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Abstract: In this paper, we consider an extended version of the generalised Lindley distribution
(EVGLD). Some mathematical properties of the EVGLD including moments, distribution of the
order statistics, inequality measures, different entropy measures and vitality function are derived.
The method of moments and method of maximum likelihood estimation are used to estimate the pa-
rameters. In addition to this, Fisher information matrix and asymptotic confidence interval are also
included. Finally, two real life data sets are considered to illustrate the relevance of the new model
and compared it with other forms of Lindley models.

1. Introduction

The Lindley distribution (LD;(6)) was originally proposed by Lindley (1958) in the context of
Bayesian Statistics, as a counter example of fiducial statistics with the probability density function

6 —0x
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where f](x; ) is a mixture of exponential (6) and gamma (2, 6) with mixing probabilities GLH and

%H’ respectively.

Although the Lindley distribution has drawn little attention in the statistical literature over the
great popularity of the well known exponential distribution. Recently some researchers have pro-
posed new classes of distributions based on modification of the one parameter Lindley distribution.
Ghitany, Atieh and Nadarajah (2008) have studied various statistical properties of the Lindley distri-
bution and described an application related to waiting time data. Mazucheli and Achcar (2011) ap-
plied the Lindley distribution to competing risk life time data. A discrete version of this distribution
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has been suggested by Deniz and Ojeda (2011) having its applications in count data related to insur-
ance. Bakouch, Al-zahrani, Al-shomrani, Marchi and Louzada (2012) obtained an extended Lind-
ley distribution and discussed its various properties and applications. Shanker and Mishra (2013a,
2013b)obtained generalised Lindley distributions and discussed their various properties and applica-
tions. Sah (2015) obtained a two-parameter Quasi-Lindley distribution and discussed their various
properties. Pararai, Warahena-Liyanage and Oluyede (2015) proposed beta-exponentiated power
Lindley (BEPL) distribution and studied some of its properties. Warahena-Liyanage and Pararai
(2015) proposed a new class of lifetime distributions called the Lindley power series (LPS).

Shanker, Sharma and Shanker (2013) introduced a two-parameter Lindley distribution (LD, (0))
with pdf

2
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where f>(x; c, 0) is a mixture of exponential (0) and gamma (2,0) with mixing probabilities m—ia

and 5% respectively.

Zakerzadeh and Dolati (2009) introduced a generalised Lindley distribution (GLD; (e, 0)) with
pdf
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where f3(x; @, 0,7) is a mixture of gamma (o, 0) and gamma (o + 1,0) with mixing probabilities

0 Y :
T+ and 710 respectively.

Abouammoh, Alshangiti and Ragab (2015) defined a new generalised Lindley distribution
(GLD, (., 0)) with pdf

eaxa72
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where f4(x; o, 0) is a mixture of gamma (¢, 0) and gamma (@ — 1, 6) with mixing probabilities %—‘rl
and ei+1 respectively.

To increase the flexibility for modelling purposes it will be useful to consider further extensions
of this distribution. Hence in this paper, our aim is to introduce an extended version of the gener-
alised Lindley distribution called EVGLD, which offers a more flexible distribution for modelling
life time data. The content of the paper is organised as follows. An extended version of generalised
Lindley distribution is introduced in Section 2. The expressions for various reliability and statisti-
cal measures are derived in Section 3. Inequality measures such as Lorenz, Bonferroni and Zenga
curves and different entropy measures such as Shannon’s entropy, Havrda-Charvat-Tsallis entropy,
Rényi entropy and Residual entropy are discussed in Section 4 and 5 respectively. In Section 6,
we estimate the parameters by using method of moment estimation and method of maximum like-
lihood estimation. Fisher information and asymptotic confidence intervals are included in Section
7 and 8 respectively. Finally, in Section 9, two real life data sets are considered for comparing the
performance of EV GLD with the other Lindley forms of distributions.
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2. Extended Version of Generalised Lindley Distribution

In this section, we define an extended version of the generalised Lindley distribution (EV GLD) and
study some of its properties.
Let X be a non-negative random variable obtained from the mixture of two gamma distributions,

namely gamma (¢, 0) and gamma (f3,0) with mixing probabilities p; = . Befek and p; = nénijek
respectively. The corresponding pdf has the form
0> [kox)* ! nd(ex)f 1)
;0,a,B,k,m,0) = + x>0, 1
f(x.8,a.5,kn.9) n5+0k{ ) or() (¢ °F M

with 6 >0, @ >0, B > 0, 6 > 0, k >0, n >0, subject to the constraint that k and 1 are not allowed
to be simultaneously zero.
The cumulative distribution function (cdf) of EVGLD is given by

"X

F(:0,0,B.1.8) = | f(1:0.00B. k1. 8)dr
0
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where ,
y(a,b):/ e ldr
0

is the lower incomplete gamma function and

The survival function associated with (2) is obtained as

F(x:0,0,B,kn,6)=1— {Gk}/a(ex)+n57ﬁ(9x)}. 3)

(1% + 6k)

Remark1l (1) Ifa=1,8=2,k=1,1=1andd =1, then EVGLD becomes a one parameter
Lindley distribution (LD1) (see, Lindley, 1958).

(2) Ifa=1,B=2,k=1and § =1, then EVGLD becomes the two parameter Lindley distribution
(LD») (see, Shanker et al., 2013).

B)IfB=a+1,k=1and § =1, then EVGLD becomes the generalised Lindley distribution
(GLD)) (see, Zakerzadeh and Dolati, 2009).

@D Ifa=a—-1,B=a,k=1,1=1and § =1, then EVGLD becomes a new generalised
Lindley distribution (GLD;) (see, Abouammoh et al., 2015).
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3. Statistical Properties

In this section, we look into some statistical properties of EV GL random variables.

3.1. Reliability Measures

Let X be a continuous random variable with cdf F(x) and pdf f(x), then the hazard rate function,
h(x), cumulative hazard rate function, R(x), reversed hazard rate function, r(x), vitality function,

V(x), and mean residual life function, m(x), are respectively given by h(x) = %, R(x) =—1InF(x),

r(x) = F V(®) = i [0/ (0)dt and m(x) = £l [7ef (1)t —x.

Theorem 1 If X has the EVGLD (x;0,c, 3,k,1,8) with density function, cumulative distribution
function and survival function given in (1), (2) and (3) respectively, then

a) Hazard rate function,

a—1 B-1
k(6x n% (6x —ox
92( (r(zw + e(ir(/)n )e ’
h(x) =

% + 0k — {Gk}/a(Gx) +n5yﬁ(ex)} ’

b) Cumulative hazard rate function,
R(x) = —ln{l b (ekya(ex) +1y, (ex)) }
(n%+ 6k) g ’

¢) Reversed hazard rate function,

- 0{k0(6)"'T(B)+n? (6x)" 'T(@) fe 0"

Oky(o, 0x)T(B)+ndy(B,6x)I(cx)

d) Vitality function,
0OKT g 41(0x) + BT 1 (6x)
9{175 ok (Ok}/a(ﬂx) + néyﬁ(ex)) }

Vix)=

e) Mean residual life function,

0O 11 (6x) + Bn°Tp. 1 (6x)

m(x) = —X.

e{n5 Ok (kaa(ex) +n5yﬁ(ex))}

Proof. a) and b)
By using (1) and (3) in the equations &(x) = % and R(x) = —InF(x), the hazard rate and cumula-
tive hazard rate functions are easily obtained.

The hazard rate function has different behaviour depending on its parameters. Figures 1-6 illus-
trate the hazard rate function of EVGLD for some selected parameters 0, o, 8,k,1n and &.
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Figure 1: =2, =2.5,k=5,1=3,8 = 1.5.

1.

Figure2: 6 =1.5,=2k=2n=5,6 =1.5.

c¢) By definition, we have

oy L0

F(x)
~ 0X{k0(6x)*"'T(B) + 0’ (6x)P ' () }e =
0T (a)[(B){Okya(6x)+noys(6x)}
~ 0{k0(6x)*'T(B) + N’ (6x)P~'T(a) e
© Oky(a, 0x)T(B) +n0y(B,0x)T ()

d) We have
V@ = g [an “
Now,
B — 1 0k na
/x tf(t)dt = 6(nd + 6k) {F(a)F(OH— 1,6x)+ mr(ﬁ + I,Gx)} )
1
~ 6(n% 1 6k) {@OkTq.1(62)+ BTy, 1(65)}
where

[(a,b) = / e ldt,
b
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Figure3: 6 =2, =5,k=7,1=2,6 =0.5.
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Figured: 6 =2,00=5,=3,1=6,6 =0.5.
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Figure 6: 6 =2, 0 =2,=3k=2,n=1.

is the upper incomplete gamma function and
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Substituting the values of (3) and (5) in (4), we obtain

00T o1 (6x) + BT, (6x)

Vix)= .
0{n + 0k — (Bkya(6x) +n°75(63)) }
e) We have
m(x) = sz)/xmtf(t)dtx
=V(x)—ux.

Substituting the value of V(x) into the above equation, the mean residual function for EVGLD is
obtained. |
3.2. Moments and Associated Measures

Theorem 2 If X has the EVGLD (x;0, o, 3,k,1m,0) with density function given in (1), then

a) The M raw moment /.L; about the origin is given by

, 1 {kl"(a—&—r)_f_n‘sl"(ﬁ—kr)}.

M= 5ok o (a) " 0T (B) ©

b) The moments of the EVGL random variable can be calculated recursively through the rela-

tionship
o (a+B+2r) 1 k(B+rT(o+r)
Hrer = 0 e nd+ 0k { 0T ()
n%(o+r)T(B +r)} 2
0r+11"(ﬁ) :

¢) The moment generating function (mgf) of the EVGLD (x;0,a, B,k,n,8) is given by

o=t (£ S0 (7) 0! ()}

Proof. a) By the definition, we have

!

u=E(X")
:/ X' f(x)dx
0
1 k@ e r+a—1,—6x 7759!3 h r+B—1_,—6x
= n5+6k{ () ./0 X e dx+ T(8) /0 X e dx

1 k6T (r+ a) N n°0~"T(r+p)
no + 6k I'(a) T'(B) '
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By rearranging the above equation, we obtain (6).

Result 1

The mean, variance and coefficient of variation of the EV GL random variable are respectively given
by

, abk+n%p
M = —
ean, :u'l 6(n5+6k)7
Variance, lp = ;{naek((a -B)?+ (OH—ﬁ)) +Bn* + Oz92k2}
’ 62(n° + 0k)2

and

\/naek((aB)ZJr(aJrﬁ)) +BN2% + a62k?

x 100.
abk+ndp

Coefficient of variation, { =

b) From (6), we have

kKD(a+r) | n°T(B+7)
0 'I'(e)  6'T(B)
Put r = r+ 1 in the above equation, we obtain

kC(a+r+1) noT(B+r+1)

(% + 6k, =

(0% + 000Ky = =g o 1T(B)
That is,
. r n°T(B+r)
9(n5+6k)lur+l_(a+r){(n6+9k)“r_er"(l;)}+
<ﬁ+r){<n5+9k>“;‘]m}
o n%(a+r)T(B+r)
= 1,(0° + 0k (a+ B+ 2r) = T—— g~
k(B +r)T(o+r)

By rearranging the above equation, we obtain (7).
¢) By using the definition of the moment generating function, we have

My (1) = E(eX) = /mefx (x; 0,0, B8,k,m,0)dx
0

| %0
ke‘” / K00y T ﬁ/ Bl (0 t)xdx}
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Result 2
The characteristic function of EVGLD (x;0,a, 3,k,1n,0) becomes ¢x (t) = Mx (it), where i = /—1
is the unit imaginary number. |

3.3. Distribution of Order Statistics

Let X1,X5,..., X, denote n independent random variables from a distribution with distribution func-
tion F(x) and probability density function f(x), then the pdf of the »" order statistic X., is given
by

n! r—1 n—r
Jrn(x) = mf(x) (F(x)) (1 —F(x)) ; (®)
r=12,...,n.
The pdf of the P order statistic X, for the EVGL random variable is given by
n! 62 k(6x)%1  nd(ex)B-1Y\ _
rn ) 67 a’ ’k7 ) 5 = ex
Jrnlx,8, 0., k.7, 6) (r—l)!(n—r)!(n5+9k)”< Ta) | erp) )¢

x {ek(l - ya(ex)) +n? (1 - yB(Gx)) }"_r
X {kaa(ex) + nSyﬁ(ex)}r_l.

Setting r = 1 and r = n in (8), the pdf of the 1% order statistic X;., and n™ order statistic X,,., are then
respectively given by

i) =n(1-F@)" £ ©
and

Sun(x) = n(F(x))n_lf(x). (10)

Substituting (1) and (2) in (9) and (10), we obtain the pdf of the 1% order statistic X;., and the nth
order statistic X,,., for the EV GL random variable, which are respectively given by

n6>  (k(6x)*"  no(ex)ft\ g
S+ 6k \ () or(p) )¢

X {ek(l —ya(ex)) +n° (1 - yﬁ(ex)) }'H

fl:n(x707aaﬁak7na5) =

and

2 o1 B B—1
Fn(.0, 0,8 k,1,8) = —"° ("(Gx) n°(6x) )9

(n®+6k)" \  T(a) or'(B)

X {kaa(ex) + nS}/ﬁ(Gx)}n_l.
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4. Inequality Measures

The expressions for the inequality measures such as Lorenz, Bonferroni and Zenga curves of EVGL
random variable are derived in this section.

Bonferroni and Lorenz curves (see, Bonferroni, 1930) have been used in economics to study
income and poverty. These curves have many applications in other fields such as demography, relia-
bility, insurance and medicine and engineering. The Lorenz and Bonferroni curves are respectively
given as Ly (x) = ([31/()dr) /E(X) and B(F (x)) = (J31f(1)dt) / (F(X)E(X)).

Also, the Zenga curve introduced by Zenga (2007) is another widely used inequality measure
and is given as A(x) = 1 — p~(x)/u*(x), where u-(x) = (fytf(t)dt)/F(X) and
() = ([7ef(0)dr) JF(X).

Theorem 3 If X has the EVGLD (x;0,a,,k,n,8) with density function, cumulative distribution
function and survival function given in (1), (2) and (3) respectively, then

a) Lorenz curve,

00kYe 11 (6x) + B1° Yﬁ+1(9x)
abk+Bnd

LF (x)

b) Bonferroni curve,

(1% + 6k) (aOkYyr1(6x) + Bnys,1(6x))
(aBk+ 1) (0kye(6x)+noy5(6x))

B(F(x)) =

c) Zenga curve,

(0Okvar11(62)+ Bng.1(6x) )
(aekraﬂ( x) + BT ( 9x>
vs(
)

Alx)=1-

(6k(1—7a(6x) + 1% (1~
<6k}/a(9x ) +1573(6x)

9x))>

X

Proof. a) We have

Jotf(t)dt

LF(X) = E(X)

Now

x 1 0k n’
/0 tf(t)dt = O {F(a)y(oc+1,6x)+r([3)7([3+1,6x)}

- G(n;wk) {“9’%“(9’6) +ﬁn37ﬁ+1(9)C)}.
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Therefore,

m {a9k7a+1 (6x) + ﬁ7767ﬁ+1 (Gx)}

abk+ndp
0(nd+6k)

00kYy11(0x) +ﬁn67ﬁ+1 (6x)
abk+pn? '

b) We have

_ Jotf(@)dr

_ [ aBkYa i1 (6x) + B0y (6) n° + 6k
abk+Bnd 0kY (6x) + 1% y5(6x)

_ (n% 4 0k) (0t 8kYy11(0x) + ﬁn5Yﬁ+1 (6x))
(0Bk+ Bn?)(0kYe(6x) +ny3(6x))

¢) We have

Now,

Jotf(t)dt
F(X)

m{O‘Gk?’aﬂ(ex)+ﬁ7757[3+1(9x)}
@ +9k {0kya(6x) +ndy5(6x)}
_ a0kYo11(6x) +BN°yp.1(6x)
0(0kya(6x)+1oy3(6x))

_ Jetf(@)ar
.LL+()C) - F(X)
=V(x).

Substituting V (x) given in Theorem 1., we obtain

00T o1 (6x) + BT, (6x)
0 {0k(1 —¥a(6x)) +n°(1 —y3(6x)) }

p(x) =

phx) =

Therefore,

A) = { 00K Ya+1(6x) + BN Yp+1 (6)

a0k 1(6x) + BnoTp (6x)
Gk(l— Yo (6x)) +1°(1 = y5(0 ))}
) .

Ok (Yo

(
(6x)) +1° (75 (6x)

Thus the theorem is proved.

29
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5. Uncertainty Measures

In this section, we focus the attention on various entropy measures.

The concept of entropy was introduced and extensively studied by Shannon (1948). Let X be a
non-negative random variable admitting an absolutely continuous cdf F(x) and with pdf f(x). Then
the Shannon’s entropy associated with X is defined as H(X) = — [, f(x) Inf(x) dx. It gives the
expected uncertainty contained in f(x) about the predictability of an outcome of X. The Shannon’s
entropy finds immense applications in several branches of learning. In Communication theory, an
aspect of interest is the flow of information in some network where information is carried from a
transmitter to receiver. Theil (1967) discussed the applications of information theory to problems in
Economics such as the measurement of income inequality, industrial concentration, concentration
in international trade and the fit of allocation models. Ecologists measure the diversity of a species
in biological populations using entropy (see, Pielou, 1967). In Cryptography, Shannon’s entropy is
used as a cryptographic measure for the key generator module, which forms the part of the security
of the cipher system (see, Simion, 2000).

Several generalizations of Shannon’s entropy have been put forward by researchers. A general-
ization which has received much attention subsequently is due to Rényi (1961). The Rényi’s entropy
of order v is defined as HY(X) = 1 In [§" f¥(x) dx, for v > 0,v # 1. Another important gener-
alization of Shannon’s entropy is the Havrda-Charvat-Tsallis (HCT) entropy. It was introduced by
Havrada and Charvét (1967) and further developed by Tsallis (1988) and Gell-Mann and Tsallis
(2004) and is given by HP (X) = p 5 (1= J5" fP(x) dx), forp >0,p # 1.

If we think of X as the life-time of a new unit, then H(X) can be viewed as a useful tool for
measuring the associated uncertainty. However, if a unit is known to have survived up to age x, then
H(X) is no longer useful for measuring the uncertainty about remaining life-time of the unit. In this
scenario, Ebrahimi and Pellerey (1995) followed by Ebrahimi (1996) have proposed the concept of
residual entropy and is defined as H(f;x) =InF(x) — F(lx) 7 f(t) Inf(z) dt

Theorem 4 If X has the EVGLD (x;0,, 3,k,1,8) with density function, cumulative distribution
function and survival function given in (1), (2) and (3) respectively, then

a) Shannon’s entropy,

B 0o ]+l (OC) F(OC—I—j(ﬁ—OC))
HO) =~ T ( r())( M@

J=1

5F([3+Jﬁ a)>+ s an

(o —1) k6?
g V) 9_92} _ln((n6+ek)r(a)> ’

where y/(.) is the digamma function and is given by

=

?

y(a) = % In (F(a)) _ L
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and -
r'(a) = / U In(t) e'di
0

is the first derivative of the gamma function.

b) Rényi’s entropy of order v,

| I Y
HV(X) = 1 {ln < CE ) +
-V v v (n+ 0k (a)

forv>0,v#1.

¢) Havrda-Charvit-Tsallis entropy of order p,

1 ko7 ’
P
HP(X)ZH U= |
p P (MP+6KI(a)

LY T]EF(O!) jF(v(a—l)+j([5—a)+l)
w5 (5) (Bt Vi

&)\ orr(p) piB-—a)

forp >0,p # 1.
d) Residual entropy,

92

H(f;x) =In (F(x)) —1In (F(OC)(T]8 + 6k)> ~ F(x)(nd +6k

p o\ [ n°T(a) fl"(p(a—l)+j([3—a)+l)
£0) (s

)><

ﬁr(owrj(ﬁ —a),(—)x)

)}

(0 I'a)

62 r(B) 6

(a_l)nsr’(ﬁ,ex) kr(a+1,ex)
o2 T 6 Ta

nSF(B+1,9x)

o TP }

where F(x) is given in (3) and

/

I' (a,b) :/b U in(y) eV dy.

njr(ﬁ + —a),ex)) L ka1 ' (o, 6x)

+

31
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Proof. a) We have

H(X) = — /O " F(x) nf(x)dx.

Now,
. - 62\ & (1) (nir(e)(exp-o)’
/0 f(x) lnf(x)dx—/0 f(X){ln (M) +]§’1 j ( kor(B)
k(6x)%!
+ln< (@) >9x}dx
=A|+Ar+ A3z —Ay, (12)
where
00 02
Al :/0 In (T’M{) f(x)dx, (13)
e & (=17 (T (a)(0x)P ! 14
Az—/o f(x)J; j < kOF(ﬁ) a, o
e k(6x)®!
Ag—/o f(x)ln< o )dx (15)
and
A4:/0 f(x)Oxdx. (16)
From (13)
6> >
Ay :ln(n5+9k>/0 f(x)dx
(I7)
92
:]n( 5 )
n°+ 0k
From (14)

0\ D (r))
n= " (ra) £ (kerw))

j=1

a-1+j(B-0) B-1+j(B-a)
. {k(ex) n*(6v) }d

T@) | 6r(p)

02 = (—1)/+! ST () i k o oa-l+jB-a) o
<n5+6k)zl j (ZGF(Z)> {F(a)/o (¢) ot

- (Bx) 6_1+j(ﬁ_a)eexdx}

o
!
=
S—
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0\ & ) (o) [H(ariB-w)
<n5+9k)2 i\ xer(p) or(a) |

n°r(B+i(B-w) } .

6°I'(B)

From (15)

A3=1n( (ka )/ fx) 5+9k {k(g(;)l)/o"" (9X>a_lln (9)6)679de+
ne(l“([;)l),/o (Gx)ﬁ_ In (Qx)eede}
2 _ ) , S . . (19)
() * o on {kéorcwi e+ Tt T (ﬁ)}

= k 62 k(o —1) nd(a—1)
_ln<F(a)>+(n5+9k){ ] "’(“H@zll/(ﬁ)}.

From (16)

_ 82~ [kex® n’enPf)
A= van b { @) ' er(p) } s

e {kr(a+1) nsr(ﬁﬂ)} 0,

T (né+6k) | 6r(a) 62I°(B)

62 ko  n°B
(m°+06k) | 6 ]
Substituting (17), (18), (19) and (20) in (12), we obtain (11).
b)

HY(X) =

)ln/ ¥ (x)dx; forv>0,v#1.
0

Now,
fi e )dx_<n5+ek) /w,%( )( (%Zzeg( 1)>
(o ) o
I'a)
~(rm) (o) BC) (3t
></ (9) (a=1)+j(B—o) o=V gy
0

21
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Therefore,

1 k025 Y
HV(X):I {m( CEE ) +
-V v v (84 6KT(x)

vy nér(a) jF(v(a71)+j(Bfa)+1>
£ (55)

AT yiB-a)
¢) We have
HP (X) = ! 1—/wfp(x)dx ; forp >0,p#1.
(p—1) Jo
From (21)
o 2 \P pp s J
fron=(a) () B0) (i
0 n° + 0k ) ) = \J OkT'(B)
r(pla—1)+j(B-a)+1)
X . .
Op(a—1)p+j(B-a)+1
Therefore,
9@ P
700/ P SU
p —1 (a—1)p+1 5
p P (NP+6KI(a)
(P} (1T IT(pa—1)+j(B—a)+1)
& \j) \ exr(p) piP=a)
d) The proof is same as that of (a) and hence omitted. |

6. Estimation of Parameters

For estimating the parameters of EVGLD, we discuss two methods, namely the method of moments
and the method of maximum likelihood estimation.

6.1. Method of Moment Estimation

From (6), the 7 raw moment about origin for the EV GL random variable is given by

F 1 kC(a+r)  n°T(B+r)
b= s ek |0 T(a) | oT(B) [

Setting r = 1,2,3,4,5, and 6, the first six raw moments are obtained. Equating these raw moments

n
. . ! ! ! ! ! ! ! _ l r
to the corresponding sample moments; say m, m,, ns, my, ms and mg, where m, = . '21 X/, we get
=

| sl
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1

63(n%+ 0k)

05(n% + 0k)

92(n3+9k){°‘

(a+1)0k+B(B+ 1)115} :m’z,

{a(a+1)(a+2)9k+[3([3+1)([5 +2)n5} = m,

1
64(nd + 0k)
BB+1DB+2)(B+3)n° | =m,,

1

{a(a+1)(a+2)(a+3)ek+

{a(a+ D(a+2)(a+3)(o+4)0k+

BB+1)(B+2)(B+3)(B+4m° | =ms

and

6°(n% + 0k)

! {a(oH—1)(a+2)(a+3)(a+4)(a+5)6k+

BB+ 1)(B+2)(B+3)(B+4)(B+5m° | =mg,

Since the above system of equations is non-linear, the numerical solutions are obtained using
iterative procedures. From a practical point of view, we consider two real life data sets which are
given in Section 9 and find the first six sample moments. These moments are equated to the corre-
sponding moments of the population and, solving this system of equations iteratively using statistical
software like MATHCAD, MATHEMATICA and R, we get the moment estimators of the parameters

of EVGLD which are given in Table 1 and Table 2.

6.2. Method of Maximum Likelihood Estimation

Let X1,X>, ..., X, be a random sample of size n from EV GLD with unknown parameter vector @ =

(97 a, Bk, 5) . The likelihood function for @ is

(@) :In]lﬁ(x;e,a,ﬁ,k,n,6>

() ¢ (rere) "TT(resen e rentor ),

nd+ 0k

i=1

The partial derivatives of 1nl(®) with respect to the parameters are

dlnl  2n
d0 0
dlnl B

R

nk 1
— =Y X+
ren &
(B @162 T 2007 o)
i=1 kLC(B)oa—1xo! +n51“(a)9ﬁ*2xlﬁ’l ’
(@) + n (KT(B)6% 1x% n(0x;) + T () 0P 24P !
izl kT(B)ge—1x%1 4 1751"(05)9/3—2);?’1 ’
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ol +i T (8)6% 1x* ' 4 ndT(a)0P 24 ' In(0x;)
B P kT(B)0% x4~ 4 ndT(a) 9B~ 2:F ! ’

dlnl - " (B)o*1x~!
o TR =3k
ok (n°+ok) S (B)81x* ! + 1o () Gﬁ*zxf-3

819 1T () 0P 24P !
1 \AT(B)0%1x% ! + ndT(ar) 9B —2xF !

dlnl _ —nn® In(n +i 7 In(n)T(cr) 0P 21!
25 (n5+9k )6 1341 4 ndl(a )gﬁfleﬁfl :

dinl —nén’- n
an (n5+9k) i

™=

and

i=1

As in the case of solving moment equations, the above non-linear system of likelihood equa-
tions are solved iteratively. Here we first set moment estimates obtained from the real life data sets
as the initial solution of the parameters and then solving the above non-linear system of likelihood
equations (using statistical software like MATHCAD, MATHEMATICA and R) we get the max-
imum likelihood estimates of the parameters of EVGLD which are given in the tables in the last
section. From the tables, it is observed that chi-square statistic for the EVGLD is lower than those
of competing models showing that our model satisfactorily fits better for these data sets.

7. Fisher Information Matrix

The second and cross partial derivatives with respect to the parameters are

9%Inl  —2n nk? 1 &
F67 07 T en? 0 H AT Y {(A"+B")(<“‘1>(°“2)Af+

B-2B-38) - (- DA+ (B-28) .

2552 =5 i (AJ:BW{ (A,-+B,»> ({(a 1) In(8x;) + I}A,-Jr

B Z)W(a)3i> - ((af A+ (B —2)B ) (ln(@x, A+ (o }

aeaB—GiW{(Ai+B,-)((a—l)w([3) +{(B-2) n(6x)+1}5:)
(o= DA+ (B-28) (WB)A-+ o)) |

Il —nn?® +a—[3+li A;B;
2000k  (n%+ 0k)? k6 = (Ai+Bi)?’

I
N

9%Inl _ nksn®! +5(ﬁ*0‘*1) i
2001 (n%+ 6k)? ne = (A +B
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92Inl _ nkn® In(n) 1n(n)(l3—a— 1) Z
(Ai +B

2008 (n5+9k)2 0 l=1
9%Inl n 2 ()
EraR A COR Wywrys +B {(Ai+Bi) (A,-(ln(@x,-)) + o B,-> _

1_,/( ) 2
o
A; ln(Gxi)+mBi> }7
Il & AB;
555~ s { ) () w(B) —n(ox) ~ wiew(p) |
Pl 1¢  AB
a0k~ kLA + B o n(0x) —~y(e0) .
22Inl 8§ ¢ AB;
ErEriatd Myws o LG RLICHIS
d%1nl " AB;
dads n(n);m{”’(a)—ln(exﬂ},

I

2%Inl , i 1 r 2
g2 —ny (ﬁ)Jer { (Ai+Bi) <1~((£))Ai+3i(ln(9xi)) > -

2%Inl 1  AB;
aﬁak = %l:Zl(At'i_Bt)z{W(ﬁ)_ln(GXZ)}’
821nl 0 < A,’B,’
9Ban ~ w Lm0 v
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d*nl  -n S—1 261
8n86_(n5+9k)2{9kn (8 m(m)+1)+m7 !

1o, AiBi(1+8 In(n)) + B

n= (Ai+B;)?
and
2 2
Pl —nekné(ln(n)) nA,-B,-(ln(n))
98 T (P rok? A (AtBR
where

is the polygamma function and

is the ' order derivative of gamma function.
The expected Fisher information matrix for the EVGLD is

9%In! 9%In! 9%In! [921ni] 9%In! 9%In!
—E1%er | —El|Jeoa) ~E|Geop| ~F|9eox| ~E|dean| ~E|e0s
9%Inl d%Inl d%Inl 9%Inl 2%Inl 9%Inl

-E —E|%hll _g —E -E -E
Jdado da? dad dadk dad Jdads
9%In! 9%In! 3213 [ 921n!] am?' 3Inl
(@) = ~E\3poe| —E|3poa| E ap2 *E_aﬁak_ —E apon | —E | 3895
| g |23l _E |92 _E |22l _E |94 _E |22l _E | 22!
kA0 ko Jkop |9k | Ikan | EIZL)
9%Inl 2%Inl 2%Inl 9%Inl 9%Inl 9%Inl
—E 9700 —E onoa —E o19p _E_agak_ -k o | —E 9795
d°Inl d°Inl d°Inl d°Inl d*Inl d°Inl
—E\5s96| —E|3soa| “El|Gsap| “E|Fsox| E aaanJ —E |55

The expected Fisher information matrix can be approximated by the observed Fisher information

—

matrix J(@) given by

9%l 9%l 9%l 9%l 9%l _ 9%l

962 000 700 900k J00n 9006

9%l 9%l 9%l 9%l 9%l _ 3%Inl
Jdado do? JdadfB dadk dadn dadd
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J(@) . JBIe B 9p2 Bk apon IBIS
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That is,
lim /(@) = 1(®).

n—eo n

For large n, the following approximation can be used.

J(@) =n(@).

8. Asymptotic Confidence Interval

In this section, we present the asymptotic confidence intervals for the parameters of the EVGLD.
Let @ = (5, a,E,E,ﬁ,S) be the maximum likelihood estimator of @ = (9, a,B,k,n,S). Under
the usual regularity conditions and that the parameters are in the interior of the parameter space, but
not on the boundary, we have \/n (@ — @) i>N6 (Q,I -1 ((H))), where I(@) is the expected Fisher
information matrix. The asymptotic behaviour is still valid if I(@®) is replaced by the observed
Fisher information matrix, J(@). The multivariate normal distribution, Ng (Q,I -1 (@)) with mean

T
vector 0 = (O, 0,0,0,0, 0) can be used to construct confidence intervals for the model parameters.

The approximate 100(1 — d))% two- sided confidence intervals for 6, B k,n,0 are

§ﬂ:Z% I} (@), aiZ¢ ﬁiz¢,/ 55(@ kﬂ:ZM/ 2 niZM/ (@) and
g:I:Z% 15_ (@) respectively, where 199(@)) LL(@), Bﬁ(®) 1_1(®) Inn(@)) and 155 (@) are

diagonal elements of J~ (@) and Z, is the upper % percentile of a standard normal distribution.
2

9. Simulation

In this section, we demonstrate the applicability of the EVGL model for two real data sets. The
data represents the survival times of guinea pigs injected with different doses of tubercle bacilli (see,
Bjerkedal, 1960). Guinea pigs are known to have high susceptibility to human tuberculosis. Even
an infection initiated with a few virulent tubercle bacilli will lead to progressive disease and death.
We used the data sets obtained under the regimen 4.3 and regimen 6.6. There were 72 observations
corresponding to the regimen 4.3 and regimen 6.6 and are respectively given by

Survival times of 72 guinea pigs under regimen 4.3

0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08,
1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53,
1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3,
2.31,2.4,2.45,2.51,2.53,2.54,2.54,2.78,2.93,3.27,3.42,3.47,3.61, 4.02, 4.32, 4.58, 5.55.
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Survival times of 72 guinea pigs under regimen 6.6

0.12,0.15,0.22, 0.24, 0.24, 0.32, 0.32, 0.33, 0.34, 0.38, 0.38,0.43, 0.44, 0.48, 0.52, 0.53, 0.54, 0.54,
0.55, 0.56, 0.57, 0.58, 0.58, 0.59, 0.60, 0.60, 0.60, 0.60, 0.61, 0.62, 0.63, 0.65, 0.65, 0.67, 0.68, 0.70,
0.70, 0.72, 0.73, 0.75, 76, 0.76, 0.81, 0.83, 0.84, 0.85, 0.87, 0.91, 0.95, 0.96, 0.98, 0.99, 1.09, 1.10,
1.21,1.27,1.29,1.31, 1.43, 1.46, 1.46, 1.75, 1.75, 2.11, 2.33, 2.58, 2.58, 2.63, 2.97, 3.41, 3.41, 3.76.

For these data sets we fit the proposed EV GLD and its sub models LDy, LD, GLD;| and GLD;.
Moment estimators and maximum likelihood estimators of the parameters of the models and their
x* values are calculated and given in Tables 1 and 2. They indicate that EV GLD fits the two data
sets better than the other distributions.

Figure 7 shows the survival function of the guinea pigs under regimen 4.3 and 6.6. From the
figure, we can say that the survival function decreases with increase in the numbers of bacilli in
the challenge dose. The vitality function of the guinea pigs under regimen 4.3 and 6.6 are given in
Figure 8. It is seen that the vitality function of guinea pigs under regimen 4.3 is greater compared
with regimen 6.6. From this we can say that the average life span of the guinea pigs under regimen
4.3 whose age exceeds x is greater compared with those under regimen 6.6.

Figure 7:

350 |—*—Regimen 4.3

—=—Regimen 6.6

Figure 8: Plots of vitality function of guinea pigs under regimen 4.3 and 6.6.
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