
South African Statist. J. (2017) 51, 45 – 65 45

INVERSE KIES DISTRIBUTION: PROPERTIES
AND APPLICATIONS

C. Satheesh Kumar 1

Department of Statistics, University of Kerala,
Trivandrum-695 581, India

e-mail: drcsatheeshkumar@gmail.com

S.H.S. Dharmaja
Department of Statistics, Govt. College for Women,

Trivandrum-695 014, India

Key words: Beta generalised inverse Weibull distribution, Failure rate, Generalised inverse Weibull
distribution, Maximum likelihood estimation, Model selection, Percentile measures.

Abstract: In this paper, a new class of distribution namely “the inverse Kies distribution” is pro-
posed and some of its important aspects are studied by deriving expressions for its percentile mea-
sures, raw moments, reliability measures etc. The maximum likelihood estimation of the parameters
of the distribution is discussed and the distribution has been fitted to certain real life data sets. The
asymptotic behaviour of maximum likelihood estimators of the parameters of the distribution are
also studied by using simulated data sets.

1. Introduction

Keller, Kamath and Perera (1982) introduced and studied the inverse Weibull distribution (IWD) as a
failure model for analysing wear, fatigue and corrosion occurring in mechanical components. They
defined the IWD through its cumulative distribution function (c.d.f.)

G(u) =

{
0, for u < 0

exp
[
−
(

α

u

)β
]
, for u≥ 0,

in which α > 0 and β > 0. Keller, Goblin and Farnworth (1985) considered certain applications of
the IWD and fitted the distribution to failure data of dynamic components while Erto (1989) provided
some of its physical applications. Carter, Wampler and Stablein (1983) also used the IWD in certain
survival data analysis studies. The IWD has been further studied by Calabria and Pulcini (1990),
Khan, Pasha and Pasha (2008), Pawlas and Szynal (2000), Mahmoud, Sultan and Amer (2003) and
Elshahat and Ismail (2014). Certain other re-parametric versions of the IWD are proposed in the
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literature recently by authors like de Gusmão, Ortega and Cordeiro (2011), Khan and King (2012),
Khan (2010) and Baharith, Mousa, Atallah and Elgayar (2014). All these families of distributions
possess decreasing/upside down bathtub-shaped hazard rate functions.

Kumar and Dharmaja (2014) considered a functional form of the Weibull distribution namely
“the Kies distribution” (KD) which has the following probability density function (p.d.f.), in which
0≤ a≤ υ ≤ b < ∞, λ > 0 and β > 0.

q(υ) = q(υ ;a,b,λ ,β ) = λβ (b−a)(υ−a)β (b−υ)−β−1 exp

{
−λ

(
υ−a
b−υ

)β
}
.

The c.d.f. of the KD is

Q(υ) =


0, for υ < a

1− exp
[
−λ
(

υ−a
b−υ

)β
]
, for a ≤ υ < b

1, for υ ≥ b.

(1)

In an analogous way of developing Kies distribution as a functional form of Weibull distribu-
tion, through this paper we develop a functional form of the IWD and named it as “the inverse Kies
distribution” or in short “the IKD”. The paper is organised as follows. In Section 2 it is shown
that the IKD possess increasing or bathtub-shaped or reverse shaped hazard rate functions depend-
ing on its scale and shape parameters and thus the IKD is a useful distribution for modelling the
complete lifetime of systems with bathtub-shaped or reverse S-shaped hazard rate functions, where
both the Weibull and the inverse Weibull models are not suitable. This flexible nature of the hazard
rate function of the IKD helps to give better fits in such situations compared to existing life time
distributions in the literature like the Kies distribution (KD) (cf. Kumar and Dharmaja, 2014) the
generalised inverse Weibull distribution (GIWD) (cf. de Gusmão et al., 2011), the exponentiated
generalised inverse Weibull distribution (EGIWD) (cf. Elbatal and Muhammed, 2014), the modified
inverse Weibull distribution (MIWD) (cf. Khan and King, 2012), the beta inverse Weibull distribu-
tion (BIWD) (cf. Hanook, Shahbaz, Mohsin and Kibria, 2013), the beta generalised inverse Weibull
distribution (BGIWD) (cf. Baharith et al., 2014) etc. Above all, compared to these extended inverse
Weibull models, the IKD possess some useful properties as discussed in Section 2 of the paper. In
Section 3 we discuss the estimation of the parameters of the IKD and in Section 4 we consider two
real life data sets for illustrating the usefulness of the proposed distribution.

We present the following integral/series representations which we need in the sequel. For details
regarding these representations see Gradshteyn and Ryhzik (2007, p. 346). For Re(ν) > 0,
Re(µ)> 0, ∫ u

0
xν−1 exp(−µx)dx = µ−ν

γ (ν ,µu) , (2)∫
∞

u
xν−1 exp(−µx)dx = µ−ν

Γ(ν ,µu) ,

and ∫
∞

u
x−ν exp(−x)dx = u−ν | 2 exp(−u | 2)W− ν

2 ,(
1−ν

2 ) (u) , (3)

in which

γ (α,u) =
∞

∑
i=0

(−1)i

i!
uα+u

α + i
, (4)
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Γ(α,u) = {Γ(α)− γ (α,u)}

and for |arg(−x)|< 3π

2

Wk1,k2 (x) =
Γ(−2k2)

Γ
( 1

2 − k2− k1
)Mk1,k2 (x)+

Γ(2k2)

Γ
( 1

2 + k2− k1
)Mk1,−k2 (x) , (5)

where

Mk1,k2 (x) = exp
(
− x

2

)
xk2+

1
2

∞

∑
n=0

{( 1
2 − k1 + k2

)
n

(1+2k2)n

xn

n!

}
,

with (c)n = c(c+1) . . .(c+n−1) , for n≥ 1 and (c)0 = 1 .

2. The Inverse Kies Distribution

Here we present the definition of the inverse Kies distribution and discuss some of its important
properties.

Definition 1 A continuous random variable X is said to follow the inverse Kies distribution if its
c.d.f. F(x) is of the following form, for c≥ 0, c < d, ϑ > 0 and β > 0.

F (x) =


0, for x < c

exp
[
−ϑ

( x−c
d−x

)−β
]
, for c≤ x < d

1, for x≥ d

(6)

A distribution with c.d.f. (6) is hereafter denoted by IKD(c, d, ϑ , β ).
On differentiating (6) with respect to x we get the following p.d.f., f (x), of the IKD(c, d, ϑ , β ),

f (x) = f (x;c,d,ϑ ,β ) = ϑβ (d− c)(d− x)β−1 (x− c)−β−1 exp

[
−ϑ

(
x− c
d− x

)−β
]
, (7)

for 0≤ c≤ x≤ d < ∞, ϑ > 0 and β > 0.
Now, we have the following results.

Result 1 For any c, d, ϑ and β ∈ R+ = [0,∞), if X follows the IKD(c, d, ϑ , β ), then Z1 = a +
[ X−c

d−X

]
follows the IWD of Khan et al. (2008), with c.d.f.

F1 (z) = exp
[
−ϑ (z−a)−β

]
. (8)

Proof. The c.d.f. F1 (z) of Z1 = a+ X−c
d−X is the following, for any z > 0.

F1 (z) = P(Z1 ≤ z) = P
{

a+
X− c
(d−X)

≤ z
}
= P

{
X ≤ c+d (z−a)

1+(z−a)

}
= F

{
c+d (z−a)
1+(z−a)

}
,

which gives (8), in the light of (6). �
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Result 2 For any a, c, d, ϑ and β ∈ R+, if X follows the IKD(c, d, ϑ , β ), then Z2 = a+
[ X−c

d−X

]β
follows the inverse generalised exponential distribution of Khan (2009), with c.d.f.

F2 (z) = exp
[
−ϑ (z−a)−1

]
. (9)

Proof. The c.d.f. F1 (z) of Z2 = a+
[ X−c

d−X

]β is the following, for any z > 0,

F2 (z) = P(Z2 ≤ z) = P

{
a+
[

X− c
d−X

]β

≤ z

}

= P

X ≤ c+d(z−a)
1
β

1+(z−a)
1
β

= F

c+d(z−a)
1
β

1+(z−a)
1
β

 ,

which gives (9), in the light of (6). �
As a consequence of Result 2, we have the following corollary.

Corollary 1 If X follows the IKD(c, d, ϑ , β ), then Z2 =
[ X−c

d−X

] β

2 , follows the inverse Rayleigh
distribution cited in Ahmad, Ahmad and Ahmed (2014).

Result 3 If X follows the IKD(c, d, ϑ , β ), then Z3 = 1
X follows the KD with c.d.f. (1) in which

a =
1
d

, b =
1
c

and λ = θ

(
d
c

)β

.

Proof. The c.d.f. F3 (z) of Z3 = 1
X is the following, for any z > 0,

F3 (z) = P(Z3 ≤ z) = P
{

X ≥ 1
z

}
= 1−F

{
1
z

}
,

which implies (1) with a =
1
d

, b =
1
c

and λ = θ

(
d
c

)β

, in the light of (6). �

Result 4 The survival function S(x) and the hazard rate function h(x) of the IK(c, d, ϑ , β ) are the
following, for 0≤ c≤ x≤ d < ∞

S(x) = 1− exp

[
−ϑ

(
x− c
d− x

)−β
]

and

h(x) = ϑβ (d− c)(d− x)β−1 (x− c)−β−1

{
exp

[
ϑ

(
x− c
d− x

)−β
]
−1

}−1

.

The proof is straightforward and hence omitted.
We have plotted the c.d.f. of IKD(0.01, 5, 0.5, β ) for particular values of its parameter β in Figure

1. We have considered such c.d.f. plots of IKD(c, d, ϑ , β ) for different values of its parameters and
observed that for any arbitrary but fixed values of c, d and ϑ , the curves of the c.d.f. F(x) for various
values of β intersect at x = {(c+d) | 2} and the value of F(x) at x = {(c+d) | 2} is {exp(−ϑ)}.
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Figure 1: The c.d.f. plots of IKD(0.01, 5, 0.5, β ) for particular values of β .

Figure 2: The p.d.f. plots of IKD(0,10, 0.75, β ) (Left) and IKD(0.01, 10, 2, β ) (Right) for particular
values of β .

Figure 3: The hazard rate function plots of IK(0, 10, 0.75, β ) for particular values of β .
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Thus the inverse Kies characteristic life is given by x = c+d
2 , the time at which exp(−ϑ) percent

units will fail. Here, it can be noted that the value of F(x) at x = 2.5050 is exp(−0.5), for any value
of β . Further, we have plotted the p.d.f. f (x) for IKD(0.01, 5, 0.5, β ) and IKD(0, 10, 2, β ) for
particular values of its parameter β in Figure 2 and hazard rate function h(x) of IKD(0, 10, 0.75, β )
for particular values of its parameter β in Figure 3.

Now we obtain the percentile function of IKD(c, d, ϑ , β ) through the following result, by
inverting its c.d.f. F(x).

Result 5 For any β > 0, the percentile function xP of IKD(c, d, ϑ , β ) with c.d.f. (6) is the following.

xP =
(
cδ
′
P +d

)(
1+δ

′
P
)−1

, (10)

in which δ ′P =
[
−ϑ−1 ln(P)

]β−1
such that P = F(xP).

Now one can obtain expressions for the first quartile Q1, the second quartile Q2 and the third quartile
Q3 of IKD(c, d, ϑ , β ) by putting P = 0.25, 0.50 and 0.75 respectively in (10). Further we have the
following results, based on Result 5.

Result 6 Galton’s percentile oriented measures for skewness ga of IKD(c, d, ϑ , β ) with c.d.f. (6) is

ga =

(
δ
′
0.8−δ

′
0.5
)
(1+δ

′
0.2)(

δ
′
0.5−δ

′
0.2

)(
1+δ

′
0.8

) .
Proof follows from the definition of ga as ga =

(x0.8−x0.5)
x0.5−x0.2

.

Remark 1 If X follows IKD(c, d, ϑ , β ) with c.d.f. (6), then the distribution is symmetric (ga = 1) if
ϑ = ωβ , positively skewed (ga > 1) if ϑ < ωβ and negatively skewed (ga < 1) if ϑ > ωβ where ga

is the Galton’s percentile oriented measure of skewness and ωβ is given by the following equation.

ωβ =

 [ln(2)]
1
β [ln(5)]

1
β +[ln(2)]

1
β
[
ln
( 5

4

)] 1
β −2 [ln(5)]

1
β
[
ln
( 5

4

)] 1
β

[ln(5)]
1
β +

[
ln
( 5

4

)] 1
β −2 [ln(2)]

1
β


β

.

Result 7 The Schmid-Trede percentile oriented measure L (cf. Schmid and Trede, 2003) for kurtosis
of IKD(c, d, ϑ , β ) with c.d.f. (6) is the following.

L =

{
δ
′
0.975

(
1+δ

′
0.025

)
−δ

′
0.025

(
1+δ

′
0.975

)}(
1+δ

′
0.75
)(

1+δ
′
0.25
)(

δ
′
0.75−δ

′
0.25

)(
1+δ

′
0.975

)(
1+δ

′
0.125

) . (11)

Proof. The Schmid-Trede percentile oriented measure L for kurtosis is the product of a measure T of
tail and a measure P of peakedness as T =

x0.975−x0.025
x0.875−x0.125

, P=
x0.875−x0.125
x0.75−x0.25

. Thus, L= T P=
x0.975−x0.025
x0.75−x0.25

,
which gives (11) in the light of Result 5. �

Remark 2 If X follows IKD(c, d, ϑ , β ) with c.d.f. (6), then the distribution is (L = 2.9058) for that

value of β , for which ϑ ∼=
(
−B′−
√

B′2−4A′C′
2A′

)β

, while the distribution is leptokurtic (L > 2.9058)
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when the quadratic form A′X2+B′X +C′ for which X = ϑ

1
β is positive definite and platykurtic

(L < 2.9058) when the quadratic form is negative definite.

A′ = [ln(4)]
1
β

[
ln
(

4
3

)] 1
β

[ln(40)]
1
β −

[
ln
(

40
39

)] 1
β

−2.9058 [ln(40)]
1
β

×
[

ln
(

40
39

)] 1
β

[ln(4)]
1
β −

[
ln
(

4
3

)] 1
β

 ,

B′ = 3.9058

[ln(40)]
1
β

[
ln
(

4
3

)] 1
β

−
[

ln
(

40
39

)] 1
β

[ln(4)]
1
β


+1.9058


[

ln
(

40
39

)] 1
β
[

ln
(

4
3

)] 1
β

− [ln(40)]
1
β [ln(4)]

1
β


and

C′ = [ln(40)]
1
β −

[
ln
(

40
39

)] 1
β

−2.9058

[ln(4)]
1
β −

[
ln
(

4
3

)] 1
β

 .

We have computed values of Q2 , ga and L for particular values of the parameters of IKD(c, d, ϑ ,
β ) and given in Table 1. From Table 1, it can be observed that the IKD(0, 10, 0.75, β ) is symmetric
when β ∼= 0.4379 and when β > 0.4379 the curve is positively skewed. The IKD(0.01, 10, 2, β ) is
symmetric when β ∼= 1.3142 and when β > 1.3142 the curve is positively skewed. Further it can be
observed that the IKD(0, 10, 0.75, β ) is mesokurtic for β ∼= 2.6246 and the IKD(0.01, 10, 2, β ) is
mesokurtic for β ∼= 3.1853.

Next we have the following results.

Result 8 If X follows IKD(c, d, ϑ , β ), then the failure probability function F(x) given in (6) satisfies
the equation

F (∆xy) = F (x)×F (y) ,

where

∆xy =

c
{( x−c

d−x

)−β
+
(

y−c
d−y

)−β
} 1

β

+d

1+
{( x−c

d−x

)−β
+
(

y−c
d−y

)−β
} 1

β

.

The proof is straightforward from (6) and hence omitted.

Result 9 The random numbers from IKD(c, d, ϑ , β ) can be generated through the probability
integral transformation for specified values of its parameters, by the formula

X =
(
cδ
′
Z +d

)(
1+δ

′
Z
)−1

, (12)

where Z is a random variable uniformly distributed over (0,1).
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Table 1: The computed values of Q2, ga and L for IKD(c, d, ϑ , β ) for particular values of the
parameters.

β c = 0, d = 10, ϑ = 0.75 c = 0.01, d = 10, ϑ = 2
Q2 ga L Q2 ga L

0.2500 5.7818 0.7766 1.1093 9.8579 0.0500 4.9192
0.4000 5.4911 0.9639 1.3275 9.3402 0.2054 2.9578
0.4379 5.4489 1.0000 1.3876 9.1843 0.2528 2.7615
0.5000 5.3933 1.0510 1.4863 8.9287 0.3322 2.5395
1.0000 5.1970 1.2437 2.1480 7.4288 0.8328 2.2421
1.2500 5.1576 1.2771 2.3717 7.2406 0.8956 2.3408
1.3142 5.1499 1.2831 2.4193 6.9163 1.0000 2.3697
1.5000 5.1314 1.2967 2.5385 6.6994 1.0657 2.4534
2.0000 5.0985 1.3173 2.7565 6.2981 1.1745 2.6475
2.5000 5.0788 1.3272 2.8830 6.0480 1.2315 2.7849
2.6246 5.0751 1.3289 2.9058 5.9999 1.2414 2.8118
2.7500 5.0717 1.3303 2.9262 5.9556 1.2501 2.8363
3.0000 5.0657 1.3327 2.9607 5.8781 1.2645 2.8789
3.1853 5.0619 1.3341 2.9819 5.8283 1.2732 2.9058
3.5000 5.0563 1.3361 3.0112 5.7554 1.2852 2.9440
4.0000 5.0493 1.3382 3.0456 5.6628 1.2989 2.9903
4.5000 5.0438 1.3397 3.0699 5.5904 1.3084 3.0240
5.0000 5.0394 1.3408 3.0878 5.5323 1.3153 3.0492
10.0000 5.0197 1.3443 3.1472 5.2694 1.3378 3.1364

The proof follows by inverting the c.d.f. F(x) of IKD(c, d, ϑ , β ).

Result 10 If X follows IKD(c, d, ϑ , β ) with c.d.f. (6), then the rth raw moment µ ′r of IKD(c, d, ϑ ,
β ) is the following.

µ ′r =
r

∑
i=0

(r
i

)
(d− c)i cr−i

∞

∑
j=0

 (−1) j (i) j γ

(
j

β
+1
)

j!ϑ

j+1
β




+
r

∑
i=0

(r
i

)
(d− c)i cr−i

∞

∑
j=0


(−1) j (i) j W−

(
i+ j
2β

)
,
(

β−i− j
2β

) (ϑ)

j!ϑ
−
(

i+ j
2β

)
exp
(

ϑ

2

)

,

(13)

where γ (α,u)is as given in (4) and Wk1,k2 (x) is the Whittaker function as defined in (5).

Proof. By definition, the rth raw moment of IKD(c, d, ϑ , β ) with p.d.f. (7) is

µ ′r =
∫ d

c
xr (d− c)ϑβ (x− c)−β (d− x)β exp

[
−ϑ

(
x− c
d− x

)−β
]

dx. (14)
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If we put u =
( x−c

d−x

)−β in (14), we get

µ ′r =
∫ d

c
ϑ

[
(d− c)

1+u
1
β

+ c

]r

exp(−ϑu)du.

Now by applying the binomial theorem and rearranging the terms, we obtain

µ ′r =
r

∑
i=0

(r
i

)
(d− c)i cr−i

∫
∞

0
ϑ

exp(−ϑu)(
1+u

1
β

)i

du

.
On splitting the integral and then expanding

(
1+u

1
β

)−i
, we get the following

µ ′r =
r

∑
i=0

[(
r
i

)
(d− c)i cr−i

∞

∑
j=0

{
(−1) j (i) j

j!

∫ 1

0

(
ϑu

j
β exp(−ϑu)

)
du

]}

+
r

∑
i=0

[(
r
i

)
(d− c)i cr−i

∞

∑
j=0

{
(−1) j (i) j

j!

∫
∞

1

(
ϑ exp(−ϑu)

u
(

i+ j
β

)
)

du

}]
,

which leads to (13) in the light of (2), (3), (4) and (5). �
By using (13), one can compute the values of mean, variance, moment measure of skewness(γ1)

and moment measure of kurtosis (γ2) of IKD(c, d, ϑ , β ) for particular values of its parameters. We
have obtained plots of the mean and variance of IKD(c, d, ϑ , β ) in Figure 4, and that of the skewness
and kurtosis in Figure 5.

Figure 4: The plots of the mean and variance of IKD(c, d, ϑ , β ) for particular values of the param-
eters.

From Figure 4 it can be observed that (i) the mean is an increasing function of β (ii) while the
variance is an increasing function of β , for d < ϑ and the variance is a decreasing function of β ,
for d ≥ ϑ . From Figure 5 it can be observed that, the skewness of the curve moves from negatively
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Figure 5: The plots of moment measure of skewness (γ1) and moment measure of kurtosis (γ2) of
IKD(c, d, ϑ , β ) for particular values of the parameters.

skewed to positively skewed in the case of IKD(0, 10, 0.75, β ) and IKD(0, 10, 2, β ) and peakedness
of the curve moves from platykurtic to leptokurtic as β increases in the case of IKD(0, 10, 0.75, β ).
But for IKD(0, 10, 2, β ) the peakedness of the curve moves from leptokurtic to platykurtic and then
to leptokurtic.

Result 11 If X follows IKD(c, d, ϑ , β ) with c.d.f. (6), then the mean residual life function of IKD
is the following.

Case (i): For x < c+d
2 ,

µ (x) =
d− x

1− exp [−η (x)]
− (d− c)

β

∞

∑
j=0

 (−1) j (2) j γ

(
j+1
β

,ϑ
)

j!ϑ
j+1
β {1− exp [−η (x)]}

−β
ϑ

j−2β

β [∆ j (ϑ)−∆ j (ϑη (x))]
{1− exp [−η (x)]}

 . (15)

Case(ii): For x≥ c+d
2

µ (x) =
d− x

1− exp [−η (x)]
− (d− c)

β

∞

∑
j=0

(−1) j (2) j γ

(
j+1
β

,ϑη (x)
)

j! [ϑη (x)]
j+1
β {1− exp [−η (x)]}

, (16)

where η (x) = (d− x)β (x− c)−β and for j = 0,1,2, . . .

∆ j (ϑτ) = (−1) j (2) j ( j!)−1 exp(−ϑτ)W
−
(

j+1+β

2β

)
,−
(

j+1
2β

) (ϑτ) ,

in which γ(α,u) is the incomplete gamma function defined in (4) and Wk1,k2 (x) is the Whittaker
function as defined in (5).
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Proof. By definition, the mean residual life function of IKD(c, d, ϑ , β ) with p.d.f. (7) is the fol-
lowing, for x ∈ [c,d]

µ (x) = E [X− x|X > x]

=
1

S (x)

∫ d

x
S (t)dt

=
1

{1− exp [ϑη (x)]}

∫ d

x
{exp(−ϑη (t))}dt.

If we put u = η (t), we get

µ (x) =
d− x

{1− exp [ϑη (x)]}
− (d− c)

β {1− exp [ϑη (x)]}

∫
η(x)

0

u
1−β

β exp(−ϑu)(
1+u

1
β

)2

du. (17)

If we assume that x < 2−1 (c+d), then we obtain the following from (17) by splitting the integral

and expanding
(

1+u
1
β

)−2
.

µ (x) =
d− x

{1− exp [ϑη (x)]}
− (d− c)

β {1− exp [ϑη (x)]}
×

∞

∑
j=0

(−1) j (2) j

j!

∫ 1

0

[
u

j+1
β
−1 exp(−ϑu)

]
du−

∫
η(x)

1

[
u−

( j+β+1)
β exp(−ϑu)

]
du.

On rearranging the terms, we get the following from (18)

µ (x) =
d− x

{1− exp [ϑη (x)]}
− (d− c)

β {1− exp [ϑη (x)]}

∞

∑
j=0

(−1) j (2) j

j!

∫ 1

0
u

j+1
β
−1 exp(−ϑu)du−

(d− c)
β {1− exp [ϑη (x)]}

∞

∑
j=0

(−1) j (2) j

j!

{∫
∞

1
u−

( j+β+1)
β exp(−ϑu)du−

∫
∞

η(x)
u−

( j+β+1)
β exp(−ϑu)du

}
,

which gives (15) by using (2), (3), (4) and (5).

If we assume that x≥ 2−1 (c+d), then we have the following from (17) by expanding
(

1+u
1
β

)−2
.

µ (x) =
d− x

{1− exp [ϑη (x)]}
− (d− c)

β {1− exp [ϑη (x)]}

∞

∑
j=0

{
(−1) j (2) j

j!
×

∫
η(x)

0
u
(

j+1
β
−1
)

exp(−ϑu)du.
}
,

which leads to (16) in the light of (3) and (5). �
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Result 12 Let X be the strength of a system which is subjected to a stress Y , and if X follows IKD(c,
d, ϑ1, β ) and Y follows IKD(c, d, ϑ2, β ), then for known values of c and d, R = P(Y < X), the
measure of system performance is

R =
ϑ1

ϑ1+ϑ2
. (18)

Proof: Let f1(x) denote the p.d.f. of X and f2(x) denote the p.d.f. of Y, then

R =
∫ d

c

[(∫ x

c
f2 (y)dy

)
f1 (x)

]
dx (19)

By using (6) we obtain the following from (19),

R =
∫ d

c

[(
exp

{
−ϑ2

(
x− c
d− x

)−β
})

f1 (x)

]
dx

= ϑ1

∫ d

c

[
β (d− c)

(d− x)β−1

(x− c)β+1 exp

(
−(ϑ1 +ϑ2)

(
x− c
d− x

)−β
)]

dx. (20)

On substituting u =
( x−c

d−x

)−β in (20), we get (18).
In order to establish the following theorem, we need the following lemmas in Kumar and Dhar-

maja (2014), which are from Rinne (2008).

Theorem 1 If X follows IKD(c, d, ϑ , β ) with c.d.f. (6), then for any y ∈ [c,d), and for every
0≤ c≤ x≤ d < ∞, ϑ > 0 and β > 0,

E

{
− log

[
1− exp

{
−ϑ

(
X− c
d−X

)−β
}] ∣∣∣∣∣ X ≥ y

}

= 1− log

[
1− exp

{
−ϑ

(
y− c
d− y

)−β
}]

, (21)

E

[
1− exp

{
−ϑ

(
X− c
d−X

)−β
} ∣∣∣∣∣ X > y

]
=

1− exp
[
−
(

y−c
d−y

)−β
]

2
(22)

and

E

((
X− c
d−X

)−β
∣∣∣∣∣ X ≤ y

)
=

(
y− c
d− y

)−β

+
1
ϑ
. (23)

Proof. Since the c.d.f. F(x) of IKD(c, d, ϑ , β ) given in (6) has the form

F(x) =


0, for x < c

1− exp
(

log
{

1− exp
[
−ϑ

( x−c
d−x

)−β
]})

, for x ∈ [c,d)

1, for x≥ d,

and φ1 (X) = − log
[
1− exp

{
−ϑ

( X−c
d−X

)−β
}]

is a strictly increasing differentiable function from
[c,d) onto [0,∞), by Lemma 1 of Kumar and Dharmaja (2014), we get (21).
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Since the c.d.f. F(x) of IKD(c, d, ϑ2, β ) given in (6) has the form

F(x) =


0, for x < c

1−
{

1− exp
[
−ϑ

( x−c
d−x

)−β
]}1

, for x ∈ [c,d)

1, for x≥ d,

and φ2 (X) = 1− exp
{
−
( X−c

d−X

)−β
}

is real valued, continuous and differentiable function on [a,b)

with E [φ2 (X)] = 1 | 2 and for any k ∈ [0,1), g(k) = 0, and ψ (k) = 1 | 2 by Lemma 2 of Kumar and
Dharmaja (2014), we obtain (22) �

Further, since the c.d.f. F(x) of IKD(c, d, ϑ , β ) takes the following form

F(x) =


0, for x < c

exp
[
−ϑ

( x−c
d−x

)−β
]
, for x ∈ [c,d)

1, for x≥ d,

and φ3 (X) = {(X− c) | (d−X)}−β , for 0 < c≤ x≤ d < ∞ is a real-valued monotone function con-
tinuously differentiable on (c,d] with limx↓c φ3(X) = ∞ with E [φ3 (X)] = 1

ϑ
and d = 1

ϑ
, by Lemma

3 of Kumar and Dharmaja (2014), we obtain (23).

Theorem 2 Let X1, X2, . . . , Xn be n independent and identically distributed (i.i.d.) random variables
following IKD(c, d, ϑ , β ) with c.d.f. (6) and let Y =max(X1,X2, . . . ,Xn). Then Y follows the IKD(c,
d, n ϑ , β ). Conversely, if Y follows IKD(α , σ , δ , θ ), then each Xi, i = 1,2, . . . ,n follows IKD(α , σ ,
n−1δ , θ ).

Proof. If X1, X2, . . . , Xn are i.i.d. IKD(c, d, ϑ , β ) variates each with p.d.f. (7), the p.d.f. fn(y) of
Y = max(X1,X2, . . . ,Xn) is the following, for any 0≤ c≤ x≤ d < ∞, ϑ > 0 and β > 0.

fn (y) = nϑβ (d)(y− c)−β−1 (d− y)β−1 exp

{
−nϑ

[
y− c
d− y

]−β
}
,

since the p.d.f. gn(z) of maximum of n i.i.d. random variates each with p.d.f. g(z) and its c.d.f. G(z)
is

gn (z) = ng(z)(G(z))n−1 .

Thus Y follows IKD(c, d, nϑ , β ).
Conversely, assume that Y = max(X1,X2, . . . ,Xn) follows IKD(α , σ , δ , θ ), then the c.d.f. Fn(y)

of Y is

Fn (y) = exp

(
−δ

(
y−α

σ − y

)−θ
)
, (24)

in the light of (6). For any i.i.d. random variates Z1, Z2, . . . , Zn each with c.d.f. G(z), the c.d.f. Gn(z)
of Z = max(Z1, Z2, . . . , Zn) is

Gn (z) = [G(z)]n . (25)

Now we obtain the following from (24) in the light of (25),

[F(y)]n = exp

{
−δ

(
y−α

σ − y

)−θ
}
.
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Thus the p.d.f. of X1 is

f (x) = F ′ (x) = θ
δ

n
(σ −α)(x−α)−θ−1 (σ − x)θ−1 exp

[
−δ

n

(
x−α

σ − x

)−θ
]
.

�

3. Estimation

Here we discuss the maximum likelihood estimation of the parameters of the IKD(c, d, ϑ , β ). Con-
sider the following log-likelihood function ` of a random sample X1, X2, . . . , Xn from a population
following IKD(c, d, ϑ , β ) with p.d.f. (7),

` = n log(β )+n log(ϑ)+n log(d− c)− (β +1)
n

∑
i=1

log(xi−c)

+(β −1)
n

∑
i=1

log(d− xi)−ϑ

n

∑
i=1

(
xi−c
d− xi

)−β

. (26)

On differentiating (26) with respect to the parameters c, d, ϑ , β of IKD(c, d, ϑ , β ), we get the
following likelihood equations:

− n
(d− c)

− (β +1)
n

∑
i=1

1
(xi−c)

−ϑβ

n

∑
i=1

(b− xi)
β

(xi−c)β+1 = 0, (27)

n
(d− c)

+(β −1)
n

∑
i=1

1
(d− xi)

−ϑβ

n

∑
i=1

(d− xi)
β−1

(xi−c)β
= 0, (28)

n
ϑ
−

n

∑
i=1

(
xi−c
d− xi

)−β

= 0 (29)

and
n
β
−

n

∑
i=1

log(xi−c)+
n

∑
i=1

log(d− xi)−ϑ

n

∑
i=1

(
xi−c
d− xi

)−β

log
(

d− xi

xi−c

)
= 0. (30)

When these likelihood equations do not always have a solution, the maximum of the likelihood
function is attained at the border of the domain of the parameters. Since the MLE of the unknown
parameters c, d, ϑ and β are not obtained in closed forms, it is not possible to derive the exact
distributions of the MLE. So we obtain the second order partial derivatives of log-likelihood function
with respect to the parameters c, d, ϑ , β and we observe that they give negative values for c > 0,
d > c, ϑ > 0 and β > 0. Therefore, the MLEs ĉ, d̂, ϑ̂ and β̂ of the parameters c, d, ϑ and β of
IKD(c, d, ϑ , β ) with p.d.f. (7) can be obtained by solving the likelihood equations (27), (28), (29)
and (30), with the help of mathematical software such as MATHCAD, MATLAB, R etc. Further we
obtain the Fisher information matrix I (θ) as

I (θ) =


I11 I12 I13 I14

I21 I22 I23 I24

I31 I32 I33 I34

I41 I42 I43 I44

 ,
in which the expressions for the elements of I (θ) are as given in Appendix A.



INVERSE KIES DISTRIBUTION 59

4. Data Analysis

For numerical illustration, we have considered the following two uncensored data sets. The first data
set consists of 57 breaking strengths of carbon fibers of length 1 taken from Lawless (2003) and
second data set is on the survival times (in days) of 72 guinea pigs injected with different doses of
tubercle bacilli taken from Kundu and Howlader (2010).

In case of both the data sets, since the values are non-negative, we have fitted the three parameter
IKD(d, ϑ , β ) with c = 0 (which we denoted as IKD(d, ϑ , β )) to both the data sets with the help
of the R package. The estimated values of the parameters of the IKD(d, ϑ , β ) and corresponding
values of standard error (SE), t-values and p-values are obtained by using the R’s maxLik package
(cf. Henningsen and Toomet, 2011) and presented in Table 2.

Table 2: Fitted values of IKD(d, ϑ , β ) to the data sets.

Data set 1
Parameter Estimate SE t value p value

d 6.1997 0.1858 33.367 < 2e−16
ϑ 1.6211 0.2222 7.296 2.97e−13
β 2.3755 0.3849 6.172 6.73e−10

Data set 2
Parameter Estimate SE t value p value

d 0.3761611 0.0006827 550.9934 < 2.2e−16
ϑ 1.0661988 0.1047273 10.1807 < 2.2e−16
β 0.1661427 0.0409492 4.0573 4.964e−05

We have fitted the following models to the two data sets for comparison (a) the BGIWD( α , τ ,
σ , µ , ρ), in which α , τ , σ , µ and ρ > 0. (cf. Baharith et al., 2014), (b) the BIWD(α , σ , µ ,ρ), in
which α , σ , µ and ρ > 0 (cf. Khan, 2010), (c) the GIWD(α , σ , τ), in which α , σ and τ > 0. (cf.
de Gusmão et al., 2011), (d) the IWD(σ , ρ), in which σ and ρ > 0. (cf. Keller et al., 1982) and (e)
the KD(a, b, λ , β ), in which 0 ≤ a < b < ∞, λ > 0 and β > 0 (cf. Kumar and Dharmaja, 2014).
Then we compared the fitted model the IKD(d, ϑ , β ) to that of other fitted models, namely, the
BGIWD(α , τ , σ , µ , ρ), the BIWD(α , σ , µ , ρ), the GIWD(α , σ , τ), the IWD (α , σ ) and the KD(a,
b, λ , β ). For model comparison, we have used the Akaike information criterion (AIC), Bayesian
information criterion (BIC) and the second order Akaike information criterion (AICc), which are as
defined in Kumar and Dharmaja (2014). We have computed AIC, BIC and AICc in case of each of
the fitted models for both the data sets and presented in Table 3. From the table, it can be observed
that the IKD(d, ϑ , β ) gives better fits to both the data sets compared to other competitive models.

Substituting the MLEs of the unknown parameters, the variance-covariance matrix Σ1 and Σ2 of
the first and second data sets are respectively

Σ1 =

 0.03452245 0.02767106 −0.03612933
0.02767106 0.04937312 −0.01140359
−0.03612933 −0.01140359 0.14811577
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Table 3: Fitting of various models to data set 1 and data set 2.

Data set 1
Model Estimates of Log− AIC BIC AICc

the parameters likelihood
IKD(d, ϑ , β ) d = 6.1997 -69.8786 145.7572 151.8864 146.2100

ϑ = 2.3755
β = 1.6211

BGIWD( α , τ , σ , µ , ρ) α = 3.6546 -75.3495 160.6990 170.9143 161.8755
τ = 2.693

σ = 2.7080
µ = 2.9870
ρ = 3.00101

BIWD(α , σ , µ ,ρ) α = 3.0010 -76.6914 161.3827 169.5549 162.1519
σ = 2.9687
µ = 3.988
ρ = 2.232

GIWD(α , σ , τ) α = 68.1706 -87.6250 181.2500 187.3792 181.7028
τ = 2.1552
σ = 2.9770

IWD(α , σ ) α = 2.9890 -100.8710 205.7420 209.8281 205.9642
σ= 3.0011

KD(a, b, λ , β ) a = 1.9183 -70.1278 148.2555 156.4277 149.0247
b = 16.0564
λ = 40.5395
β = 2.5003

Data set 2
Model Estimates of Log− AIC BIC AICc

the parameters likelihood
IKD(d, ϑ , β ) d = 0.3762 248.255 -490.51 -490.938 -490.157

ϑ =0.1661
β = 1.0662

BGIWD( α , τ , σ , µ , ρ) α= 0.5085 107.134 −204.269 −204.982 −203.360
τ = 0.8933
σ= 0.4634
µ= 2.0447

ρ= 13.4915927
BIWD(α , σ , µ , ρ) α = 0.3725 107.134 -206.268 -206.839 -205.671

σ= 0.4947
µ= 1.7751
ρ= 11.9740

GIWD(α , σ , τ) α = 0.0041 101.7093 -197.419 -197.847 -197.066
τ= 38.8135
σ= 1.4146

IWD(α , σ ) α = 0.0542 101.7093 -199.419 -199.704 -199.245
σ= 1.4148

KD(a, b, λ , β ) a = 1.1749e−02 104.2741 -200.548 -201.119 -199.951
b = 5.5095

λ =1.0234e+02
β = 1.1422
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and

Σ2 =

 4.660741e−07 2.749125e−05 −9.661033e−06
2.749125e−05 1.096781e−02 −3.766299e−03
−9.661033e−06 −3.766299e−03 1.676834e−03

 .

In addition, we have plotted the distribution functions of the fitted models against their empirical
distributions in Figure 6 and corresponding WPP plots are obtained in in Figure 7. These figures
supports the above conclusion that the IKD(d, ϑ , β ) as a better model to the data sets compared to
the existing models.

Figure 6: Empirical and fitted distribution function plots of IKD (d, ϑ , β ) for data set 1 (Left) and
data set 2 (Right).

Figure 7: Weibull probability plots of the empirical and IKD (d, ϑ , β ) for data set 1 (Left) and data
set 2 (Right).
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Table 4: Average bias and mean squared errors (in brackets) of the MLEs of the IKD(c, d, ϑ ,
β ) based on simulated data sets for the parameter sets (i) c = 0.01, d = 10, ϑ = 2 and β = 1.1
(negatively skewed) and (ii) c = 0.0, d = 6.1997, ϑ = 2.3755 and β = 1.6211 (positively skewed).

n = 10 n = 25 n = 50 n = 100
Parameter c 2.8964 1.3132 0.1207 0.0422

set (i) (9.8466) (4.2184) (0.1524) (0.0047)
d 1.3219 −0.2599 −0.0757 −0.0419

(34.7285) (0.1094) (0.0057) (0.0048)
ϑ −1.6504 −0.5807 0.0458 −0.0271

(2.9214) (0.6400) (0.0798) (0.0157)
β 0.7209 −0.2079 −0.2027 −0.0467

(2.8919) (0.0536) (0.0452) (0.0330)
Parameter d 0.7193 0.6711 −0.3641 0.0610

set (ii) (3.5566) (1.1843) (0.1392) (0.0153)
ϑ 0.7045 0.5289 −0.3352 −0.1064

(2.9837) (0.8031) (0.1347) (0.0521)
β 0.1957 −0.2852 0.2182 0.1049

(8.5321) (0.8465) (0.2697) (0.0540)

5. Simulation

In order to assess the properties of likelihood estimators of the parameters of the IKD(c, d, ϑ , β ),
we carry out a simulation study by generating n observations based on the sets of parameters (i)
c = 0.01, d = 10, ϑ = 2 and β = 1.1 (negatively skewed) and (ii) c = 0.0, d = 6.1997, ϑ = 2.3755
and β = 1.6211 (positively skewed). As the c.d.f. (18) of IKD (c, d, ϑ , β ) is in a closed explicit
form, it is easy to generate pseudo-random numbers through the probability integral transformation.
Therefore, if one has a uniform random number generator, then the random numbers from the IKD(c,
d, ϑ , β ) can be generated through the probability integral transformation for specified values of its
parameters, by the formula (12). We considered 200 samples of sizes n = 10, 25, 50 and 100 to
compare the performances of the different MLEs of the parameters of the distribution mainly with
respect to their mean values and mean squared errors (MSEs). The results obtained are summarised
in Table 4. From Table 4, it can be observed that as sample size increases mean value of the estima-
tors approaches the original value of the respective parameters and MSEs of the estimators are also
in decreasing order.
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Appendix A

The elements of Fisher Information matrix are the following,

I11 = E
(

∂ 2`

∂c2

)
=− nβ

(d− c)2 +
n(β +1)

(d− c)2

2Γ

(
1
β
+1
)

ϑ

1
β

+
Γ

(
1
β
+2
)

ϑ

2
β


− nβ (β +1)

(d− c)2

1+
2Γ

(
1
β
+2
)

ϑ

1
β

+
Γ

(
2
β
+2
)

ϑ

2
β

 ,
I12 = I21 = E

(
∂ 2`

∂d∂c

)
=

n

(d− c)2 +
nβ 2

(d− c)2

Γ

(
2− 1

β

)
ϑ
− 1

β

+2+
Γ

(
1
β
+2
)

ϑ

1
β

 ,
I13 = I31 = E

(
∂ 2`

∂ϑ∂c

)
=
−nβ

ϑ (d− c)
+

nβΓ

(
2+ 1

β

)
ϑ

1+ 1
β (d− c)

,

I14 = I41 = E
(

∂ 2`

∂β∂c

)

=− n
β (d− c)

1+[Ψ(2)− ln(ϑ)]+
Γ

(
2+ 1

β

)
ϑ

1
β

[
Ψ

(
2+

1
β

)
− ln(ϑ)

] ,

I22 = E
(

∂ 2`

∂d2

)
=
−nβ

(d− c)2 +
n(β −1)

(d− c)2

Γ

(
1− 2

β

)
ϑ
− 2

β

+
2Γ

(
1− 1

β

)
ϑ
− 1

β


− nβ (β −1)

(d− c)2

1+
2Γ

(
1
β
+2
)

ϑ

1
β

+
Γ

(
2
β
+2
)

ϑ

2
β

 ,
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I23 = I32 = E
(

∂ 2`

∂ϑ∂d

)
=
−βn

(d− c)ϑ
−

nβΓ

(
2− 1

β

)
(d− c)ϑ

β−1
β

,

I24 = I42 = E
(

∂ 2`

∂β∂d

)
=

nΓ

(
1− 1

β

)
(d− c)ϑ

1
β

−
nΓ

(
2− 1

β

)
(d− c)ϑ

−1
β

− nβ

(d− c)2

2+
2Γ

(
2− 1

β

)
ϑ

−1
β

+
Γ

(
1
β
+2
)

ϑ

1
β

 ,
I33 = E

(
∂ 2`

∂ϑ 2

)
=− n

ϑ 2 ,

I34 = I43 = E
(

∂ 2`

∂β∂ϑ

)
=− n

βϑ
[ψ (2)− ln(ϑ)]

and

I44 = E
(

∂ 2`

∂β 2

)
=− n

β 2 −
n
{
[ψ (2)− ln(ϑ)]2 +ζ (2,2)

}
β 2 .
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