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Abstract: By using air-lead data analysed by Krishnamoorthy and Mathew (2009) a Bayesian pro-
cedure is applied to obtain control limits for the upper one-sided tolerance limit. Reference and
probability matching priors are derived for the pth quantile of a normal distribution. By simulat-
ing the predictive density of a future upper one-sided tolerance limit, “run-lengths” and average
“run-lengths” are derived. In the second part of this paper control limits are derived for one-sided
tolerance limits for the distribution of the difference between two normal random variables. This
article illustrates the flexibility and unique features of the Bayesian simulation method for obtaining
the posterior predictive distribution of a future one-sided tolerance limit.

1. Introduction
Krishnamoorthy and Mathew (2009) and Hahn and Meeker (1991) defined a tolerance interval as
an interval that is constructed in such a way that it will contain a specified proportion (or more) of
the population with a certain degree of confidence. The proportion is also called the content of the
tolerance interval. As opposed to confidence intervals that give information on unknown population
parameters, a one-sided upper tolerance limit provides, for example, information about a quantile of
the population. According to Hahn and Meeker (1991) tolerance intervals would be of importance
in obtaining limits on the process capability of a product manufactured in large quantities. Further
application examples of tolerance intervals include statistical process control, wood manufacturing,
clinical and industrial applications, environmental monitoring and assessment and for exposure data
analysis. For more applications see Krishnamoorthy and Mathew (2009) and Hugo (2012).

2. One-sided Tolerance Limits for a Normal Population
Suppose X1,X2, . . . ,Xn is a random sample from a N

(
µ,σ2

)
population. The maximum likelihood

estimators of the unknown mean, µ , and unknown variance, σ2, are the sample mean, X̄ = 1
n ∑

n
i=1 Xi,
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and sample variance, S2 = 1
n−1 ∑

n
i=1 (Xi− X̄)

2, respectively. Using the same notation as given in
Krishnamoorthy and Mathew (2009), the pth quantile of a N

(
µ,σ2

)
population is

qp = µ + zpσ (1)

where zp denotes the pth quantile of a standard normal distribution.
A 1−α upper confidence limit for qp is a (p,1−α) one-sided upper tolerance limit for the

normal distribution. By using the posterior predictive distribution a Bayesian procedure will be
developed to obtain control limits for a one-sided upper tolerance limit in the case of future samples.

Bayarri and García-Donato (2005) give the following reasons for recommending a Bayesian
analysis:

• Control charts are based on future observations and Bayesian methods are very natural for
prediction.

• Uncertainty in the estimation of the unknown parameters is adequately handled.

• Implementation with complicated models and in a sequential scenario poses no methodologi-
cal difficulty, the numerical difficulties are easily handled via Monte Carlo methods.

• Objective Bayesian analysis is possible without introduction of external information other than
the model, but any kind of prior information can be incorporated into the analysis, if desired.

There do not appear to be many papers on control charts for tolerance intervals from a Bayesian
point of view. Hamada (2002) derived Bayesian tolerance interval control limits for np, p, c and
u charts which control the probability content at a specified level with a given confidence while
we are deriving posterior predictive intervals. It is therefore clear that our Bayesian method differs
substantially from his.

3. Bayesian Procedure

By assigning a prior distribution to the unknown parameters the uncertainty in the estimation of the
unknown parameters can adequately be handled. The information contained in the prior is com-
bined with the likelihood function to obtain the posterior distribution of qp. By using the posterior
distribution the predictive distribution of a future sample one-sided upper tolerance limit can be ob-
tained. The predictive distribution on the other hand can be used to obtain control limits and to
determine the distribution of the “run length” and “expected run length”. Determination of reason-
able non-informative priors is however not an easy task. Therefore, in the next section, reference
and probability matching priors will be derived for qp = µ + zpσ , the pth quantile of a N

(
µ,σ2

)
distribution.

4. Reference and Probability-Matching Priors for qp = µ + zpσ

As mentioned the Bayesian paradigm emerges as attractive in many types of statistical problems,
also in the case of qp, the pth quantile of a N

(
µ,σ2

)
population.
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Prior distributions are needed to complete the Bayesian specification of the model. Determina-
tion of reasonable non-informative priors in multi-parameter problems is not easy; common non-
informative priors, such as the Jeffreys’ prior can have features that have an unexpectedly dramatic
effect on the posterior.

Reference and probability-matching priors often lead to procedures with good frequency prop-
erties while returning the Bayesian flavour. The fact that the resulting Bayesian posterior intervals
of the level 1−α are also good frequentist intervals at the same level is a very desirable situation.

See also Bayarri and Berger (2004) and Severine, Mukerjee and Ghosh (2002) for a general
discussion.

4.1. The Reference Prior

In this section the reference prior of Berger and Bernardo (1992) will be derived for qp = µ + zpσ .
In general, the derivation of the reference prior depends on the ordering of the parameters and how
the parameter vector is divided into sub-vectors. As mentioned by Pearn and Wu (2005) the refer-
ence prior maximises the difference in information (entropy) about the parameter provided by the
prior and posterior. In other words, the reference prior is derived in such a way that it provides as
little information possible about the parameter of interest. The reference prior algorithm is relatively
complicated and, as mentioned, the solution depends on the ordering of the parameters and how the
parameter vector is partitioned into sub-vectors. In spite of these difficulties, there is growing evi-
dence, mainly through examples that reference priors provide “sensible” answers from a Bayesian
point of view and that frequentist properties of inference from reference posteriors are asymptoti-
cally “good”. As in the case of the Jeffreys’ prior, the reference prior is obtained from the Fisher
information matrix. In the case of a scalar parameter, the reference prior is the Jeffreys’ prior.

The following theorem can be proved:

Theorem 1 The reference prior for the ordering
{

qp,σ
2
}

is given by pR
(
qp,σ

2
)

∝ σ−2.
In the (µ,σ) parametrisation this corresponds to pR (µ,σ) ∝ σ−2.

Proof. The proof is given in the Appendix. �
Note: The ordering

{
qp,σ

2
}

means that the parameter qp = µ + zpσ is a more important parameter
than σ2.

4.2. Probability-Matching Priors

The reference prior algorithm is but one way to obtain a useful non-informative prior. Another type
of non-informative prior is the probability-matching prior. This prior has good frequentist properties.
Two reasons for using probability-matching priors are that they provide a method for constructing
accurate frequentist intervals, and that they could be potentially useful for comparative purposes in
a Bayesian analysis.

There are two methods for generating probability-matching priors due to Tibshirani (1989) and
Datta and Ghosh (1995).

Tibshirani (1989) generated probability-matching priors by transforming the model parameters
so that the parameter of interest is orthogonal to the other parameters. The prior distribution is then
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taken to be proportional to the square root of the upper left element of the information matrix in the
new parametrisation.

Datta and Ghosh (1995) provided a different solution to the problem of finding probability-
matching priors. They derived the differential equation that a prior must satisfy if the posterior
probability of a one-sided credibility interval for a parametric function and its frequentist probability
agree up to O

(
n−1
)

where n is the sample size. Using the method of Datta and Ghosh (1995) the
following theorem will be proved.

Theorem 2 The probability-matching prior for qp and σ2 is pM
(
qp,σ

2
)

∝ σ−2.

Proof. The proof is given in the Appendix. �

4.3. The Posterior Distribution

As mentioned, by combining the information contained in the prior with the likelihood function
the posterior distribution can be obtained. Since our non-informative prior for qp in the

(
µ,σ2

)
parametrisation is p

(
µ,σ2

)
∝ σ−2, it follows that the posterior distribution of σ2 has an inverse

gamma distribution which means that (n−1)S2

σ2 ∼ χ2
n−1 and µ|σ2,data∼ N

(
X̄ , σ2

n

)
.

The posterior distribution of qp is therefore equal to

X̄ +
Z + zp

√
n

U
S√
n
= X̄ +

1√
n

tn−1
(
zp
√

n
)

S,

where Z ∼ N (0,1) and independently distributed of U2 ∼ χ2
n−1

n−1 . Thus a (p,1−α) upper tolerance
limit is given by

X̄ + k1S = X̄ + tn−1;1−α

(
zp
√

n
) S√

n
,

where tn−1;1−α (zp
√

n) denotes the 1−α quantile of a non-central t-distribution with n−1 degrees of
freedom and non-centrality parameter zp

√
n. X̄ +k1S is an exact tolerance limit (i.e., has the correct

coverage probability) and as mentioned by Krishnamoorthy and Mathew (2009) is the same solution
that is obtained by the frequentist approach. The tolerance factor k1, which is derived from the
non-central t-distribution, can be obtained from Table B1 in Krishnamoorthy and Mathew (2009).

In this paper we are firstly interested in the predictive distribution of a future sample one-sided
upper tolerance limit. By using the predictive distribution a Bayesian procedure will be developed to
obtain control limits for a future sample one-sided upper tolerance limit. Assuming that the process
remains stable, the predictive distribution can be used to derive the distribution of the “run length”
and “average run length”.

5. A Future Sample One-sided Upper Tolerance Limit

Consider a future sample of m observations from the N
(
µ,σ2

)
population: X1 f ,X2 f , . . . ,Xm f . The

future sample mean is defined as X̄ f =
1
m ∑

m
j=1 X j f and a future sample variance by

S2
f =

1
m−1 ∑

m
j=1
(
X j f − X̄ f

)2.
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A (p,1−α) upper tolerance limit for the future sample is defined as

q̃ = X̄ f + k̃1S f ,

where
k̃1 =

1√
m

tm−1;1−α

(
zp
√

m
)
.

Although the posterior predictive distribution of q̃ can easily be obtained by simulation, the exact
mean and variance can be derived analytically. The following theorem can now be proved.

Theorem 3 The exact mean and variance of q̃ = X̄ f + k̃1S f are given by

E (q̃|data) = X̄ + k̃1
Γ
(m

2

)
Γ
(m−1

2

) Γ
( n−2

2

)
Γ
( n−1

2

) √n−1√
m−1

S

and

Var (q̃|data) =
(

m+n
nm

)(
n−1
n−3

)
+ k̃2

1

{
n−1
n−3

−
Γ2
(m

2

)
Γ2
( n−2

2

)
(n−1)

Γ2
(m−1

2

)
Γ2
( n−1

2

)
(m−1)

}
S2.

Proof. The proof is given in the Appendix. �

Corollary: If m = n, then

E (q̃|data) = X̄ + k̃1
Γ
( n

2

)
Γ
( n−2

2

)
Γ2
( n−1

2

) S

and

Var (q̃|data) =
2
n

(
n−1
n−3

)
+ k̃2

1

(
n−1
n−3

−
Γ2
( n

2

)
Γ2
( n−2

2

)
Γ4
( n−1

2

) )
S2.

6. The Predictive Distribution of q̃ = X̄ f + k̃1S f

As mentioned previously, the posterior predictive distribution of q̃ can easily be simulated. This can
be done in the following way:

q̃|σ2,S2
f ,data∼ N

(
X̄ + k̃1S f ,σ

2
(

1
m
+

1
n

))
.

Therefore,

f
(
q̃|σ2,S2

f ,data
)
=

(
mn

σ2 (m+n)2π

) 1
2

exp
{
− mn

2σ2 (m+n)

[
q̃−
(
X̄ + k̃1S f

)]2}
. (2)

The unconditional predictive distribution can be obtained by first simulating σ2 and then S f . From

the posterior distribution it follows that σ2 ∼ (n−1)S2

χ2
n−1

and given σ2, S f ∼
{

σ2χ2
m−1

m−1

} 1
2
. Substitute

the simulated σ2 and S f values in (2) and draw the normal density function. Repeat the procedure
l times and average the l simulated normal density functions (Rao-Blackwell method) to obtain the
unconditional predictive density function f (q̃|data). In the example that follows l = 100,000.
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7. Example

According to Krishnamoorthy and Mathew (2009) one-sided upper tolerance limits can commonly
be used to assess the pollution level in a work place or in a region. The data in Table 1 represent air
lead levels collected by the National Institute of Occupational Safety and Health at a laboratory, for
health hazard evaluation. The air lead levels were collected from n = 15 different areas within the
facility.

Table 1: Air lead levels
(
µg/m3

)
.

200 120 15 7 8 6 48 61
380 80 29 1,000 350 1,400 110

A normal distribution fitted the log-transformed lead levels quite well. The sample mean and
standard deviation of the log-transformed data are calculated as X̄ = 4.3329 and S = 1.7394, re-
spectively. For n = 15, 1−α = 0.90, p = 0.95 and using the non-central t-distribution in MAT-
LAB, k1 =

1√
n tn−1,1−α (zp

√
n) =2.3290. A (0.95,0.90) upper tolerance limit for the air lead level is

X̄ + k1S = 8.3840.
In this paper we are however interested in the predictive distribution of q̃ = X̄ f + k̃1S f , the toler-

ance limit for a future sample of m = n = 15 observations. Using the simulated procedure described
in Section 6, the predictive distribution is illustrated in Figure 1.

Mean = 8.5214, Mode = 8.2741

Figure 1: Predictive density function of a future tolerance limit q̃ = X̄ f + k̃1S f .

The mean of the predictive distribution of q̃ is somewhat larger and the mode somewhat smaller
than 8.384, the sample upper tolerance limit of the air lead level.

In Table 2 it is shown that the calculated means and variances from the simulation and formulae
are, for all practical purposes, the same.
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Table 2: Mean and variance of q̃.

E (q̃|data) Var (q̃|data)
From simulated q̃ 8.5214 1.8981
Using Formulae 8.5427 1.8950

In Table 3 confidence limits for q̃ are given.

Table 3: Prediction limits for q̃.

95% Left One-sided 95% Right One-sided 95% Two-sided
Left Limit 6.5683 - 6.2421

Right Limit - 11.0320 11.6827

8. Control Chart for a Future One-sided Upper Tolerance Limit

Statistically, quality control is actually implemented in two phases. In Phase I the primary interest
is to assess process stability. The practitioner must therefore be sure that the process is in statistical
control before control limits can be determined for online monitoring in Phase II.

By using the predictive distribution a Bayesian procedure will be developed to obtain a control
chart for a future one-sided upper tolerance limit. Assuming the process remains stable, the predic-
tive distribution can be used to derive the distribution of the “run-length” and average “run-length”.
From Figure 1 it follows a 99.73% upper control limit for q̃ = X̄ f + k̃1S f is 13.7. Therefore the
rejection region of size β (β = 0.0027) for the predictive distribution is

β =
∫

R(β )
f (q̃|data)dq̃,

where R(β ) represents those values of q̃ that are larger than 13.7.
The “run-length” is defined as the number of future q̃ values (r) until the control chart signals for

the first time (Note that r does not include that q̃ value when the control chart signals). Given µ and
σ2 and a stable Phase I process, the distribution of the “run-length” r is geometric with parameter

ψ
(
µ,σ2)= ∫

R(β )
f
(
q̃|µ,σ2)dq̃,

where f
(
q̃|µ,σ2

)
is the distribution of a future q̃ given that µ and σ2 are known. The values of µ

and σ2 are however unknown and the uncertainty of these parameter values is described by their joint
posterior distribution p

(
µ,σ2|data

)
. By simulating µ and σ2 from p

(
µ,σ2|data

)
, the probability

density function f
(
q̃|µ,σ2

)
(for the charting statistic q̃) can be obtained in the following way:

1. q̃|µ,σ2,χ2
m−1 ∼ N

(
µ + k1σ

√
χ2

m−1√
m−1

, σ2

m

)
.
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2. The next step is to simulate l = 100,000 χ2
m−1 values to obtain l normal density functions for

given µ and σ2.

3. By averaging the l density functions (Rao-Blackwell method), f
(
q̃|µ,σ2

)
can be obtained.

This must be done for each future sample. In other words, for each future sample µ and σ2 must
first be simulated from p

(
µ,σ2|data

)
and then the procedure described in steps 1, 2 and 3.

As mentioned, the “run-length” r (given µ and σ2) is geometrically distributed with mean

E
(
r|µ,σ2)= 1−ψ

(
µ,σ2

)
ψ (µ,σ2)

and variance

Var
(
r|µ,σ2)= 1−ψ

(
µ,σ2

)
ψ2 (µ,σ2)

.

The unconditional moments E (r|data), E
(
r2|data

)
and Var (r|data) can therefore easily be

obtained by simulation or numerical integration. For further details see Menzefricke (2002, 2007,
2010a, 2010b) .

In Figure 2 the predictive distribution of the “run-length” is displayed for the 99.73% upper
control limit. As mentioned, for given µ and σ2, the “run-length” r is geometric with parameter
ψ
(
µ,σ2

)
. The unconditional “run-length” as given in Figure 2 is therefore obtained using the Rao-

Blackwell method, i.e., the average of a large number of conditional “run-lengths”.

E (r|data) = 396.27438,Median(r|data) = 251,Var (r|data) = 2.0945e5

95% Equal-tail Interval = (8;1644) Length = 1636

95% HPD Interval = (3;1266) Length = 1263

Figure 2: Predictive distribution of the “run-length” f (r|data) for n = m = 15.

In Figure 3 the distribution of the average “run-length” is given.
For known µ and σ the expected “run-length” is 1

0.0027 = 370. If µ and σ2 are unknown and
estimated from the posterior distribution the expected “run-length” will usually be larger than 370 -
especially if the sample size is small.

A control chart for an Upper Tolerance Limit can therefore be used to monitor the mean and
standard deviation simultaneously.
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Mean = 400.1084,Median = 353.5753,Var = 3.5605e4

95% Equal-tail Interval = (202.1834;874.6607) Length = 672.4773

95% HPD Interval = (163.4804;566.0842) Length = 402.6038

Figure 3: Distribution of the average “run-length”.

9. One-sided Tolerance Limits for the Difference Between Two
Normal Populations

Let X1 ∼ N
(
µ1,σ

2
1
)

and independently distributed from X2 ∼ N
(
µ2,σ

2
2
)

where µ1 and µ2 are the
unknown population means and σ2

1 and σ2
2 the unknown population variances. If zp is the pth

quantile of a standard normal distribution then

Lp = µ1−µ2− zp

√
σ2

1 +σ2
2 (3)

is the 1− p quantile of the distribution of X1−X2. As mentioned by Krishnamoorthy and Mathew
(2009), a (p,1−α) lower tolerance limit for the distribution of X1−X2 is a 1−α lower confidence
limit of Lp.

Suppose X̄i and S2
i are respectively the sample mean and variance of a random sample of ni

observations from N
(
µi,σ

2
i
)
, i = 1,2. By using exact distributional results Krishnamoorthy and

Mathew (2009) constructed a (1−α) lower confidence limit for Lp as

X̄1− X̄2− tn1+n2−2,1−α (zp
√

v1)
Sd√
v1
, (4)

where

v1 =
σ2

1 +σ2
2

σ2
1

n1
+

σ2
2

n2

and

S2
d =

(
σ2

1 +σ2
2
)

n1 +n2−2

{
(n1−1)S2

1

σ2
1

+
(n2−1)S2

2

σ2
2

}
,

which is an exact (p,1−α) lower tolerance limit for the distribution of X1−X2 if the variance ratio
is known. This is usually not the case, but the problem can be overcome by making use of the
following “semi-Bayesian” approach.
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The expression in (4) is derived from the fact that the pivotal quantity

X̄1− X̄2−Lp

Sd
∼

Z + zp
√

v1

√
v1

√
χ2

n1+n2−2
(n1+n2−2)

N2, (5)

where Z∼N (0,1) and independent of χ2
n1+n2−2 (See equation [2.4.4] in Krishnamoorthy and Mathew

(2009)).
From (5) it follows that

Lp|data,χ2
n1+n2−2,σ

2
1 ,σ

2
2 ∼ N

(X̄1− X̄2)−
zpSd√
χ2

n1+n2−2
(n1+n2−2)

,
S2

d

v1
χ2

n1+n2−2
(n1+n2−2)

 . (6)

If the non-informative prior p
(
σ2

1 ,σ
2
2
)

∝ σ
−2
1 σ

−2
2 is used, then the posterior distribution of σ2

i
(i = 1,2) is an inverse-Gamma distribution, which means that

σ
2
i ∼

(ni−1)S2
i

χ2
ni−1

(i = 1,2) ,

and p(Lp|data) — the unconditional posterior distribution of Lp — can be obtained by using the
following simulation procedure:

1. Simulate σ2
i (i = 1,2) and substitute the simulated variance components in S2

d and v1.

2. Simulate χ2
n1+n2−2 and substitute the value in (6).

3. Draw the normal density function.

4. Repeat the procedure l times and average the l simulated normal density functions (Rao-
Blackwell method) to obtain p(Lp|data).

l = 100,000 is used in the example that follows.

10. Example - Breakdown Voltage - Power Supply

This example is taken from Krishnamoorthy and Mathew (2009) and it is concerned with the pro-
portion of times the breakdown voltage of X1 of a capacitor exceeds the voltage output X2 of a
transverter (power supply). A sample of n1 = 50 capacitors yielded X̄1 = 6.75kV and S2

1 = 0.123.
The voltage output from n2 = 20 transverters produced X̄2 = 400kV and S2

2 = 0.53.
Using the simulation procedure as described the unconditional posterior distribution p(Lp|data)

is obtained and illustrated in Figure 4 for zp = z0.95 = 1.6449.
A (0.95,0.95) lower tolerance limit for the distribution of X1−X2 is therefore qp = 0.8895.
In what follows it will be shown that a more formal Bayesian procedure gives for all practical

purposes the same estimate for the lower tolerance limit.
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p(Lp < 0.8895) = 0.05

Mean = 1.3671, Median = 1.3954, Mode = 1.4448, Var = 0.0714

Figure 4: p(Lp|data) – unconditional posterior distribution of Lp.

If the objective prior p
(
µ1,µ2,σ

2
1 ,σ

2
2
)

∝ σ
−2
1 σ

−2
2 is used then it is well known that the posterior

distribution of Lp (see (3)) given the variance components is normal with mean

E
(
LB

p|σ2
1 ,σ

2
2 ,data

)
= X̄1− X̄2− zp

√
σ2

1 +σ2
2

and variance

Var
(
LB

p|σ2
1 ,σ

2
2 ,data

)
=

σ2
1

n1
+

σ2
2

n2
.

Also,

σ
2
i ∼

(ni−1)S2
i

χ2
n1−1

. (i = 1,2) .

From this, the posterior distribution follows

LB
p|data,U1,U2 ∼ N

{
(X̄1− X̄2)− zp

√
S2

1

U2
1
+

S2
2

U2
2
,

S2
1

n1U2
1
+

S2
2

n2U2
2

}
, (7)

where

U2
i ∼

χ2
ni−1

ni−1
.

The expression in (7) is exactly the same as the generalised variable approach described by
Krishnamoorthy and Mathew (2009).

By simulating 100,000 U2
i ∼

χ2
ni−1

n1−1 (i = 1,2) values and using the Rao-Blackwell method the
unconditional posterior distribution of LB

p is obtained and given in Figure 5.
Since the two methods give for all practical purposes the same estimate for the lower tolerance

limit, only the first method will be used to obtain the predictive distribution of a future one-sided
tolerance limit.
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p
(
LB

p < 0.88861
)
= 0.05

Mean = 1.3682, Median = 1.3964, Mode = 1.4462, Var = 0.0713

Figure 5: p
(
LB

p|data
)
.

11. The Predictive Distribution of a Future One-sided Lower
Tolerance Limit for X1−X2

By using the predictive distribution a Bayesian procedure will be developed to obtain a control chart
for a future one-sided lower tolerance limit. Assuming the process remains stable, the predictive
distribution can be used to derive the distribution of the “run-length” and average “run-length”.

Consider a future sample of m1 observations from the N
(
µ1,σ

2
1
)

population X (1)
1 f ,X

(1)
2 f , . . . ,X

(1)
m1 f .

The future sample mean is defined as X̄ (1)
f = 1

m1
∑

m1
j=1 X (1)

j f and a future sample variance by S2 (1)
f =

1
m1−1 ∑

m1
j=1

(
X (1)

j f − X̄ (1)
f

)2
. Similar for a future sample of m2 observations from N

(
µ2,σ

2
2
)
, X̄ (2)

f =

1
m2

∑
m2
j=1 X (2)

j f and S2 (2)
f = 1

m2−1 ∑
m2
j=1

(
X (2)

j f − X̄ (2)
f

)
.

Thus using the exact distributional results a (p,1−α) lower tolerance limit for the difference
between two future samples is defined as

q f = X̄ (1)
f − X̄ (2)

f − tm1+m2−2;1−α

(
zp

√
v f

1

)
S f

d√
v f

1

. (8)

If the sample sizes of the two future samples are the same, i.e., m1 = m2 = m, then (8) simplifies
to

q f = X̄ (1)
f − X̄ (2)

f − t2(m−1);1−α

(
zp
√

m
) S f

d√
m

= X̄ (1)
f − X̄ (2)

f −
˜̃kS f

d ,

where
˜̃k =

1√
m

t2(m−1);1−α

(
zp
√

m
)
,
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v f
1 = m,

and

S2 f
d =

(
σ2

1 +σ2
2
)

2

S2 (1)
f

σ2
1

+
S2 (2)

f

σ2
2

 .

We are interested in the predictive distribution of q f . This cannot be derived analytically, but can
easily be obtained by simulation.

Now,

q f |σ2
1 ,σ

2
2 ,S

2 (1)
f ,S2 (2)

f ,µ1,µ2 ∼ N
{
(µ1−µ2)− ˜̃kS f

d ,
1
m

(
σ

2
1 +σ

2
2
)}

,

since

X̄ (1)
f − X̄ (2)

f ∼ N
{

µ1−µ2,
1
m

(
σ

2
1 +σ

2
2
)}

.

Also if the prior p
(
µ1,µ2,σ

2
1 ,σ

2
2
)

∝ σ
−2
1 σ

−2
2 is used,

(µ1−µ2) |data,σ2
1 ,σ

2
2 ∼ N

{
X̄1− X̄2,

σ2
1

n1
+

σ2
2

n2

}
.

Therefore

q f |σ2
1 ,σ

2
2 ,S

2 (1)
f ,S2 (2)

f ,data∼ N
{
(X̄1− X̄2)− ˜̃kS f

d ,
1
m

(
σ

2
1 +σ

2
2
)
+

σ2
1

n1
+

σ2
2

n2

}
. (9)

The unconditional predictive distribution of q f can be obtained by first simulating σ2
i and then

S2 (i)
f (i = 1,2). As before it follows from the posterior distribution that

σ
2
i ∼

(ni−1)S2
i

χ2
ni−1

(i = 1,2)

and given σ2
i

S2 (i)
f ∼

σ2
i χ

2 (i)
m−1

m−1
(i = 1,2) .

Substitute the simulated σ2
i and S2 (i)

f values in (9) and draw the normal density function. Repeat
the procedure l times and average the l simulated density functions (Rao-Blackwell method) to
obtain the unconditional predictive density function f

(
q f |data

)
. The predictive density function for

the Breakdown Voltage example given in Section 10 for m1 = m2 = 20 is illustrated in Figure 6.
The mean of the predictive distribution of q f is 0.9060 and is somewhat larger than 0.08895, the

sample lower tolerance limit for the break down voltage data.

12. Control Chart for a Future One-sided Lower Tolerance Limit

As before, a Bayesian procedure will be developed to obtain a control chart for a future one-sided
lower tolerance limit. Assuming the process remains stable, the predictive distribution can be used
to derive the distribution of the “run-length” and average “run-length”.
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α = 0.05, ˜̃k = 2.2096
Mean = 0.9060, Median = 0.9427, Mode = 1.0081, Var = 0.1834

95% Equal-tail Interval = (−0.0417;1.6406)
95% HPD Interval = (0.0081;1.6703)

99.73% Equal-tail Interval = (−0.8068;1.9614)
p
(
q f ≤−0.6258

)
= 0.0027

p
(
q f ≥ 1.8955

)
= 0.0027

Figure 6: f
(
q f |data

)
– predictive density of the lower tolerance limit, q f .

From Figure 6 it follows that for a 99.73% two-sided control chart the lower control limit is
LCL =−0.8068 and the upper control limit is UCL = 1.9614. Therefore the rejection region of size
β (β = 0.0027) for the predictive distribution is

β =
∫

R(β )
f
(
q f |data

)
dq f

where R(β ) represents those values of q f that are smaller than LCL and larger than UCL.
As mentioned, the “run-length” is defined as the number of future q f values (r) until the control

chart signals for the first time. Given µi,σ
2
i (i = 1,2), the distribution of the “run-length” r is

geometric with parameter

ψ
(
µ1,µ2,σ

2
1 ,σ

2
2
)
=
∫

R(β )
f
(
q f |µ1,µ2,σ

2
1 ,σ

2
2
)

dq f

where f
(
q f |µ1,µ2,σ

2
1 ,σ

2
2
)

is the distribution of q f given that µi,σ
2
i (i = 1,2) are known. These

parameter values are however unknown but can be simulated from their joint posterior distribution
p
(
µ1,µ2,σ

2
1 ,σ

2
2 |data

)
as follows:

σ
2
i |data∼ (ni−1)S2

i

χ2
ni−1

(i = 1,2)

and

µi|σ2
i ,data∼ N

(
X̄i,

σ2
i

n1

)
(i = 1,2) .
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1. From this it follows that

q f |µ1,µ2,σ
2
1 ,σ

2
2 ,S

2 (1)
f ,S2 (2)

f ∼ N
{
(µ1−µ2)− ˜̃kS( f )

d ,
1
m

(
σ

2
1 +σ

2
2
)}

.

2. The next step is to simulate l = 100,000 S2 (i)
f values for given σ2

i (i = 1,2). S2 (i)
f ∼ σ2

i χ
2 (i)
m−1

m−1
(i = 1,2).

3. By averaging the l density functions (Rao-Blackwell method), f
(
q f |µ1,µ2,σ

2
1 ,σ

2
2
)

can be
obtained.

This must be done for each future sample. In other words for each future sample µi and σ2
i (i = 1,2)

must first be simulated from their joint posterior distribution p
(
µ1,µ2,σ

2
1 ,σ

2
2 |data

)
and then the

procedure described in steps 1, 2 and 3 follows.
The mean of the predictive distribution of the “run-length” for the 99.73% two-sided control

limits is E (r|data) = 201500, much larger than the 370 that one would have expected if β =

0.0027. The reason for this large average “run-length” is mainly the small future sample sizes
(m1 = m2 = 20). The median “run-length” is 3770. Define ψ̄ (µ1,µ2,σ1,σ2) =
1
m̃ ∑

m̃
i=1 ψ

(
µ
(i)
1 ,µ

(i)
2 ,σ

2(i)
1 ,σ

2 (i)
2

)
. According to Menzefricke (2002), ψ̄

(
µ1,µ2,σ

2
1 ,σ

2
2
)
→ β if m̃→

∞. The harmonic mean of r = 1
β

and if β = 0.0027, the harmonic mean = 1
0.0027 = 370.

In Table 4 the average “run-length” for different values of β is given.

Table 4: β Values and corresponding average “run-length”.

β 0.0027 0.012 0.016 0.02 0.024 0.028 0.03 0.032 0.036 0.04
E (r|data) 201500 4044 1785 959 633 438 400 340 240 218

In Figure 7 the distribution of the “run-length” for m1 = m2 = 20 and β = 0.03 is illustrated and
in Figure 8 the histogram of the expected “run-length” is given.

13. Conclusion

In the first part of this article a Bayesian control chart was developed for monitoring an upper one-
sided tolerance limit across a range of sample values. In the Bayesian approach prior knowledge
about the unknown parameters is formally incorporated into the process of inference by assigning
a prior distribution to the parameters. The information contained in the prior is combined with
the likelihood function to obtain the posterior distribution. By using the posterior distribution the
predictive distribution of an upper one-sided tolerance limit can be obtained.

Determination of reasonable non-informative priors in multi-parameter problems is not an easy
task. The Jeffreys’ prior can, for example, have a bad effect on the posterior distribution. Reference
and probability matching priors are therefore derived for the pth quantile of a normal distribution.
The theory and results have been applied to air-lead level data analysed by Krishnamoorthy and
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E (r|data) = 400.41,Median(r|data) = 79.51,Var (r|data) = 1.8668e6

95% HPD Interval = (0;1688)

Figure 7: Predictive distribution of the “run-length” f (r|data) for m1 = m2 = m = 20.

Mean = 400.41,Median = 138.79,Var = 7.0775e5

95% HPD Interval = (1.11;1552.1)

Figure 8: Distribution of the average “run-length”.
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Mathew (2009) to illustrate the flexibility and unique features of the Bayesian simulation method for
obtaining posterior distributions, prediction intervals and run lengths.

In the second part of this article the Bayesian procedure was extended to control charts of one-
sided tolerance limits for a distribution of the difference between two independent normal variables.
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Appendix

Theorem 1

Assume Xi (i = 1,2, . . . ,n) are independently and identically normally distributed with mean µ and

variance σ2. The Fisher information matrix for the parameter vector θ =
[
µ,σ2

]′
is given by

F
(
µ,σ2)=


n

σ2 0

0 n
2(σ2)

2

 .
Let qp = µ + zpσ = t

(
µ,σ2

)
= t (θ).

To obtain the reference prior, the Fisher information matrix F (t (θ) ,σ) must first be derived.
Let

A =


∂ µ

∂ t(θ)
∂ µ

∂σ2

∂σ2

∂ t(θ)
∂σ2

∂σ2

=

1 − 1
2

zp
σ

0 1

 .
Now,

F
(
t (θ) ,σ2)= A′F

(
µ,σ2)A =


n

σ2 − nzp
2σ3

− nzp
2σ3

nz2
p

4σ4 +
n

2σ4

=

F11 F12

F21 F22


and the inverse

F−1 (t (θ) ,σ2)= 2σ6

n2


n

2σ4

(
z2

p
2 +1

)
nzp
2σ3

nzp
2σ3

n
σ2

=

F11 F12

F21 F22

 .
Therefore,

F11 =
σ2

n

(
z2

p

2
+1

)
,

(
F11)−1

=
n

σ2

(
z2

p

2
+1

)−1

= h1

and
p(t (θ)) ∝ h

1
2
1 ∝ constant because it does not contain t (θ) .

Further,

h2 = F22 =
n

2σ4

(
z2

p

2
+1

)
and

p
(
σ

2|t (θ)
)

∝ h
1
2
2 ∝ σ

−2.

Therefore the reference prior for the ordering
{

t (θ) ,σ2
}
=
{

qp,σ
2
}

is PR
(
qp,σ

2
)

∝ σ−2.
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In the
(
µ,σ2

)
parametrisation this corresponds to PR

(
µ,σ2

)
= p

(
t (θ) ,σ2

)∣∣∣∣ ∂ t(θ)
∂ µ

∣∣∣∣.
Since

∣∣∣∣ ∂ t(θ)
∂ µ

∣∣∣∣= 1, it follows that PR
(
µ,σ2

)
∝ σ−2.

Theorem 2

Let
t (θ) = t

(
µ,σ2)= qp

and
∇
′
t (θ) =

[
∂

∂qp
t (θ) ∂

∂σ2 t (θ)
]
=
[
1 0

]
.

Also,
∇
′
t (θ)F−1 (t (θ) ,σ2)= [F11 F12

]
and √

∇
′
t (θ)F−1 (t (θ) ,σ2)∇t (θ) =

(
F11) 1

2 .

Further,

ϒ
′
(θ) =

∇
′
t (θ)F−1

(
t (θ) ,σ2

)√
∇
′
t (θ)F−1 (t (θ) ,σ2)∇t (θ)

=
[
ϒ1 (θ) ϒ2 (θ)

]
,

where

ϒ1 (θ) =
(
F11) 1

2 =
σ√

n

(
z2

p

2
+1

) 1
2

and

ϒ2 (θ) =
F12
√

F11
=

σ2zp√
n

(
z2

p

2
+1

)− 1
2

.

According to Datta and Ghosh (1995) a prior PM (θ) = PM
(
qp,σ

2
)

will be a probability matching
prior if the following differential equation is satisfied

∂

∂qp
{ϒ1 (θ)PM (θ)}+ ∂

∂σ2 {ϒ2 (θ)PM (θ)}= 0.

It is therefore clear that if PM (θ) ∝ σ−2 the differential equation is satisfied.

Theorem 3

It is well known that if Y ∼ χ2
u , then

E (Y r) =
2rΓ
( u

2 + r
)

Γ
( u

2

) .



158 VAN ZYL & VAN DER MERWE

Also since X̄ f |µ,σ2 ∼ N
(

µ, σ2

m

)
and S f ∼

{
σ2χ2

m−1
m−1

} 1
2

for given σ2, it follows that

E
(
q̃|µ,σ2)= µ +

k̃1
√

2σ√
m−1

Γ
(m

2

)
Γ
(m−1

2

)
and

E
(
q̃2|µ,σ2)= µ

2 +2k̃1µ
σ
√

2Γ
(m

2

)
√

m−1Γ
(m−1

2

) +σ
2
(

1
m
+ k̃2

1

)
.

From the posterior distribution it follows that µ|σ2,data∼N
(

X̄ , σ2

n

)
and σ ∼

{
(n−1)S2

χ2
n−1

}
given the

data. Therefore,

E (q̃|data) = X̄ + k̃1

√
n−1
m−1

Γ
(m

2

)
Γ
( n−2

2

)
Γ
(m−1

2

)
Γ
( n−1

2

)S (10)

and

E
(
q̃2|data

)
= X̄2 +2k̃1X̄

√
n−1
m−1

Γ
(m

2

)
Γ
( n−2

2

)
Γ
(m−1

2

)
Γ
( n−1

2

)S+
(

1
n
+

1
m
+ k̃2

1

)(
n−1
n−3

)
S (11)

By making use of (10) and (11) and the fact that

Var (q̃|data) = E
(
q̃2|data

)
−{E (q̃|data)}2 ,

it follows that

Var (q̃|data) =
(

m+n
nm

)(
n−1
n−3

)
+ k̃2

1

{
n−1
n−3

−
Γ2
(m

2

)
Γ2
( n−2

2

)
(n−1)

Γ2
(m−1

2

)
Γ2
( n−1

2

)
(m−1)

}
S2.
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