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Abstract: A new five-parameter distribution is defined and studied. The new model is referred to
as the Kumaraswamy exponentiated Burr XII distribution. The new distribution includes eleven spe-
cial models, namely, the Kumaraswamy exponentiated log-logistic, Kumaraswamy exponentiated
Lomax, Kumaraswamy Burr XII and Kumaraswamy log-logistic distributions among others. Vari-
ous structural properties of this model including moments, moment generating function, incomplete
moments, order statistics and Rényi entropy are derived. The maximum likelihood method is used
for estimating the model parameters. We illustrate the improved performance of the proposed distri-
bution over other distributions available in the literature when modelling two real data sets.

1. Introduction

The Burr-XII (BXII) distribution, which was originally derived by Burr (1942) and since then has
received more attention by statisticians due to its broad applications in different fields, including
reliability, failure time modelling and acceptance sampling plans. Shao, Wong, Xia and Ip (2004)
studied the models for the extended three parameter Burr type XII distribution and used this dis-
tribution to model extreme events with application to flood frequency. The BXII model is an im-
portant distribution because it includes some well-known sub-models namely: Pareto II (Lomax),
log-logistic, compound Weibull Gamma and Weibull exponential distributions.
Recently, many authors constructed generalisations of the BXII distribution. For example, Paranaiba,

Ortega, Cordeiro and Pescim (2011) proposed the beta Burr XII (BBXII), Paranaiba, Ortega, Cordeiro
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and de Pascoa (2013) introduced the Kumaraswamy Burr XII (KBXII), Antonio, da Silva and
Cordeiro (2014) proposed the McDonald Burr XII and Mead (2014) introduced the beta exponenti-
ated Burr XII (BEBXII) distributions.

The cumulative distribution function (cdf) of the exponentiated Burr XII (EBXII) distribution is
given (for x > 0) by

G(x;e,k,B) = [1—(1+x0)*’<}ﬁ, )

where ¢ >0,k > 0and 8 > 0.
The corresponding probability density function (pdf) is given by

B-1

gliek B) = ckBa ! (142) 44D [1— (1) ] @

The aim of this paper is to propose and study a new lifetime model called the Kumaraswamy expo-
nentiated Burr XII (KEBXII for short) distribution. The main feature of this model is that the two
additional shape parameters inserted in (2) can give greater flexibility in the form of the new density.
By using the Kumaraswamy-generalised (K-G) family of distributions pioneered by Cordeiro and
de Castro (2011), we construct the five-parameter KEBXII model. We provide some of its mathe-
matical properties with the hope that it can serve as an alternative model to other existing lifetime
models in the literature for analysing and modelling real data in economics, reliability, engineering
and other areas of research.
Let G(x) be the baseline cdf, Cordeiro and de Castro (2011) defined the K-G family by the cdf
and pdf given by
F(xab)=1-{1-G(x)"}" 3)

and
f(xa,b) =abg(x) G(x)* " {1 -G}, )

respectively, where g(x) = dG(x)/dx and a > 0 and b > 0 are two additional shape parameters. For
a = b =1, we obtain the baseline distribution. The additional parameters a and b aim to govern
skewness and tail weight of the generated model. An attractive feature of this family is that a and b
can afford greater control over the weights in both tails and in the centre of the distribution.

Many authors used the K-G family to construct new generalisations of some well-known distri-
butions. For example, Cordeiro, Ortega and Nadarajah (2010) defined the Kumaraswamy Weibull,
de Castro, Ortega and Cordeiro (2011) proposed the Kumaraswamy generalised gamma, Cordeiro,
Pescim and Ortega (2012) introduced the Kumaraswamy generalised half-normal, Bourguignon,
Silva, Zea and Cordeiro (2013) proposed the Kumaraswamy Pareto and Afify, Cordeiro, Butt, Ortega
and Suzuki (2016) proposed the Kumaraswamy complementary Weibull geometric distributions.

The rest of the paper is outlined as follows. In Section 2, we define the KEBXII distribution and
give some plots for its pdf and hazard rate function (hrf). In Section 3, a useful mixture represen-
tations for its pdf and cdf and some mathematical properties of the KEBXII distribution including,
ordinary and incomplete moments, mean residual life, mean waiting time, quantile and generating
functions, Lorenz, Bonferroni and Zenga curves, order statistics and Rényi entropy are derived. The
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maximum likelihood estimates (MLEs) of the model parameters are obtained in Section 4. The KE-
BXII distribution is applied to two real data sets to illustrate its potential in Section 5. Finally, in
Section 6, we provide some concluding remarks.

2. The KEBXII Distribution

By substituting (1) in (3), the cdf of the KEBXII distribution is given by (for x > 0)

aP b
F(x;(p)l{l[l(lerc)_k} } ) 5)
where @ = (a,b,c,k,ﬁ)T. Using (1), (2) and (4), the corresponding pdf of (5) is given by
. abckPx! k]t o _k]9B b=t
f(x,(p)—m[l—(l—l—x) } {1—{1—(1+x) } } , ©)

where a,b,c,k and 3 are positive parameters. We denote a random variable X having pdf (6) by
X ~KEBXII(¢). The KEBXII distribution is very flexible and it has eleven sub-models when its
parameters are carefully chosen. These special models are the Kumaraswamy Burr XII (KBXII),
Kumaraswamy exponentiated Lomax (KEL), Kumaraswamy Lomax (KL), Kumaraswamy expo-
nentiated log-logistic (KELL), Kumaraswamy log-logistic (KLL), exponentiated Burr XII (EBXII),
exponentiated Lomax (EL), exponentiated log-logistic (ELL), BXII, Lomax (L) and log-logistic
(LL) models. Table 1 lists these special models.

The survival function (sf), hrf and cumulative hazard rate function (chrf) of X are, respectively,

given by b
S(x; ) = {1 — [1 - (1+xc)krﬁ} ;
h(x; @) = m {l - (l—i—xcrk}aﬁ—l {1 - [1 —(1 +x0)k}aﬁ}l )
and

H(x.p) = bln{l — 1=+ 7] “ﬁ} .

Figure 1 display some plots of the KEBXII density for selected parameter values. Plots of the
hrf of the KEBXII model for selected parameter values are given in Figure 2.

3. Theoretical Properties
In this section, we provide a mathematical treatment of the new KEBXII distribution including

expansions for its pdf and cdf, moments, incomplete moments, quantile function, mean residual life
and mean waiting time, Lorenz, Bonferroni and Zenga curves, order statistics and Rényi entropy.
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Table 1: Sub-models of the KEBXII distribution.

a b ¢ k B Reduced Model Author
- - - = 1 KBXII (Paranaiba et al., 2013)
— - 1 — — KEL (EL. Bata and Kareem, 2014)
- — 1 — 1 KL (Lemonte and Cordeiro, 2013)
- - = 1 — KELL New
— — — 1 1 KLL (de Santana, Ortega, Cordeiro and Silva, 2012)
1 1 - - = EBXII
1 1 1 - - EL
1 1 1 — ELL
1 1 1 BXII
1 1 1 - 1 L
1 1 - 1 1 LL
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Figure 1: Plots of the KEBXII density function for some parameter values.

3.1. Mixture Representation

Expansions for the KEBXII density can be derived using the generalised binomial expansion given
by

o ( 1\J )
(1—2)" 1= Zmzf forb >0and |z < 1. (7
j=0J°

Using expansion (7) in (6) and after some algebra, the pdf of X can be written as

L > (=1)'T(h) x! g ]aBlD)-1
f(x’q))_abcwi;) M0 (b—i) (14xc)t! [1_(1”) k} '
A

Applying (7) to the quantity denoted by A above, the last equation can be rewritten as

=

fe) =Y qih(xck(j+1)), (8)

Jj=0
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Figure 2: Plots of the KEBXII hrf for some parameter values.

where

—n g G () (7

and h(x;c,k(j+1)) is the BXII density with parameters ¢ and k(j+ 1). Therefore, the KEBXII
density can be expressed as a mixture of the BXII density and several of its structural properties can
be obtained from (8) and the properties of the EBXII distribution.

Similarly, the cdf (5) of X can be expressed in the mixture form

Zq] (xe,k(j+1)),

where H (x;¢,k(j+ 1)) is the BXII cdf with parameters ¢ and k(j+ 1).

3.2. Moments

Let Y be a BXII distributed random variable, with parameters ¢ and k. Then, the rth ordinary and
incomplete moments of ¥ are given (for r/c < k) by

E(Y") = kB (1+ gy f)
C C

and
mr(2) = kB (51 + k—7>

respectively, where B(a,b) = [5°t*~'(1+1)~“*?)drt and B(y;a,b) = [ 1%~ (1+1)~(@*P)dr are the
beta and the incomplete beta functions of the second type, respectively. It is noted, from the last
equation, that m, (z) — E(Y") when z — oo,

Then, using (8), the rth ordinary moment of X is given by
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Zq,/ X h(x;c,k(j+1))dx.

For r/c < k, we obtain
= Y aik(+ D B(1+2k(+1)~2). ©)
= c c

Setting r = 1 in (9), we have the mean of X. The skewness and kurtosis measures can be calculated
from the ordinary moments using well-known relationships.
The nth central moment of X, say M,,, is given by

M, = B0 = 30 ()

k=0

3.3. Quantile Function

The gf of X is obtained by inverting (5) as

W8 1/ 1/e
Q(u>{{1[1(1u)1/b]1/'3} 1} ,0<g<1. (10)

By setting ¢ = 0.5 in (10) gives the median of X. Simulating the KEBXII random variable is straight-
forward. If U is a uniform variate on the unit interval (0,1), then the random variable X = Q(u)
follows the distribution described in (5).

3.4. Incomplete Moments

The rth incomplete moment, say m,(t), of the KEBXII distribution is given by m, (t) = [5x" f(x)dx
We can write from (8)

qu/xhxck(]+l))

Then, we obtain (for r/c < k)

= Y k(G DB(S5 14+ Sk (4 1) =)
= c c

Setting » = 1 in the last equation, we obtain the first incomplete moment of X. The mean deviations
about the mean and about the median of X can be expressed as oy (X) = [;” |X — u{| f(x)dx =
2uiF(uy) —2my(ug) and oy (X) =[5 |X — M| f(x)dx = puj — 2m; (M), respectively, where p| =
E(X) comes from (9), F(u;) is simply calculated from (5), m;(u]) is the first incomplete moment
and M is the median of X.
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3.5. Mean Residual Life and Mean Waiting Time

The mean residual life (MRL) function or the life expectancy at a given time ¢, say m(t), measures
the expected remaining lifetime of an individual of age 7 and it given by

1 t
m(t) = 50 [E (1) —/0 tf(t)dt] —1.
Then, the MRL of X is given (for k > 1/c¢) by

m(e) = Eroak G+ DB(L+pk(+D) =) BT+ LG+ —F)
1-Y70q;H (tek(j+1))
The mean waiting time (MWT) or mean inactivity time represents the waiting time elapsed since the
failure of an item on condition that this failure had occurred in the interval [0,7].The MWT of X, say

m(t), is defined by

1 t
m(t)=t——— | tf(t)dt.
=17 Jy O
For k > 1/c, we obtain

Y7oqik(G+1)B (e 1+ L k(j+1)-1)

m(t) =1 - Y5oqiH (te,k(j+1))

3.6. Lorenz, Bonferroni and Zenga Curves

Lorenz, Bonferroni and Zenga curves have been applied in many fields such as economics, reliability,

demography, insurance and medicine. Further details can be found in Kleiber and Kotz (2003) and

Zenga (2007). The Lorenz curve, say Lr (x; ¢), Bonferroni curve, say B[F (x; ¢)], and Zenga curve,

say A(x; @), are given by

Y7o0qk G+ 1B 1+ k(j+1)—1)
B(1+Lk(j+1)—1)

Yroqk G+ 1B 14+ 1 k(j+1)—1)
Yio0qiH (e k(j+1)B(1+1k(j+1)—1)

Lr (x;9) =

)

BIF (x;)] =

and

1= Eoa H (e k(i+ D) B+ Lk(i+1)— 1)
Y5 o0qiH (xe,k(j+1) X7 0qk(j+1) P ’

respectively, where P; = [B(1+ L k(j+1)— 1) =B (x 1+ L k(j+1)—1)].

Alx;0)=1—

3.7. Order Statistics

If Xi,...,X, is a random sample of size n from the KEBXII distribution and X(y), ..., X, are the
corresponding order statistics. Then, the pdf of the ith order statistic X;.,, say fi.,(x), is given by

Y F ) - P ()

Jin®) = G =
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Using (5), (6) and (11) and, after some simplification, we can write

fin(x Zcm (x;c,k(r+1)), (12)
where
" nlabP = (=) G faB (mA1) =1\ (b(nl—it1)—1
o T Tt &y ) )

and h(x;c,k (r+1)) is the BXII density function with parameters ¢ and k(r+1). Thus, the pdf of
the KEBXII order statistics is a mixture of BXII densities. The pdf of the order statistic from a
random sample of the BXII distribution comes by setting a = b = 8 = 1 in (12). Further, some of
their mathematical properties can also be obtained from those of the BXII distribution.

For example, the sth moment of X;., can be expressed as

Zc (r+1) (1+z,k(r+1)—£).

3.8. Rényi Entropy

The Rényi entropy of a random variable X represents a measure of variation of the uncertainty. The
Rényi entropy is defined by

Ig () = logl(8),

1
(1-9)

where I(8) = [, f%(x)dx, § >0and § # 1.
Using (6), the binomial expansion and, after some simplification, we obtain

I1(0)= abckB Z U,J/ =D (1 4x)" Skt D)=kJ gy,
i,j=0

where v; ; = (_l)iﬂ‘ (S(bfl)) (aB(éfi)fé).
, ) )
Using the transformation y = x¢ and, after some algebra, the last equation reduces to

1(8) = (abckB)? Zv,,( (6;1),k(6+j)—(6;1)).

i,j=0

Then, the Rényi entropy of the KEBXII distribution is given by

(abckB)® Zv,,( (SCI),k(6+j)—(661))].

i,j=0

I (8) = log |(

1
(1-9)

4. Estimation

Here, we consider the estimation of the unknown parameters for this family from complete samples
only by maximum likelihood. The MLEs of the parameters of the KEBXII (x;¢) model is now
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discussed. Let Xi,...,X, be a random sample of this distribution with unknown parameter vector
¢ = (a,b,c,k,B)T.
The log-likelihood function for @, say ¢ = £(¢), is given by
n
¢ = n(lna+Inb+Inc+Ink+1Inf)+ (b Z (l—z )
n 1 n - n
Fe=1) Yin(p) = (k1) Yo In () + (@B~ 1) Y In(z1),

1 i

i =1
where p; =x§, u; = (14 p;) and z; = (1 —u; k)

Then, the elements of the score vector components, U (@) = (%, %, % ‘9—,’2, (%) , are given by

al n ! d z?ﬁln(z,-) 2l n ap
%f;+ﬁi;ln(zz)*ﬁ(b*1)izlwa %fﬁi;ln(wf ).
9t r P pn () 1e
% = **akﬁ 1221 ]—Zﬁ +;1n(p,‘)
l/c n k— l/C
—(k+1) Zptln( pi) k(aB —1) Z”z p,ln(pl) ’
i= =1
B n—iln(u-)—aﬁ(b—l)i Z?ﬁ_lln(ui) +(aﬁ—l)iln(ui)
k= l i=1 uk (171;113) = o
and y
ol n A4 ln
n(z)—a(b—1)
B B Z ,; 1—

We can obtain the estimates of the unknown parameters by settmg the score vector to zero, U(9)=0.
By solving these equations simultaneously gives the MLEs a, b c, ¥ and ﬁ They can not be solved
analytically and statistical software can be used to solve them numerically by means of iterative
techniques such as the Newton-Raphson algorithm.

5. Empirical Ilustrations

In this section, we provide two applications to two real data sets to prove the importance and flex-
ibility of the KEBXII distribution. The first data set represents Floyd river flood rates for the years
1935-1973 in Iowa, USA. Akinsete, Famoye and Lee (2008) and Alzaatreh, Famoye and Lee (2012)
studied these data using the beta Pareto (BP) and gamma Pareto (GP) distributions, respectively.
The second real data set corresponding to remission times (in months) of a random sample of 128
bladder cancer patients. These data were previously studied by Lee and Wang (2003), Lemonte and
Cordeiro (2013) and Nofal, Afify, Yousof and Cordeiro (2017).
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We compare the fit of the KEBXII distribution (and its sub-models namely: KEL, KELL,
KBXII, EBXII and BXII distributions) with several other competitive models namely: the gener-
alised inverse gamma (Mead, 2013), the beta exponentiated Burr XII (BEBXII) (Mead, 2014), the
beta Fréchet (BF) (Nadarajah and Gupta, 2004; Barreto-Souza, Cordeiro and Simas, 2011), Ku-
maraswamy Fréchet (KF) (Mead and Abd-Eltawab, 2014), Kumaraswamy Pareto (KP) by Bour-
guignon et al. (2013), the Zografos-Balakrishnan log-logistic (ZBLL) by Zografos and Balakrishnan
(2009) and the generalised gamma (GG) Stacy (1962) models with corresponding densities (for x > 0
except for the KP where x > f3):
af—1

BEBXIL: f(via,b,c.k.B)= 5uboae= (14~ {1 1 +x6)*"}

x {1 - {1 -1 —&—xc)k}ﬁ}bl ;

B4 c —A ¢
GIG:  fluabekB)= Logr @D (9P +k] “exp[- (9P

BF: fwabe)= Fox B Vexp[-a(6)] {1-exp [~ (2)’] }H ;

KE: fab,e,B)= abfchx~B+Dexp {—a (g)ﬁ} {1 —exp {—a (;)’5} }IH :
KP: fabk,B) = abkBrx—(+D) {1 - (f)k} - {1 . {1 - (ﬁ)k]a}hl :
ZBLL: facB) = Bosb1 i +(f)ﬁ}72{ln 1+ (%) }H;

GG: frae )= f ()P e |- (1)

where the parameters of the above densities are all positive real numbers, I (@) is the gamma function
and I'; (a,k) is the generalised gamma function given by Kobayashi (1991) defined by

Ty(al) = [ 5 )™ exp(=y)dy:

In order to compare the models, we consider the Anderson-Darling (A*) and Cramér-von Mises
(W) statistics (full details can be found in Chen and Balakrishnan (1995)). In general, the model
with minimum values for these statistics could be chosen as the best model to fit the data.

Tables 2 and 3 list the MLEs of the model parameters, their corresponding standard errors (given
in parentheses) and the values of these statistics (A* and W*) for the fitted models to both data sets.
The histogram of KEBXII estimated pdfs for the two data sets are displayed in Figures 3 and 4,
respectively.

Tables 2 and 3 compare the KEBXII model with the KEL, KELL, KBXII, EBXII, BXII, BEBXII,
GIG, BF, KF, KP, ZBLL and GG distributions. Note from Table 2 that the KEBXII model gives the
lowest values for the A* and W* statistics (for the first data set) among all fitted models, whereas
the KBXII has the lowest values for the A* and W* statistics (for the second data set) among all
fitted models. So, the KEBXII and its sub-model (KBXII) distributions could be chosen as the best
models. These results are obtained using the MATHCAD PROGRAM.
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Table 2: MLEs, their corresponding standard errors and the statistics W* and A* for the first data
set.

Model Estimates w* A*
a b ¢ B %
KEBXII  13.547292 4.246251 0.40436 13.812045 1.382952  0.021261  0.17069
(139.824) (7.897) (2.13) (142.557) (9.082)
KEL 21.86262 4.84026 5.73513 0.50895 0.02135 0.17233
(239.625) (5.635) (62.86) (0.244)
KELL 12.13864 4.53497 0.53073 12.13627 0.021297  0.17132
(145.266) (4.753) (0.217) (145.238)
KBXII 151.84771 4.52408 0.49323 1.08218 0.021267  0.17103
(738.633) (8.239) (3.05) (7.868)
EBXII 3.07506 1347.14356 0.30482 0.050853  0.37001
(19.16) (906.746) (1.899)
EBXII 2.119 0.05765 0.09354 0.45421
(63.722) (1.745)
BEBXII 49.54618 8.62295 0.27218 3.29085 1.32619 0.02157 0.17471
(340.981) (18.233) (0.674) (20.636) (6.702)
GIG 0.14461 0.01812 494.39805 3.66998 14.03693 0.11279 0.89762
(0.0005) (0.95205) (3.006) (0.502) (9.490)
BF 27.24953 10.1835 75.35864 0.30582 0.02151 0.1743
(344.968) (24.4296) (694.38) (0.38)
KF 15.11457 560.73933 17.46945 0.15052 0.064948  0.47243
(9.213) (79.595) (6.752) (0.0312)
KP 1 0.27318 318.1 1.5101 0.35694 2.56713
(0.007) (0.161) - (0.798)
ZBLL 1.4568 1.5876 2087.7847 0.024976  0.17319
(0.168) (0.206) (30.159)
GG 0.28792 1.2289 10.44729 0.047635  0.35901
(0.067) 4.5) (4.891)
]
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Figure 3: Plot of the estimated pdf of the KEBXII model for the first data set.
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Table 3: MLEs, their corresponding standard errors and the statistics W* and A* for the second data

MEAD & AFIFY

set.
Model Estimates w* A*
a b ¢ B 3
KEBXII  2.780009  67.636144  0.338304  3.082502  0.838911 0.04817 0.31966
(44.51) (104.728) (0.385) (49.353) (1.723)
KEL 1.59726 106.28888 1.7652 0.09534 0.105771 0.70421
(5.914) (125.189) (6.536) (0.054)
KELL 3.25159 95.19093 0.28377 3.2516 0.048896  0.32061
(19.642) (182.458) (0.104) (19.642)
KBXII 6.60303 118.58884 0.38837 0.55222 0.047695 0.31405
(10.402) (311.923) (0.433) (1.416)
EBXII 0.65369 9.25526 1.90138 0.282415 1.86645
(0.167) (4.754) (0.632)
EBXII 2.33485 0.23375 0.693296 5.3726
(0.354) (0.04)
BEBXII  22.18643 20.27685 0.22446 1.77993 1.30637 0.13369 0.90004
(21.956) (17.296) (0.144) (1.076) (1.079)
GIG 2.32748 0.00024 17.93139 0.54264 0.001 0.40999 2.61843
(0.369) (0.00019) (7.385) (0.042) (0.0003)
BF 6.12682 27.64441 92.4188 0.19843 0.16683 1.1078
(6.135) (9.1601) (75.864) (0.056)
KF 5.15144 452.34073  24.10734 0.17058 0.05442 0.35912
(18.399) (83.5773) (5.4230) (0.0497)
KP 4.95284 131.93483 0.08 0.10138 0.580129  3.66451
(0.493) (73.67) - (0.021)
ZBLL 1.53969 1.54622 3.33888 0.15635 1.03729
(0.093) (0.111) (0.037)
GG 3.74791 0.5951 0.52009 0.050561 0.32851
(2.635) (1.425) (0.195)
S |
o
8 |
o
8 |
z o
k3
]
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Figure 4: Plot of the estimated pdf of the KEBXII model for the second data set.
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6. Conclusions

In this paper, we propose a new five-parameter distribution, called the Kumaraswamy exponentiated
Burr XII (KEBXII) distribution, which extends the exponentiated Burr XII (EBXII) distribution and
includes some well-known distributions as special cases. We provide some of its mathematical prop-
erties including the ordinary and incomplete moments, quantile and generating functions, Lorenz,
Bonferroni and Zenga Curves, order statistics, mean residual life, mean waiting time and Rényi en-
tropy. We discuss the maximum likelihood estimation of the model parameters. Two applications
illustrate that the proposed model provides consistently better fit than other nested and non-nested
models.
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