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Abstract: When performing long-range survival estimations, longitudinal survival analysis meth-
ods such as Cox Proportional Hazards (PH) and accelerated lifetime models may produce estimates
that are outdated. This paper introduces a cross-sectional survival analysis regression model for
discrete-time survival analysis. The paper describes a number of variations to the model, including
how the model can be used to model competing risks. The model is applied to a portfolio of defaulted
loans to estimate the probability of loss. The model’s performance is benchmarked against the Cox
PH model. Results show that cross-sectional survival analysis performs better than the conventional
methods of survival. This is attributable to the fact that the cross-sectional survival method is able
to use only the most recent survival information to inform predictions.

1. Introduction

Survival analysis is a general class of techniques used to determine the distribution of time until a
target event occurs. The applications of survival analysis techniques is widely varied. In actuarial
science, survival analysis is applied to measure lifetime distribution of insured lives (Wetterstrand,
1981). In finance, survival analysis was used to derive the Gaussian copula function for dependent
risk (Li, 2000). In operations research, survival analysis is commonly applied to measure the relia-
bility of appliances and systems (Peña and Hollander, 2004). In medicine, survival analysis is used
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to measure the success of drug trials (Knaus et al., 1993). In consumer credit risk survival analysis
is used to model default rates and loss given default (Bellotti and Crook, 2009).

There are a number of different types of survival analysis methods in common application. Para-
metric survival analysis is one of the most tamed of these. This requires a parametric form for the
waiting-time distribution to be assumed, so that the analysis reduces to the estimation of the param-
eters of this assumed distribution. This form of survival analysis is relatively inflexible to data, only
being reliable when the nature of the distribution is well-understood. Otherwise, the analysis suffers
from the risk of the assumed parametric form being wrong.

An accelerated life (or accelerated failure time) survival model is a special class of parametric
survival methods where occurrence of the event of interested is modelled as being accelerated or
decelerated by the presence of certain risk factors (Wei, 1992). In this type of model, the waiting-
time distribution function of all members of the population is found as a horizontal shift of some
baseline distribution function. Due to this strict restriction, this form of survival analysis is only
applicable to a selected number of cases.

One of the most common type of survival analysis is proportional hazard survival analysis. Here
it is assumed that the rate of occurrence (or hazard rate) between any two members of the population
is proportional at all survival times, e.g., the jth subject of the study is always r times riskier than
the ith subject at all survival times. Cox regression is the most popular type of proportional hazard
regression (Cox, 1972). It owes its popularity to the fact that is allows the hazard function to be
specified semi-parametrically.

Cox regression is widely applied in almost all applications of survival analysis. Bellotti and
Crook (2009) apply survival analysis to the analysis of risk in consumer loans. Petrie et al. (2002)
apply Cox regression in studying the effect of intervention on recovery following myocardial infarc-
tions. Chollet et al. (2002) apply Cox regression to study induction chemotherapy in operable breast
cancer patients.

Although widely applied, Cox regression has some weaknesses. Firstly, the technique is un-
wieldy when the covariates are allowed to vary with survival time. The second concern with Cox
regression is that it is fitted with the presumption that the baseline hazard remains unchanged over
time. Although this is usually not a problem in typical applications, it stands to compromise the
validity of the model when the application is over a longer term. The study conducted by Strauss,
Shavelle and Ashwal (1999) provides a good example of the effects of this issue. Their study was
on the mortality of humans in permanent vegetative state. They found marked increases in infant (2
years old and younger) life expectancy between 1981 and 1996. Since no similar effect was found
in older age groups, this study would invalidate the assumption of a constant baseline hazard.

A closely-related issue to this is the fact that Cox regression estimated the baseline hazard on
a longitudinal basis. Certain changes in survival rates are observed easier through cross-sectional
analysis than longitudinal analysis. The study of Strauss et al. (1999) is an example of these. Fur-
thermore, longitudinal analysis is less suitable for left-censored data, while cross-sectional analysis
is usable under both left and right censoring.

Having accounted for these weaknesses, Cox regression is still one of the most practical forms
of survival analysis. This is mainly due to its intuitiveness and flexibility to data. Strauss, Shavelle,
DeVivo and Day (2000) attempt to overcome some of the weaknesses of Cox regression through
logistic regression. In this paper we continue in this theme and offer a different form of logistic
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regression, as an alternative to Cox regression.
The paper describes how logistic regression can be used to model survival probability using time-

varying covariates. By introducing an offset variable reflecting the baseline survival probability,
we show how logistic regression is able to model survival probabilities in a population exposed
to multiple decrements. Furthermore, by estimating the baseline survival probability on a cross-
sectional basis, we show that the resultant probability is more reactive to changes in the nature of the
survival distribution.

The remainder of the paper is organised as follows. Section 2 discusses the theoretical mer-
its of a complementary-log-log survival model over standard survival analysis, and offers ways in
which such a model can be extended under different situations. Sections 3 and 4 present a practical
comparison of the model to Cox regression and Section 5 concludes with a review of the findings.

2. Complementary Log Log Survival Model

2.1. Logistic Regression

Logistic regression is one of the most popular modelling techniques applied for modelling binary
outcomes. It produces a model that relates the transformed probability of the target outcome to a
linear function of a set of covariates.

Let Yk be a Bernoulli random variable representing the outcome of the kth trial out of a set of n
trials. Let Xk = {Xk,1,Xk,2, ,Xk,p} be a vector of covariates associated with the outcome Yk. Logistic
regression is interested in modelling ρk = P[Yk = 1] as a function of Xk. The canonical link function
of the Bernoulli distribution is the logit function, so that the natural form of the logistic regression
model is as follows:

ln
(

ρk

1−ρk

)
= β0 +

p

∑
j=1

β jXk, j,

where β =
{

β1,β2, . . . ,βp
}

is the vector of parameters of the model. Other common link functions
for logistic regression models include the probit function and the complementary log-log (CLL)
function.

For a general link function g−1 (x), we have the following model for ρk:

ρk = g

(
β0 +

p

∑
j=1

β jXk, j

)
.

Therefore, we can estimate βββ by maximising the following log-likelihood function with respect to
βββ :

l (βββ ) =
n

∑
k=1

[
Ykg

(
β0 +

p

∑
j=1

β jXk, j

)
+(1−Yk)

(
1−g

(
β0 +

p

∑
j=1

β jXk, j

))]
.

The maximisation can be accomplished numerically. For a general discussion on the application and
interpretation of logistic regression, see Lottes, DeMaris and Adler (1996).
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Complementary Log Log Link Function with an Offset

Logistic regression with the CLL link function yields the following model:

ln(−ln(1−ρk)) = β0 +
p

∑
j=1

β jXk, j.

Therefore, the model yields the following expression for ρk:

ρk = 1− e−e
β0+∑

p
j=1 β jXk, j

.

Suppose that, in addition to Xk, we have prior estimates relating to the value of ρk within the popu-
lation. Let πk ∈ (0,1) be a baseline estimate of ρk, satisfying the following property:

ρk = 1− [1−πk]
e

β0+∑
p
j=1 β jXk, j

.

The baseline estimate πk can be treated as another covariate of the model. However, in order to
force the relationship above, we include πk into the model as ln(−ln(1−πk)) and force a parameter
estimate of one, as follows:

ln(−ln(1−ρk)) = ln(−ln(1−πk))+β0 +
p

∑
j=1

β jXk, j,

i.e., we fit a CLL logistic regression model, with ln(−ln(1−πk)) included as an offset variable.
This simplifies to produce the following model for ρk:

ρk = 1− [1−πk]
e

β0+∑
p
j=1 β jXk, j

.

The use of the offset variable to produce survival probabilities is the core idea that is contributed
by this paper. The following section develops how this idea is used under different situations where
survival analysis is required.

2.2. Survival Models

The Basic Model

The form of the logistic regression model described above is ideal for modelling survival proba-
bilities. Suppose we are given a set of n subjects of a survival study. For each subject k, we are
interested in modelling the following binary outcome:

Yk (t, t + s)=
{

0, if subject survives to time t + s, given the subject survived to time t
1, if subject has experienced the target event by time t + s,given survival to time t

Define ρk (t, t + s) to be P [Yk (t, t + s) = 1] and π (t, t + s) to be the prior estimate for ρk (t, t + s).
Note here that the estimate π (t, t + s) is the same for all k, i.e.., it is a baseline estimate. Using the
CLL model, ρk (t, t + s) is as follows:

ρk (t, t + s) = 1− [1−π (t, t + s)]e
β0+∑

p
j=1 β jXk, j(t)

,
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where Xk (t) =
{

Xk,1 (t) ,Xk,2 (t) , . . . ,Xk,p (t)
}

is a vector of categorical covariates of subject k. For
simplicity, we assume all variables are categorical. This allows that ρk (t, t + s) = π (t, t + s) when
β0+∑

p
j=1 β jXk, j = 0, i.e., π (t, t + s) is set to equal ρk (t, t + s) for a chosen reference sub-population.

In order to fit the model, π (t, t + s) needs to be estimated from the observed experience of the
baseline population. One approach for doing this uses the Kaplan-Meier estimator for the survival
function (Kaplan and Meier, 1958). Let S0 (t) be the probability that a subject from the baseline
population survives to time t. The Kaplan-Meier estimator for S0 (t) is as follows:

Ŝ0 (t) =
t

∏
j=1

(
1− D0 (t)

E0 (t)

)
,

where D0 (t) is the number of subjects in the observed experience that experienced the event at time t
and E0 (t) is the number of subjects yet to experience the event at time t, excluding any subjects that
were censored before time t. The hazard function associated with Ŝ (t) is ĥ(t) = D0(t)

E0(t)
. The baseline

probability can then be estimated as:

π (t, t + s) =
Ŝ0 (t + s)

Ŝ0 (t)
.

Therefore, the probability that a subject with covariate vector x at time t survives to time t + s is
modelled as:

ρ (t, t + s,x) = 1− [1−π (t, t + s)]e
β0+∑

p
j=1 β jx j

.

Notice that the current survival time t and the length of the event horizon s are only featured in the
model formula through π (t, t+s). In other words, covariate vector x only adjusts for non-temporal
risk effects. Therefore, for the model to be valid, the following must hold:

eβ0+∑
p
j=1 β jx j =

ln [1−ρ (t, t + s,x)]
ln [1−π (t, t + s)]

,

i.e., the ratio ln[1−ρ(t,t+s,x)]
ln[1−π(t,t+s)] must be constant for all t and s, for a given x. We can test this empirically

by plotting the following ratio for different values of t for a given x:

r (t,s,x) =
ln
[
1− Ŝ(t+s,x)

Ŝ(t,x)

]
ln
[
1− Ŝ0(t+s)

Ŝ0(t)

] ,
where Ŝ (t,x) is the Kaplan-Meier estimate of the survival function in the population with covariate
vector x. The plot of r (t,s,x) against either t or s should produce a flat line in order for the model
to be valid. This test is analogous to the test for the proportional hazards assumption under Cox
regression.

The Competing-Risk Model

Competing risk survival analysis is concerned with estimating the waiting-time distribution in the
case where the subjects of the study are exposed to more than one decrement. A decrement in
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this case is defined as the predetermined event of interest. A common approach to competing-risk
survival analysis is the Cumulative Incidence Curve (CIC) approach (see Lin, 1997). This involves
developing separate survival models for each decrement (in each case treating the other decrement
as a type of censorship) and combining the models using the CIC.

Let h[i] (t) be the hazard function for the ith decrement of the study. Define S (t) to be the overall
survival function of the study, taking into account all the decrements, and I[i] (t) to be the incident
function for the ith decrement. The survival function S (t) can be computed recursively from:

S (t) = S (t−1)−∑
i

I[i] (t−1),

with the initial condition S (0) = 1. Values for Ii (t) are computed from S (t) as follows:

I[i] (t) = h[i] (t)S (t) .

The probability of surviving decrement i until t + s, given survival to t, is then computed as follows:

ρ[i] (t, t + s) =
t+s

∑
u=t+1

I[i] (u)
S (t)

.

We call p[i] (t, t + s) the forward-looking survival probability for decrement i. Therefore, the overall
survival probability S (t) can also be written as

S (t) = 1−∑
i

ρ[i] (t, t + s).

The CLL model can be adapted for competing risk survival analysis by using the CIC approach.
Suppose, as before, we are given a set of n subjects of a survival study. For each subject k, we are
interested in modelling the following binary outcome:

Yk,[i] (t, t + s)=
{

0 if subject survives decrement i to time t + s, given the subject survived to time t
1 if subject has experienced decrement i by time t + s, given survival to time t

,

for each decrement i in the study.
Define ρk,[i] (t, t + s) to be P

[
Yk,[i] (t, t + s) = 1

]
and π[i] (t, t + s) to be the baseline estimate for

ρk,[i] (t, t + s). Therefore, the probability that a subject with covariate vector x at time t survives
decrement i to time t + s is modelled as:

ρ[i] (t, t + s,x) = 1−
[
1−π[i] (t, t + s)

]eβ0+∑
p
j=1 β j x j

.

As before, π[i] (t, t + s) corresponds to the baseline population (i.e., x = 0), so that π[i] (t, t + s) =
ρ[i] (t, t + s,0). Therefore, we can estimate π[i] (t, t + s) through the CIC approach, as p[i] (t, t + s) for
the population x = 0.

The probability of not surviving to time t + s is the sum of the probability of exiting due to each
decrement, expressed as ∑i ρ[i] (t, t + s). Therefore, building a separate logistic regression model for
each decrement may lead to negative survival probabilities, since ∑i ρ[i] (t, t + s) may exceed one.
Polytomous logistic regression can be used to overcome this potential difficulty (Engel, 1988).
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The Long-Term Competing Risk Model

So far we have discussed how to build a simple CLL survival model and seen how this model can
be generalised to competing risk survival analysis through the CIC approach. We now consider the
case when the model is used to make long-term predictions.

The estimation of the survival function can be done longitudinally or through cross-sectional
approaches. The Kaplan-Meier estimator is an example of a longitudinal estimator for S (t). Cross-
sectional estimation can be done by considering the number of subjects that have been exposed
to each decrement for t periods at the beginning of period T , nt,T , and the number of subjects
experiencing decrement i between period T and period T + 1, dt,[i],T , for each decrement i (note
that T corresponds to a calendar period, such as January 2015 for instance, while t corresponds to
survival period, such as t months since birth). We then estimate the hazard function for period T
and decrement i as follows:

h[i],T =
dt,[i],T

nt,T
.

Therefore, we can compute an estimate of the decrement i survival function from period T cross-
sectional data as follows:

Ŝ[i],T (t) =
t

∏
j=1

(
1−

dt,[i],T

nt,T

)
.

Furthermore, in order to make survival predictions during period T , we could use Ŝ[i],T−1 (t) which
would be based on the latest cross-sectional information available. In certain instances, a cross-
sectional estimator would be expected to perform better than a longitudinal estimator. Notably, in
cases where the nature of survival risk is affected by period effects (such as calendar month ef-
fects) rather than cohort effects (and said effect transitions smoothly from one period to the next),
Ŝ[i],T−1 (t) should be the most relevant estimator of the survival rates of the subjects under observa-
tion during period T +1.

As a final extension to the CLL model, consider a set of nT subjects of a survival study, for
periods T = 1 to m. For each subject k, we are interested in modelling the following binary outcome:

Yk,[i],T (t, t + s) =


0, if subject survives decrement i to time t + s, given survival

to time t during period T
1, if subject experienced decrement i by time t + s, given survival

to time t at period T.

Define p[i],T (t, t + s) to be the forward-looking probability based on the cross-sectional estimator
Ŝ[i],T (t). Therefore, the probability that a subject with covariate vector x at time t during period T
survives decrement i to time t + s is modelled as:

ρ[i],T (t, t + s,x) = 1−
[
1−π[i],T (t, t + s)

]eβ0+∑
p
j=1 β j x j

,

where π[i],T (t, t + s) is estimated as p[i],T (t, t + s) for the baseline population x = 0.
Note, the essential difference between the model ρ[i],T (t, t + s,x) and ρ[i] (t, t + s,x) is that the

former allows the baseline to change over time and should produce estimates that are more reactive
to changes in survival behaviour.



224 MARIMO, MALWANDLA & BREED

2.3. The Model in Practice

The CLL model applied to cross-sectional data is ideal for modelling when the prediction horizons,
represented by s in the above discussion, are long. The process involved in fitting the model can be
summarised as follows:

1. For each subject in the study, create target variables Yk,[i],T (t, t + s) for each decrement i.

2. Select a baseline population (where Xk,T = 0, through dummy coding). This may be selected
to be the largest population in the state space of Xk,T , the covariate vector of the kth subject
during period T , as this would lead to greater credibility in the estimation of the baseline.

3. For each period T and decrement i, calculate the cross-sectional survival function estimator
Ŝ[i],T (t). Use this to compute the forward looking probabilities p[i],T (t, t + s).

4. Compute the ratio r (t,s,x) = ln
[

1− Ŝ[i],T (t+s,x)

Ŝ[i],T (t,x)

]
/ln
[
1− p[i],T (t, t + s)

]
for each x in the state

space of Xk,T , where Ŝ[i],T (t,x) is the period T cross-sectional (decrement i) survival function
estimator for the population with covariate vector x. Ensure that r (t,s,x) is a constant function
of t and s by modifying and removing variables where appropriate.

5. Set π[i],T (t, t + s) = p[i],T (t, t + s) and apply the CLL function to create an additional covariate
bk,[i],T = ln

(
−ln

(
1−π[i],T (t, t + s)

))
.

6. Apply polytomous logistic regression with the CLL link function with bk,[i],T set as an offset
variable and Xk as normal covariates.

The CLL model, when used to make survival prediction over long horizons, has the following
advantages over Cox regression:

1. The model retains tractability when covariates are allowed to vary with time.

2. The model is more reactive to gradual (non-cohort specific) changes in the nature of the base-
line risk, since Ŝ[i],T (t) is based on the latest cross-sectional data.

3. The model easily allows for time-varying covariates, e.g., in a mortality study, we may include
factors that vary with time, such as income, which is not always easy to do via Cox regression.

Additionally, the model is arguably as simple as Cox regression and is able to handle competing
risks in a similar way. The main disadvantage of the CLL model in general is that its assumptions
are more difficult to test, compared with the proportional hazard assumption in Cox regression.
Unlike Cox regression, the CLL model is a discrete-time survival model. It is thus unable to produce
estimates in continuous time. Where estimates are required in continuous time, this may be seen as
a drawback to the model.

In practice, there are alternatives to the CLL model form. For instance, the CLL link function
can be replaced with a probit link function to produce:

Φ
−1 (

ρ[i],T (t, t + s,x)
)
= β0 +Φ

−1 (
π[i],T (t, t + s)

)
+

p

∑
j=1

β jx j.
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3. Application: Credit Loss Given Default Modelling

In this section, the CLL model is applied to model loss and cure probabilities in defaulted mortgage
loans. Defaulted accounts from this portfolio were observed between October 2006 and November
2014. The aim of the study was to estimate the probability that an account is written off or cures
within h months of default.

The life of a loan is modelled as a four-state stochastic process, with the following states:

1. Performing: consists of accounts that are deemed to still be performing, broadly, within the
parameters of the loan contract.

2. Default: consists of accounts that are performing outside of the parameters of the loan contract.

3. Write-Off: consists of accounts where the issuer of the loan deems it unlikely to receive any
further repayments on the loan.

4. Closed: consists of accounts where the loan has been fully repaid.

3.1. Definition of Decrements or Events

An account that is in the default state can either proceed to get written off or return to performing,
depending on the behaviour of the borrower. Write off or loss decrement occurs when there are no
prospects of further repayments on the loan as defined by the issuer. A cure decrement is defined
as the transition from default to performing. This study is interested in modelling the probability
of write off and the probability of cure within the first h = 60 months of default. The study thus
aims to produce an estimate for the probability that an account k observed in calendar month T with
covariate vector Xk,T in its t th month of default will cure within h− t months, ρ[c],T

(
t,h,Xk,T

)
, and

the probability that the account will be written off within h− t months, ρ[w],T
(
t,h,Xk,T

)
.

In credit risk analysis, the probability of write-off and the probability of cure are inputs into the
calculation of loss-given-default (LGD), as follows:

LGD = ρ[c],T
(
t,h,Xk,T

)
×E [Loss|Cure]+ρ[w],T

(
t,h,Xk,T

)
×E [Loss|Write-off] ,

where E [Loss|Cure] is the expected loss from re-default following a cure and E [Loss|Write-off]
expected write-off amount given write-off.

3.2. Model Fitting

A CLL survival model was fitted for both the cure decrement and the write-off (loss) decrement. The
model development process summarised in Section 2.3 was followed to construct the CLL model.
Figure 1 illustrates the way in which the assumption of the model was assessed, as per Section 2.3.,
for two variables in the cure model. We require each variable to produce a constant ratio across the
time dimension — this requirement is only approximately met.

The variables selected for the model, along with the parameter estimates, are contained in Table
1.
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Figure 1: Checking the assumptions of the CLL model.

Table 1: CLL survival model parameter estimates.

CLL Survival Model
Cure Estimates Loss Estimates

Variable Class Estimate Variable Class Estimate

Legal Type Code Collections 1.0323
Legal Type

Code
Legal Action 1.4599

Other 0.0000 Other 0.0000
LTV <70% 0.0000 Balance ≤R60,000 -0.7774

≥ 70% -0.2559 >R60,000 0.0000

Dwelling Unit 0.0000
Ordinary,
Building

-0.3404

Property Type
Code

Sectional Title -0.2336
Loan Type

Code
Other 0.0000

Other -0.5119
Building 0.2948 No Collateral 0.0000

Loan Type Code Ordinary 0.0000 Collateral Code Collateral, Surety 0.3495
Other -0.2688
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A Cox survival model was also fitted for both the cure decrement and the loss decrement, using
the CIC approach. Table 2 contains the variables included in the model, along with parameter esti-
mates. Although the two models are developed on the same data set, we see that the Cox regression
model ends up with less covariates.

Table 2: Cox model estimates.

Cox Survival Model
Cure Estimates Loss Estimates

Variable Class Estimate Variable Class Estimate
<70% 0.0000 ≤ R60,000 0.0000

Loan-to-Value
(LTV) Ratio

[70% - 80%) -0.3115 Balance >R60,000 0.8329

[80% - 90) -0.5132
90+ -0.7447

Loan Type Code
Further

Advanced
0.1514

Other 0.0000
Dwelling Unit 0.0000

Property Type
Code

Sectional Title -0.0413

Other -0.2917

3.3. Model Comparisons

Several metrics were used to compare the performance of the two survival model. These include the
Receiver Operating Characteristic (ROC) curves, Area Under the Curves (AUC), accuracy across
range and accuracy over time (Mair, Reise and Bentler, 2008).

The ROC Curves: The ROC test plots the sensitivity against 1-specificity of the models at various
cut-off values of risk. For the cure event, sensitivity refers to a fraction of cured accounts that the
model correctly identifies as cured. The same goes for the loss event. Specificity refers to a fraction
of non-cured accounts that the model correctly identifies as non-cured. The ROC curves for the
CLL and the Cox regression model are provided in Figure 2 for the cure and loss models. For both
decrements, the CLL model performs better than the Cox model.

AUC and Model Gini Statistics: Another metric that can be used to compare the performance of
different models is the AUC. It quantifies the overall ability of the model to discriminate between
those accounts that eventually cure and those that never cure. A completely random model (one no
better at identifying true positives than flipping a coin) has a theoretical AUC of 50%. A perfect
model has an AUC of 100%. In addition, the overall model Gini statistics were calculated for each
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Figure 2: Receiver Operating Characteristic curves for loss and cure models.

model as generalised metrics to measure the ability of the models to differentiate risk. Results are
given in Table 3.

Table 3: AUC and model Gini statistics.

Area Under the ROC Curves and Model Gini Statistics
Model Variant AUC Gini Statistic

Cure
Cox 70.28% 40.56%
CLL 71.75% 43.49%

Loss
Cox 68.83% 37.67%
CLL 77.09% 54.19%

The CLL survival model has improved discriminatory power over the Cox survival model. This
is particularly the case for the loss decrement, where the Gini statistic for the CLL model is almost
17% greater than that of the Cox model.

Model Accuracy: To test across range, accounts were ranked separately for each model into 10
risk groups, based on their respective cure and loss probabilities. For each risk group the actual
empirical probabilities and the corresponding expected values produced by the models were deter-
mined. A scatter-plot of these are provided in Figure 3. For the models to be accurate, scatter points
should not deviate significantly from the 45 degree diagonal. In both models, the CLL model scatter
points lie closer to the 45 degree than the Cox model scatter points.

The model accuracy was also assessed by prediction horizon, referred to as the workout period,
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Figure 3: Accuracy across range.

which is given by h− t in ρ[i],T
(
t,h,Xk,T

)
. This assesses how well the model performs at different

prediction horizons. Plots of this assessment are shown in Figure 4, where the CLL model tends to
perform better than the Cox model.

Figure 4: Accuracy by workout.
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4. Application under Cyclical Conditions

4.1. Stock Market Analysis

In this section we consider how the CLL may be used for technical and fundamental analysis. For
this, we reduce the task of stock selection to the task of modelling the probability that the price of
a given share exceeds its current value by more than 10% within some chosen horizon T (an up-
probability) in comparison to the probability that a share price falls below 90% of its current value
within the same horizon (a down-probability). The up and down events are treated as competing
risks.

If St is the price of the share at time t, the up-probability can be determined by modelling the
waiting time until the share price exceeds a value of S0× 1.10. Similarly, the down-probability is
determined from the distribution of time until the share price falls below a value of S0× 0.90. If
it is assumed that St follows a geometric Brownian motion both these waiting time distributions
are known to be inverse Gaussian (Lee and Whitmore, 2006). However, it is also understood that
securities may exhibit more extreme movements than those suggested by the Gaussian distribution,
i.e., the inverse Gaussian distribution may not always be appropriate.

Consider now a derivative contract placed on the share under which a payment is made on the
first instance of the two possible events: the price rising above S0×1.10 (an up-movement) and the
price falling below S0×0.90 (a down-movement).

Both the situations described above can be modelled using the CLL model: the former being a
single decrement survival analysis and the latter requiring the competing risk version of the CLL.

A competing risk CLL model and a competing risk Cox regression model were fitted to estimate
the probability of an up-movement in competition with a down-movement, on a set of selected daily
time series of share prices from the Johannesburg Stock Exchange, over the period from January
2000 to December 2014. The two models were assessed by using them to estimate the competing
probability of an up-movement and that of a down-movement over a 30 day horizon. Figure 5
summarises the model performance.

The graphs show that the CLL model performs significantly better than the Cox regression
model. This is unsurprising, since the CLL model includes the most recent price performance as
inputs into the estimation of the waiting time distributions. In modelling something that is as cycli-
cal as share price, the CLL clearly outperforms the conventional Cox regression model, with an
R-Squared (coefficient of determination) differential of 85.57% and 76.58% in the up and down
models respectively. This is significantly better than the R-squared values obtained by the Cox
model, as can be seen in Table 4.

Table 4: R-squared values of Cox vs. CLL.

R-square Cox R-square CLL
Ups 0.41% 85.98%
Downs 3.31% 79.89%

Although the CLL model performs better than the Cox model, we note that CLL model has a
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Figure 5: Accuracy by month.

lagged reaction to the actual price performance. This is to be expected since the model does not
include any forward-looking information. Such information may be included into the model by
adjusting the baseline for expected changes in price performance, or including forward-looking in-
dicators as covariates, e.g. including forecasts of Gross Domestic Product and sectorial performance
forecasts. We also note the implications of the Efficient Markets Hypothesis, which (in its semi-
strong form) predicts that it is impossible to statistically outperform the market through technical
analysis (Fama, 1970). If this assumption holds, then the CLL model is only economically useful
when forward-looking information or adjustments to the baseline performance are included.

4.2. Extended Stock Market Analysis

As an extension to the analysis carried out on stock analysis, we consider a single-decrement sim-
ulation study of the model. We are concerned with investing how the CLL model performs against
the Cox regression model under different conditions of cyclicality.

A sample of 20,000 subjects were simulated as entrants into the population at each time from
time 1 to time 180. The purpose of the study was to model the probability that the subject survive to
time 12. It was assumed that subject k aged t during time T will be exposed to the following hazard
rate:

h(t,X ,T ) =
(

1
4

t
1
4

)a0+a1X+a2sin( T
k +eT )

,

where X and eT are normal random variables. As k influences the cyclicality of the experience,
the simulation was carried out for different values of k. The study involved using the cohort of
subjects that entered the population between time t−12− x and time t−12 to test the model of the
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experience of the cohort of subjects entering between time t and time t + 12, i.e., we are assuming
that the shelf-life of the model is 12 periods, after which a new model is developed on the latest 12
cohorts for which performance experience is available for x periods. Figure 6 shows the results of
the simulation study.

Figure 6: Accuracy by month.

From the graphs, it is evident that the CLL has faster reactivity time than the standard Cox regres-
sion model at different frequencies. This is seen by looking at both the coefficient of determination
and the mean-squared-error of the predicted rate.
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5. Discussion

The paper described a logistic regression approach to survival analysis, where three variations were
described:

1. The approach can be conducted with either a single or multiple decrement, the latter of which
is done via polytomous logistic regression.

2. The baseline can be estimated either longitudinally or via cross-sectional analysis, which could
improve the reactiveness of the model.

3. The link function can be specified in a number of ways: the model discussed here uses the
CLL link function, but the probit model was also given as an example..

The model’s workings were illustrated on a loan portfolio, where models for probability of loss
and cure from default were developed. It was found that the CLL model tends to perform better
than the Cox model on the portfolio. A limited attempt was made to discuss the theoretical merits of
the CLL over other forms of survival analysis. Further research could look into applications of this
approach in different domains of study, such as medical research, social psychology, engineering,
agriculture and other fields where pre-determined events can be observed and tracked over discrete
time periods.
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