned H S L
H 13 7 0
S 13 49 4
L 0 4 11

The percentage correct classification is 65%. This is lower than the outcome under the MGAM
model, but by changing the thresholds, this can be higher.

6. Conclusion

In conclusion we can state that MGAM and logistic normal give very similar classification results on
the dataset as a whole. Both models seem to fit well. The largest eigenvalues on the square distances
between observed and simulated values as a classification measure is giving satisfactorily results,
but other measures can be used. The choice of the thresholds is also debatable and other choices
than squared determinant differences may be appropriate. The assignment of new observations to H,
S or L can with at least 55% confidence on properties and sizes be done under both models.
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Figure 5: Empirical cdf of w with lines showing the thresholds.

Notes

All analyses were programmed in MATLAB (The Mathworks Inc., 2013).

References
AITCHISON, J. (1986). The Statistical Analysis of Compositional Data. Springer: Netherlands.

doi:10.1007/978-94-009-4109-0.
BEIRLANT, J., GOEGEBEUR, Y., SEGERS, J., TEUGELS, J., DE WAAL, D., AND FERRO, C.

(2004). Statistics of Extremes: Theory and Applications. Wiley Series in Probability and Statis-
tics. John Wiley & Sons: Chichester.
URL: https://books.google.co.za/books?id=GtIYLAlTcKEC

DE WAAL, D. J., VAN GELDER, P. H. A. J. M., AND BEIRLANT, J. (2004). Joint modelling of
daily maximum wind strengths through the multivariate Burr-Gamma distribution. Journal of
Wind Engineering and Industrial Aerodynamics, 92 (12), 1025–1037. doi:http://dx.doi.org/10.
1016/j.jweia.2004.06.001.
URL: http://www.sciencedirect.com/science/article/pii/S0167610504000832

GEISSER, S. (1983). On The Prediction Of Observables: A Selective Update. University of Min-
nesota, School of Statistics.

KOTZ, S. AND NADARAJAH, S. (2000). Extreme Value Distributions: Theory and Applications.
Imperial College Press: London.
URL: http://books.google.co.za/books?id=b40P_o3yXuUC

https://books.google.co.za/books?id=GtIYLAlTcKEC
http://www.sciencedirect.com/science/article/pii/S0167610504000832
http://books.google.co.za/books?id=b40P_o3yXuUC


282 DE WAAL, COETZER & VAN DER MERWE

PATIL, G. P., BOSWELL, M. T., RATNAPARKHI, M. V., AND ROUX, J. J. J. (1984). Dictionary and
Classified Bibliography of Statistical Distributions in Scientific Work, volume 3: Multivariate
Models. International Co-operative Publishing House: Burtonsville, MD.

PRÉKOPA, A. AND SZÁNTAI, T. (1978). A new multivariate gamma distribution and its fit-
ting to empirical streamflow data. Water Resources Research, 14 (1), 19–24. doi:10.1029/
WR014i001p00019.
URL: http://dx.doi.org/10.1029/WR014i001p00019

THE MATHWORKS INC. (2013). Matlab.
URL: http://www.mathworks.com/

Appendix A: Marginal and conditional distributions

Marginal distributions in the general case

To understand the case where there is non-zero correlation, we consider p = 2 and provide the
following derivation:

First, let R be the matrix of correlation parameters [ρi j] =

[
1 ρ

ρ 1

]
, then Λ = H1/2RH1/2.

∴ D = R1/2H1/2, where R1/2 =
1√

2+2
√

1−ρ2

[
1+
√

1−ρ2 ρ

ρ 1+
√

1−ρ2

]
.

And so, defining r = 1+
√

1−ρ2,

H1/2D−1 = (2r)−0.5
[

r −ρ

−ρ r

]
.

∴ W = (2r)−0.5
[

r(logV1−ψ(α1))−ρ(logV2−ψ(α2))

−ρ(logV1−ψ(α1))+ r(logV2−ψ(α2))

]
+

[
ψ(α1)

ψ(α2)

]

and Z =

[
V (2r)−0.5r

1 V−(2r)−0.5ρ

2 e(2r)−0.5[−rψ(α1)+ψ(α2)ρ]+ψ(α1)

V−(2r)−0.5ρ

1 V (2r)−0.5r
2 e(2r)−0.5[−rψ(α2)+ψ(α1)ρ]+ψ(α2)

]

=

[
V (2r)−0.5r

1 V−(2r)−0.5ρ

2 c1

V−(2r)−0.5ρ

1 V (2r)−0.5r
2 c2

]
.

The joint density of Z is fZ(z) = [Γ(α1)Γ(α2)]
−1zα1−1

1 zα2−1
2 exp{−z1− z2}, so

fV (v) = c3v(2r)−0.5[r(α1−1)−(α2−1)ρ]
1 v(2r)−0.5[r(α2−1)−(α1−1)ρ]

2

× exp{−v(2r)−0.5r
1 v−(2r)−0.5ρ

2 c1− v−(2r)−0.5ρ

1 v(2r)−0.5r
2 c2}

× c1c2v(2r)−0.5r−2−(2r)−0.5ρ

1 v(2r)−0.5r−2−(2r)−0.5ρ

2 ×|c4|

= c5v(2r)−0.5[rα1−α2ρ]−1
1 v(2r)−0.5[rα2−α1ρ]−1

2

× exp{−c1v(2r)−0.5r
1 v−(2r)−0.5ρ

2 − c2v−(2r)−0.5ρ

1 v(2r)−0.5r
2 }.

http://dx.doi.org/10.1029/WR014i001p00019
http://www.mathworks.com/
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∴ fv1(v1) =
∫

∞

0 avb
2e−cvd

2−gvh
2 dv2 where a,b,c,g,h are functions of v1 and the parameters; while d,h

are just functions of ρ . This integral does not have a closed form solution for ρ 6= 0,1.
Note that if ρ = 0 then r = 2 and we again arrive at the product of independent gamma densities.

Conditional distributions

Since the marginals do not have a closed form, neither do the conditional distributions. However,
given specific values of one or more components, it is possible to evaluate the conditional densi-
ties empirically, up to an unknown constant. It is thus possible to simulate from the conditional
distributions and then calculate desired quantities from the simulations.

Manuscript received, 2016-03-23, revised, 2016-06-22, accepted, 2016-06-26.



284


	Introduction
	Multivariate gamma distribution
	Two dimensional MGAM
	Application of the MGAM
	Classification of new observations under the MGAM model

	Logistic normal
	Classifying a new observation under the LTN model

	Conclusion

