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Abstract: Firstly, we provide simple elementary proofs to derive the exact distributions of the
areas under functions of a Brownian motion process and a Brownian bridge process. In the latter
case, a solution is therefore provided to a question raised recently in the Mathematics community
on StackExchange (http://math.stackexchange.com/questions/1006101). These random
areas often occur in statistical applications and play an important role in, for example, financial
mathematics. Comparisons are made between the variances of the two random areas, deriving in-
teresting results that appear to be new in the statistical literature. Some illustrative examples are
provided. Secondly, we derive a new arcsine law for a standard Brownian bridge process.

1. Introduction

Throughout the discussion below we restrict ourselves to versions of a standard Brownian motion
process {B(t),0≤ t ≤ T} and a standard Brownian bridge process {B0(t),0 ≤ t ≤ T} defined on a
finite interval [0,T ]. The latter process can be constructed by letting

B0(t) := B(t)− t
T

B(T ), 0≤ t ≤ T. (1)

Note that B0(0) = B0(T ) = 0, and

Cov
(
B0(s),B0(t)

)
= min(s, t)− st

T
,

for all 0≤ s, t ≤ T .
It is well known that, by applying Itô’s lemma, the following two stochastic integrals can be

expressed as ∫ t

0
B(s)dB(s) =

B2(t)
2
− t

2
, 0≤ t ≤ T,∫ t

0
B2(s)dB(s) =

B3(t)
3
−
∫ t

0
B(s) ds, 0≤ t ≤ T.
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It is often remarked in the statistical literature that the random Riemann integral A(t) :=
∫ t

0 B(s)ds
cannot be expressed in a more explicit form and in order to obtain an impression of the behaviour of
the sample paths of A(t), for 0≤ t ≤ T , one has to rely on Monte-Carlo simulations. This is usually
accomplished by simulating Brownian paths in a straightforward manner using the time discretiza-
tion methodology based on the independent increment property of Brownian motion. The time inter-
val [0,T ] may be divided into s subintervals, and then B(tk+1) at a specific time tk+1 = (k+1)T/s,
k = 0,1, . . . ,s−1, is given by

B(tk+1) =
k

∑
i=0

√
T
s

Zi,

where Z0,Z1, . . ., are i.i.d. N(0,1) random variables.
An alternative efficient approach is to apply the Karhunen-Loève expansion of a Brownian mo-

tion process. This technique is, for example, frequently used in mathematical finance for pricing
a path-dependent financial derivative, such as a continuously monitored Asian option (see Niu and
Hickernell (2010) and the references therein). By solving the eigenvalue problem of the covariance
operator of B(t), i.e., Cov(B(s),B(t)) = min(s, t), the Brownian motion B(t) can be expanded (e.g.,
see Breiman (1968, p. 261)) as an infinite, uniformly convergent series on [0,T ]:

B(t) =
t√
T

Z0 +

√
2T
π

∞

∑
n=1

sin(nπt/T )
n

Zn. (2)

Similarly, from (1) and (2) we derive a Karhunen-Loève expansion for a standard Brownian bridge
process:

B0(t) =

√
2T
π

∞

∑
n=1

sin(nπt/T )
n

Zn. (3)

Since the infinite series in (2) and (3) converges uniformly on [0,T ] and the individual terms of
the series are almost everywhere continuous, the series may be integrated term by term, yielding
closed-form expressions for the sample paths of A(t) and A0(t) :=

∫ t
0 B0(s)ds,

A(t) =
t2

2
√

T
Z0 +

T
√

2T
π2

∞

∑
n=1

(1− cos(nπt/T ))
n2 Zn, (4)

and

A0(t) =
T
√

2T
π2

∞

∑
n=1

(1− cos(nπt/T ))
n2 Zn. (5)

Figure 1 presents graphs of the sample paths of A(t) and A0(t), calculated from (4) and (5) for
T = 1 and T = 2. The difference between the variability of the sample paths of A(t) and A0(t) is
quite evident. This phenomenon is further explored below for more general functionals of B(t) and
B0(t).

The paper is organized as follows. In Section 2 the exact distributions of certain Brownian
motion and Brownian bridge areas are derived, thus providing a solution to the question raised in the
abstract. Section 3 provides some interesting variance comparisons together with some illustrative
examples. In Section 4 a new arcsine law for a standard Brownian bridge process is proved. Section 5
contains alternative proofs of our main theorems.
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Figure 1: Graphs of A(t) and A0(t) for T = 1 (first row) and T = 2 (second row).

2. Distribution of Brownian Motion and Brownian Bridge Areas

In this section we consider the following two random Riemann integrals,

A(t) :=
∫ t

0
h(s)B(s)ds, 0≤ t ≤ T,

and

A0(t) :=
∫ t

0
h(s)B0(s)ds, 0≤ t ≤ T,

for some deterministic real-valued function h : [0,T ]→ R.
In the next lemma A(t) and A0(t) are expressed in terms of Itô stochastic integrals, which are

results of independent interest, and will be applied to derive the exact distributions of A(t) and A0(t)
in Theorem 1 below.

Lemma 1 Let h : [0,T ]→ R be a continuous function in L1([0,T ]). It then follows that

A(t) =
∫ t

0

(∫ t

s
h(x)dx

)
dB(s), 0≤ t ≤ T, (6)

and

A0(t) =
∫ t

0

(∫ t

s
h(x)dx

)
dB0(s), 0≤ t ≤ T. (7)
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Proof. Applying Itô’s lemma, the following integration-by-parts formula holds for 0≤ t ≤ T ,

∫ t

0

(∫ s

0
h(x)dx

)
dB(s) =

(∫ t

0
h(x)dx

)
B(t)−

∫ t

0
h(s)B(s)ds.

This equation can be rewritten as

A(t) :=
∫ t

0
h(s)B(s)ds =

(∫ t

0
h(x)dx

)∫ t

0
dB(s)−

∫ t

0

(∫ s

0
h(x)dx

)
dB(s)

=
∫ t

0

(∫ t

0
h(x)dx−

∫ s

0
h(x)dx

)
dB(s)

=
∫ t

0

(∫ t

s
h(x)dx

)
dB(s),

which proves (6). Using this identity we also have that

A0(t) = A(t)− B(T )
T

∫ t

0
h(s)sds

=
∫ t

0

(∫ t

s
h(x)dx

)
dB(s)− B(T )

T

∫ t

0

∫ t

s
h(x)dxds

=
∫ t

0

(∫ t

s
h(x)dx

)
d
(

B(s)− B(T )
T

s
)

=
∫ t

0

(∫ t

s
h(x)dx

)
dB0(s),

which proves (7). �

Theorem 1 Let h : [0,T ]→ R be a continuous function in L2([0,T ]). Then, for 0≤ t ≤ T , A(t) and
A0(t) are normally distributed with zero expectations and variances σ2(t) and σ2

0 (t) respectively,
where

σ
2(t) =

∫ t

0

(∫ t

s
h(x)dx

)2

ds, (8)

and

σ
2
0 (t) = σ

2(t)− 1
T

(∫ t

0
xh(x)dx

)2

. (9)

Proof. It immediately follows from (6) and Itô’s stochastic integral calculus that A(t) is normally
distributed with expectation zero and variance σ2(t), by the isometry property.

Clearly, from (1), (6) and (7) we conclude that A0(t) is Gaussian with expectation zero. As far as
the variance of A0(t) is concerned, note that from the definition of B0(t) it follows that for 0≤ t ≤ T ,

A(t) = A0(t)+
B(T )

T

∫ t

0
xh(x)dx. (10)

Furthermore, {B0(s),0 ≤ s ≤ t} is independent of B(T ), since (B0(s),B(T )) is a Gaussian random
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vector with covariance function

Cov
(
B0(s),B(T )

)
= E

(
B0(s)B(T )

)
= E

((
B(s)− s

T
B(T )

)
B(T )

)
= min(s,T )− s

T
E
(
B2(T )

)
= s− s

T
T = 0.

This implies that A0(t) is independent of B(T ), 0 ≤ t ≤ T . Taking variances on both sides of (10)
immediately yields the result stated in (9). �

Remarks

• For the special case h(x)≡ 1, we conclude from the theorem that

A(t) d
= N

(
0,

t3

3

)
, 0≤ t ≤ T,

a result known in the literature, usually derived by proving the convergence of certain Riemann
sums.

• Also, if h(x)≡ 1,

A0(t) d
= N

(
0,

t3

3

(
1− 3t

4T

))
, 0≤ t ≤ T,

a result that seems to be new, thus providing a solution to the question raised in the Mathemat-
ics community on StackExchange (http://math.stackexchange.com/questions/1006101).

• Further, note the interesting relation that

σ2
0 (1)

σ2(1)
=

1
4
, (11)

if h(x)≡ 1.

3. Variance Comparisons

Consider the ratio

r(t) :=
σ2

0 (t)
σ2(t)

, 0≤ t ≤ T,

= 1−
(∫ t

0
∫ t

s h(x)dxds
)2
/T

σ2(t)
,

=: 1−g(t).
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Applying L’Hôpital’s rule, it immediately follows that g(0)= 0. Also, it readily follows that g′(t)≥ 0
if and only if t/T ≥ g(t) for all 0≤ t ≤ T . This implies, since g(t) is continuous on [0,T ], that

T = arg sup
0≤t≤T

g(t),

so that
inf

0≤t≤T
r(t) = 1−g(T ) = r(T ).

We now present two illustrative examples.

Example 1. Choose h(x) = xr, r ≥ 0. After some algebra we obtain the interesting result that for all
T > 0,

r(T ) =
1

2(r+2)
,

which agrees with the result stated in (11) if r = 0.

Example 2. Consider h(x) = cosx. After some tedious calculations we obtain

r(T ) =
2T − sin(2T )−4(1− cosT )2/T

2T +3sin(2T )+4T (1− cos2 T )−8sinT
.

The function r(T ) has curious, but interesting behaviour as can be seen from the following values:

r
(

π

2

)
=

π2−8
π(3π−8)

∼= 0.418,

r (π) =
π2−8

π2
∼= 0.189,

r
(

3π

2

)
=

9π2−8
3π(9π +8)

∼= 0.236,

and, surprisingly, r (2πk) = 1 for k = 1,2, . . ., which means that the variances of A(T ) and A0(T ) are
equal when T is a multiple of 2π .

4. An Arcsine Law for a Standard Brownian Bridge Process

In the theory of Stochastic Processes, the arcsine laws are a collection of results for one-dimensional
random walks and Brownian motion. The best known of these is attributed to Lévy (1939).

All three laws relate path properties of a Brownian motion process to the arcsine distribution. A
random variable X on [0,1] is arcsine-distributed if

P(X ≤ x) =
2
π

arcsin
√

x.

The first arcsine law states that the proportion of time that the one-dimensional Brownian motion
process {B(t),0≤ t ≤ 1} is positive follows an arcsine distribution. The second arcsine law describes
the distribution of the last time {B(t),0≤ t ≤ 1} changes sign. The third arcsine law states that the
time at which {B(t),0 ≤ t ≤ 1} achieves its maximum is arcsine distributed. It is well known that
the second and third laws are equivalent.
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Similar arcsine laws for a Brownian bridge process {B0(t),0≤ t ≤ T} apparently do not exist in
the literature, although they can easily be derived. For example, in Theorem 2 below we prove an
arcsine law which is analogous to the second arcsine law for a Brownian motion process.

In order to prove the theorem we require the following lemma.

Lemma 2 Let X be a standard N(0,1) random variable with distribution function Φ, then for any
constant c≥ 0 we have

E{Φ(cX)I(X ≥ 0)}= 1
4
+

1
2π

arccos
1√

1+ c2
,

where I(·) denotes the indicator function.

Proof. Let φ be the standard normal density function, then

E{Φ(cX)I(X ≥ 0)}=
∫

∞

0
Φ(cx)φ(x)dx

=
∫

∞

0

∫ cx

−∞

φ(y)φ(x)dydx

=
∫

∞

0

∫ 0

−∞

φ(y)φ(x)dydx+
∫

∞

0

∫ cx

0
φ(y)φ(x)dydx

=
1
4
+

1
2π

∫
∞

0

∫ cx

0
e−

1
2 (y

2+x2)dydx.

Using polar co-ordinates by setting x = r cosθ and y = r sinθ and noticing that the Jacobian of the
transformation is given by

∂ (x,y)
∂ (r,θ)

= r,

we deduce that

E{Φ(cX)I(X ≥ 0)}= 1
4
+

1
2π

∫ arctanc

0

∫
∞

0
re−

1
2 r2

drdθ

=
1
4
+

1
2π

arctanc

=
1
4
+

1
2π

arccos
1√

1+ c2
.

�
In the proof of the theorem below we will apply the following known facts:

(i) If {B(t), t ≥ 0} is a standard Brownian motion process then {−B(t), t ≥ 0} and {B(t + c)−
B(c), t ≥ 0} are also standard Brownian motion processes, for some finite constant c≥ 0.

(ii) A standard Brownian bridge process on [0,T ] can also be represented as

B0(t) =
(

T − t√
T

)
B
(

t
T − t

)
, 0≤ t ≤ T.
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(iii) The density function of B0(t) is N(0,σ2
T (t)), where

σ
2
T (t) :=

t(T − t)
T

, 0≤ t ≤ T.

(iv) P
(

sup
0≤s≤t

B(s)≥ x
)
= 2P(B(t)≥ x) , x ∈ R.

We now derive an arcsine law that describes the distribution of the last time a standard Brownian
bridge process B0(·) changes sign in the time interval [0,a], 0≤ a≤ T .

Define the stopping time

τ := sup
{

0≤ t ≤ a : B0(t) = 0
}
.

Theorem 2 For 0≤ x < a≤ T we have that

P(τ ≤ x) =
2
π

arcsin

√
x(T −a)
a(T − x)

.

Proof. For ease of notation, write α(y) := y/(T − y), 0≤ y≤ T . Then

P(τ ≤ x) = P
(
B0(·) has no zeros in (x,a]

)
= 1−P

(
B0(·) has at least one zero in (x,a]

)
= 1−

∫
∞

−∞

P
(
B0(·) has at least one zero in (x,a]|B0(x) = y

)
fB0(x)(y)dy

= 1−
∫ 0

−∞

P
(

sup
x<s≤a

B0(s)≥ 0
∣∣∣B0(x) = y

)
fB0(x)(y)dy

−
∫

∞

0
P
(

inf
x<s≤a

B0(s)≤ 0
∣∣∣B0(x) = y

)
fB0(x)(y)dy

=: 1− (I1 +I2).

Applying (i)–(iv) and the independence of Brownian motion increments we deduce that

I1 =
∫ 0

−∞

P
(

sup
x<s≤a

B
(

s
T − s

)
≥ 0
∣∣∣B0(x) = y

)
fB0(x)(y)dy

=
∫ 0

−∞

P

(
sup

α(x)<s≤α(a)
B(s)≥ 0

∣∣∣B(α(x)) =

√
T

(T − x)
y

)
fB0(x)(y)dy

=
∫ 0

−∞

P

(
sup

α(x)<s≤α(a)

(
B(s)−B(α(x))

)
≥−

√
T

(T − x)
y

)
fB0(x)(y)dy
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=
∫ 0

−∞

P

(
sup

0<s≤α(a)−α(x)

(
B(s+α(x))−B(α(x))

)
≥−

√
T

(T − x)
y

)
fB0(x)(y)dy

=
∫ 0

−∞

P

(
sup

0<s≤α(a)−α(x)
B(s)≥−

√
T

(T − x)
y

)
fB0(x)(y)dy

=
∫

∞

0
P

(
sup

0<s≤α(a)−α(x)
B(s)≥

√
T

(T − x)
y

)
fB0(x)(y)dy

= 2
∫

∞

0
P

(
B
(

α(a)−α(x)
)
≥
√

T
(T − x)

y

)
fB0(x)(y)dy

= 2
∫

∞

0

{
1−Φ

(
y
√

T

(T − x)
√

α(a)−α(x)

)}
fB0(x)(y)dy

= 2
∫

∞

0

{
1−Φ

(
y

√
T −a

(a− x)(T − x)

)}
fB0(x)(y)dy

= 1−2
∫

∞

0
Φ

(
y

√
x(T −a)
T (a− x)

)
φ(y)dy

= 1−2E

{
Φ

(
X

√
x(T −a)
T (a− x)

)
I(X ≥ 0)

}
,

where X is a N(0,1) random variable.
Similarly, we have that I2 = I1. Hence,

I1 +I2 = 2−4E

{
Φ

(
X

√
x(T −a)
T (a− x)

)
I(X ≥ 0)

}
.

Applying Lemma 2 above we conclude that

P(τ ≤ x) =
2
π

arccos

√
T (a− x)
a(T − x)

=
2
π

arcsin

√
x(T −a)
a(T − x)

.

�

Remark

Note that if in Theorem 2 we set a = 1 and let T → ∞, then

P(τ ≤ x)→ 2
π

arcsin
√

x,

which agrees with the second arcsine law for a standard Brownian motion on [0,1].

5. Alternative Proofs

The proof of Theorem 1 is essentially based on Itô’s lemma, the isometry property of an Itô stochastic
integral, and the interesting fact that {B0(s), 0≤ s≤ t} is independent of B(T ). The referee pointed
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out that it could also be proved by the usual approximation of an integral by a Riemann sum. To
broaden the reader’s perspective on the subject, we provide such a proof.
Proof. (Alternative proof of Theorem 1) Let 0 = t0 < t1 < t2 < · · · < tn = t be any equal-spaced
partition of the interval [0, t], i.e., tk := (k/n)t, for k = 0,1, . . . ,n. Set ∆t := tk− tk−1 = t/n. We then
have, with probability one, that

A(t) := lim
n→∞

∆t
n

∑
k=1

h(tk)B(tk) =: lim
n→∞

In(t).

Clearly, In(t)
d
= N(0,σ2

n (t)), where

σ
2
n (t) := Var(In(t))

= (∆t)2
n

∑
k=1

n

∑
`=1

h(tk)h(t`)Cov(B(tk),B(t`))

= (∆t)2
n

∑
k=1

n

∑
`=1

h(tk)h(t`)min(tk, t`).

The symbol d
= denotes equality in distribution. Hence, as n→ ∞, we obtain that

σ
2
n (t)→

∫ t

0

∫ t

0
h(x)h(y)min(x,y)dydx

=
∫ t

0
h(x)

∫ x

0
yh(y)dydx+

∫ t

0
xh(x)

∫ t

x
h(y)dydx

= 2
∫ t

0
h(x)

∫ x

0
yh(y)dydx,

by interchanging the order of integration of the second integral. Further, note that by applying partial
integration, σ2(t) defined in (8) can also be written as

σ
2(t) = 2

∫ t

0
h(x)

∫ x

0
yh(y)dydx.

Let Xn(t) := In(t)/σn(t). Then Xn(t)
d
=N(0,1), and from Slutsky’s theorem we conclude that In(t) =

σn(t)Xn(t)
d→ N(0,σ2(t)). Thus, A(t) d

= N(0,σ2(t)).
A similar argument as above, replacing B(·) by B0(·) and recalling that Cov(B0(tk),B0(t`)) =

min(tk, t`)− tkt`/T , yields that A0(t) d
= N(0,σ2

0 (t)), where

σ
2
0 (t) = σ

2(t)− 1
T

(∫ t

0
xh(x)dx

)2

.

�
The proof of Theorem 2 presented above is mainly based on the fact that B0(t) can be represented

as in (ii), i.e.,

B0(t) =
(

T − t√
T

)
B
(

t
T − t

)
, 0≤ t ≤ T,



A NOTE ON BROWNIAN AREAS AND ARCSINE LAWS 137

and on the result derived in Lemma 2. The author is indebted to the referee for providing the
following alternative proof.
Proof. (Alternative proof of Theorem 2) We compute P(τ ≤ x) as the sum of contributions from
Brownian paths from the left and the right with no zeros in the time interval (x,a]. Due to the obvious
symmetry these contributions are equal. To be more specific, for y,z < 0, define

uleft(y,z, t) := P
(

sup
0<s≤t

B(s)≤−y, B(t) ∈ dz− y
)
,

then from Borodin and Salminen (1996, p. 131) it follows that

uleft(y,z, t) =
1√
2πt

(
e−(z−y)2/2t − e−(−z−y)2/2t

)
.

Note that

P(B(·) has no zeros in (x,a], B(a) ∈ dz)

=
∫ 0

−∞

P
(
B(·) has no zeros in (x,a], B(a) ∈ dz

∣∣B(x) = ξ
)

fB(x)(ξ )dξ

=: I−(x,z,a).

Since B(x) is independent of B1(s) := B(s+ x)−B(x) and {B1(s),s ≥ 0} is a standard Brownian
motion process, we conclude that the left contribution I−(x,z,a) can be written, after applying some
algebra, as

I−(x,z,a) =
∫ 0

−∞

P
(

sup
x<s≤a

B(s)≤ 0, B(a) ∈ dz
∣∣∣B(x) = ξ

)
fB(x)(ξ )dξ

=
∫ 0

−∞

P
(

sup
0<s≤a−x

B1(s)≤−ξ , B1(a− x) ∈ dz−ξ

)
fB(x)(ξ )dξ

=
∫ 0

−∞

uleft(ξ ,z,a− x) fB(x)(ξ )dξ

=
e−z2/2a
√

2πa
erf
(
−z
√

x
2a(a− x)

)
,

where

erf(y) =
1√
π

∫ y

−y
e−t2

dt.

A similar argument shows that the right contribution I+(x,z,a), for z > 0, is given by I+(x,z,a) =
I−(x,−z,a), as to be expected because of the symmetry mentioned above.

Furthermore, let fB(a)|B(T )(z|0) denote the conditional density of B(a) given B(T ) = 0. We then
have that

P(τ ≤ x) = P
(
B(·) has no zeros in (x,a]

∣∣B(T ) = 0
)

=
∫

∞

−∞

P
(
B(·) has no zeros in (x,a]

∣∣B(a) = z,B(T ) = 0
)

fB(a)|B(T )(z|0)dz.
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Making use of the facts that B(T )−B(a) is independent of {B(s), s ≤ a} and that B(a) = z and
B(T ) = 0 is equivalent to B(a) = z and B(T )−B(a) =−z, we find that

P(τ ≤ x) =
∫

∞

−∞

P
(
B(·) has no zeros in (x,a]

∣∣B(a) = z
)

fB(a)|B(T )(z|0)dz

=
∫

∞

−∞

{
P(B(·) has no zeros in (x,a],B(a) ∈ dz)/ fB(a)(z)

}
fB(a)|B(T )(z|0)dz

=
∫ 0

−∞

{
I−(x,z,a)/ fB(a)(z)

}
fB(a)|B(T )(z|0)dz

+
∫

∞

0

{
I+(x,z,a)/ fB(a)(z)

}
fB(a)|B(T )(z|0)dz.

Clearly, fB(a)|B(T )(z|0) = fB(a)(z) fB(T )−B(a)(−z)/ fB(T )(0). Thus, after some tedious calculations and
applying Lemma 2, we conclude that

P(τ ≤ x) = 2
√

2πT
∫ 0

−∞

I−(x,z,a) fB(T )−B(a)(−z)dz

=
2
π

arcsin

√
x(T −a)
a(T − x)

.
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