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Abstract: Non-parametric estimation for a linear regression model under random double-trunc-
ation is investigated, i.e. the variables are observed if and only if the dependent variable lies in a
random interval. The method requires only weak distribution assumptions to ensure identifiabil-
ity, but does not require any specific distribution family for any variable, neither for the truncation
variables nor for the error term. By using non-parametric estimators of several distribution func-
tions, consistent and asymptotically normal estimators are established. A simulation study shows
the tendency that the lower the probability of observation, the higher the mean squared error of the
estimators, even for the same number of observations. Finally, the method is applied to a doubly
truncated data set of German companies, where the age-at-insolvency is of interest.

1. Introduction

Truncation of data occurs if the event of interest is only recorded within a certain range and is
otherwise not observed. For instance, cohort studies for which not all events are recorded due to
a limited observation span of the study, constitute an important case of double-truncation. More
generally, the variable of interest Ỹ is observed if and only if it is in a random interval [T̃ , T̃ + D̃].
Consider the following application.

Example: Insolvency of German companies

For German companies, the age-at-insolvency, Ỹ , is of interest, which possibly depends on several
covariates Z̃. Due to German law, an insolvent company is announced as such publicly only for a
few days. Afterwards, the information is no longer publicly available. Let T̃ be the age of a company
at the starting date of observation. The observation span is denoted by D̃ and is assumed be a known
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constant. Thus, an insolvent company is observed if and only if Ỹ ∈ [T̃ , T̃ + D̃] (see Figure 1 for an
illustration of the truncation mechanism).

In this article, it is assumed that the variable of interest is the outcome of a linear regression
function and is subject to random double-truncation. Linear regression under left-truncation, which
is a special case by setting D̃ ≡ ∞, has been studied by Bhattacharya, Chernoff and Yang (1983),
Gross and Huber-Carol (1992), Gross and Lai (1996) and He and Yang (2003). Regarding random
double-truncation, general regression problems have received more attention recently (see e.g. Shen,
2013; Shen, 2015; Moreira, Uña-Álvarez and Meira-Machado, 2016).

Here, a non-parametric estimation method for the regression coefficients is described, which em-
ploys the non-parametric maximum likelihood estimator (NPMLE) for distribution functions under
random double-truncation. The NPMLE for the event-time distribution was introduced by Efron and
Petrosian (1999). Shen (2010) added the NPMLE for the truncation distributions, which is needed
for the proposed estimator, and derived asymptotic properties. Even though a closed-form variance
estimator was not established then, this issue was investigated and solved for the event-time dis-
tribution by Emura, Konno and Michimae (2015). Furthermore, Zhang (2015) derived a variance
estimator for both NPMLEs under the assumption that the lower and upper truncation variables
are independent. However, there are many doubly truncated data sets where the upper truncation
variable is the lower truncation variable plus a constant (see Section 5 or e.g. Moreira and Uña-
Álvarez, 2010; Kalbfleisch and Lawless, 1989). Since there is no general closed-form variance
estimator for the distribution of T̃ and T̃ + D̃, the bootstrap is applied.

The fundamental idea for the estimator goes back to Stute (1993b) where linear regression co-
efficients are estimated for right-censored data by considering weighted moments of covariates. He
and Yang (2003) used this approach to establish an estimator for linear regression coefficients under
left-truncation.

The general modelling approach towards random double-truncation is to introduce variables
T̃ , D̃ and Ỹ with corresponding covariates Z̃ and random errors ε̃ , and to let the observed sample
(Y,Z,T,D) comprise all units that fulfil the observation criterion T̃ ≤ Ỹ ≤ T̃ + D̃. By this construc-
tion, the size of the observed sample is random.

In Section 2, the regression model is specified and the modelling of the random sample size via
random point measures is explained. In addition, the estimators are motivated and derived. The
consistency and asymptotic normality are proved for the estimators of the regression coefficients
in Section 3. In order to assess the finite sample performance, a simulation study is presented in
Section 4. Finally, in Section 5, the estimation method is applied to a data set of German companies
whose age-at-insolvency was recorded if and only if their date of insolvency fell into a particular
observation span.

2. Regression Model

Let (Ỹi, T̃i, D̃i, ε̃i, Z̃i,1, . . . , Z̃i,k) :
(
×k+4

i=1 Ωi,A ,P
)
→ (Rk+4,B(Rk+4)) for i = 1, . . . ,n be i.i.d. ran-

dom variables, where B(Rk+4) is the Borel σ -algebra of Rk+4. For any random variable X , denote
the associated c.d.f. by FX . The omission of indices for random variables symbolizes the related
random vector, e.g. Ỹ := (Ỹ1, . . . ,Ỹn)

t . In addition, Z̃ denotes the n×k matrix that contains for every
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j = 1, . . . ,k, (Z̃1, j, . . . , Z̃n, j)
t as a column. Therefore, Z̃i is the ith row of Z̃. In the following, the

regression model

Ỹ = Z̃β + ε̃

is investigated, where β := (β1, . . . ,βk)
t is the parameter vector of interest. Denote by aF the lower

and by bF the upper endpoint of a distribution function F , i.e. aF := inf{x|F(x) > 0} and bF :=
sup{x|F(x)< 1}. The following assumptions are made for the model.

(A1) The distributions of the truncation variables T̃i and D̃i are continuous and P(D̃i > 0) = 1.

(A2) Every component of (ε̃i, Z̃i,1, . . . , Z̃i,k) is square-integrable.

(A3) Ỹi and (T̃i, D̃i) are quasi-independent.

(A4) E(ε̃i) = 0 and Cov(Z̃i, ε̃i) = 0.

(A5) α := P(T̃i ≤ Ỹi ≤ T̃i + D̃i)> 0.

(A6) aF T̃ ≤ aFỸ ≤ aF T̃+D̃ and bF T̃ ≤ bFỸ ≤ bF T̃+D̃ .

From a practical point of view, most of these assumptions are not critical. In many applica-
tions, (A1) is fulfilled because the truncation variables T̃i and D̃i represent time which is continuous.
Regarding D̃i, the application in this paper and also many applications in the literature of random
double-truncation (see e.g. Kalbfleisch and Lawless, 1989; Moreira and Uña-Álvarez, 2010) in fact
deal with the case that D̃i is a known constant. This even simplifies calculations and is discussed
in Section 5. Square-integrability of covariates and error terms, as required by (A2), is a classical
assumption and not an issue for real data sets. The same holds for the independence of the error
term and covariates, i.e. (A4). In contrast, quasi-independence (definition in Tsai, 1990) of response
and truncation variables is not obviously fulfilled. If the sampling mechanism does not imply this
assumption, it is recommended to use appropriate tests (e.g. Martin and Betensky, 2005; Emura and
Wang, 2010) in order to check (A3). Assumption (A6) is important to ensure that the whole support
can be observed and hence the distribution of interest is identifiable. For non-parametric methods
under random double-truncation, there is no workaround for this assumption. Note that (A5) is
implied by (A6) and only stated for easier argumentation in the following sections.

2.1. Modelling of random number of observations

Due to random double-truncation, a vector (Ỹi, T̃i, D̃i, Z̃i) is observed if and only if T̃i ≤ Ỹi ≤ T̃i + D̃i.
This truncation mechanism results in a random number of observations. In order to avoid technical
difficulties and obtain independence of the observed quadruples, thinned binomial processes and the
results of Reiss (1993) are used. For this purpose, random point measures are introduced first.

Let J be any subset of N and for each l ∈ J, let εrl be the Dirac measure concentrated at rl ∈
R3. Then, ν := ∑l∈J εrl is called a point measure. Denote the space of point measures on R3 by
M(R3,B(R3)). The associated σ -algebra M (R3,B(R3)) for M(R3,B(R3)) contains subsets of
M(R3,B(R3)) and is the smallest one such that the evaluation mappings πC : M(R3,B(R3))→
N∪{0}∪ {∞}, C ∈ B(R3), with πC(ν) = ν(C) are measurable. The random measure Ñ : Ω1×
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Ω2×Ω3→M(R3,B(R3)) is called a point process on (R3,B(R3)) if it is measurable with respect
to the σ -algebra of Ω1×Ω2×Ω3 and M (R3,B(R3)).
Specifically, for the considered model, Ñ is given by

Ñ(·) :=
n

∑
i=1

ε(Ỹi,T̃i,D̃i)
(·∩U),

where U := {(ỹ, t̃, d̃)|̃t ≤ ỹ ≤ t̃ + d̃}. Consequently, Ñ(R3) is the random number of observations.
In order to achieve a representation for which independence of the random sample size and the
observations holds, consider a second point process

N(·) :=
τ

∑
i=1

ε(Yi,Ti,Di)(·),

where τ is binomially distributed with parameter vector (n,α) and independent of (Yi,Ti,Di). The
distribution of the i.i.d. triples (Yi,Ti,Di) is the conditional distribution of (Ỹi, T̃i, D̃i) given T̃i ≤ Ỹi ≤
T̃i + D̃i. It can be shown (see e.g. Reiss, 1993) that Ñ and N are equal in distribution. Moreover, the
point process N has always the argument R3. For this reason and the sake of simplicity, the argument
of N is omitted throughout, i.e. N ≡ N(R3) describes the random sample size.

2.2. Estimation

The ordinary least squares estimator for β can not be applied because E(Ỹi|Z̃i, T̃i ≤ Ỹi ≤ T̃i + D̃i) is
not linear in β . In particular,

E(εi) = E(ε̃i|Z̃i, T̃i ≤ Ỹi ≤ T̃i + D̃i) 6= 0,

except in some special cases. However, it holds that

(Z̃t Z̃)β = Z̃tỸ − Z̃t
ε̃ =⇒ nE(Z̃t

iZ̃i)β = nE(Z̃t
iỸi).

In case of det(E(Z̃t
iZ̃i)) 6= 0, this implies

β = E(Z̃t
iZ̃i)

−1E(Z̃t
iỸi).

The main idea for estimating β is thus to replace all true expectations by their estimated counterparts.
Since T̃i ≤ Ỹi ≤ T̃i + D̃i ⇐⇒ Ỹi− D̃i ≤ T̃i ≤ Ỹi, (A3) implies that

FY,Z(y,z) = P
(

Ỹi ≤ y, Z̃i ≤ z
∣∣∣T̃i ≤ Ỹi ≤ T̃i + D̃i

)
=

1
α

P
({

Ỹi ≤ y, Z̃i ≤ z
}
∩
{

T̃i ≤ Ỹi ≤ T̃i + D̃i

})
=

1
α

∫ y

0

∫ z

0

∫
∞

0
F T̃ (s)−F T̃ (s−u) dF D̃(u) dFỸ ,Z̃(s,w)

and hence

dFỸ ,Z̃(y,z) =
α∫

∞

0 F T̃ (y)−F T̃ (y−u) dF D̃(u)
dFY,Z(y,z), (1)
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where Z denotes the matrix of all observed covariates. Note that this relation is the key equation to
deal with the unknown joint distribution of (Ỹi, Z̃i). It holds that

E
(

Z̃i,l Z̃i,m

)
=
∫

∞

0
zlzm dFỸ ,Z̃(y,z)

(1)
= α

∫
∞

0

zlzm∫
∞

0 F T̃ (y)−F T̃ (y−u) dF D̃(u)
dFY,Z(y,z) (2)

and

E
(

ỸiZ̃i,m

)
=
∫

∞

0
yzm dFỸ ,Z̃(y,z)

(1)
= α

∫
∞

0

yzm∫
∞

0 F T̃ (y)−F T̃ (y−u) dF D̃(u)
dFY,Z(y,z), (3)

for 1 ≤ l,m ≤ k. To establish estimates for E
(

Z̃i,l Z̃i,m

)
and E

(
ỸiZ̃i,m

)
, several distribution esti-

mates are necessary. Regarding FY,Z, the empirical distribution function F̂Y,Z is a reasonable choice.
Discrete non-parametric estimators for F T̃ and F T̃+D̃ are provided by Shen (2010). Let I{·} de-
note the indicator function which is one if the related argument is true and zero otherwise. Define
k̂(0) := (1/N, . . . ,1/N) and K̂(r)

j := ∑
N
l=1 k̂(r)l I{Tl≤Y j≤Tl+Dl},r ∈N. Then, the estimate is calculated by

iterating

k̂(r+1)
i =

 N

∑
j=1

I{Ti≤Y j≤Ti+Di}

K̂(r)
j

−1

, i = 1, . . . ,N,

until reaching r∗ such that for a chosen δ > 0 it holds
∣∣∣k̂(r∗+1)

i − k̂(r
∗)

i

∣∣∣ < δ . The estimators for the
lower, upper and the joint truncation distribution are respectively given by

F̂ T̃ (t) :=
N

∑
i=1

k̂(r
∗)

i I{Ti≤t},

F̂ D̃(s) :=
N

∑
i=1

k̂(r
∗)

i I{Di≤s}, and

F̂ T̃ ,T̃+D̃(t,s) :=
N

∑
i=1

k̂(r
∗)

i I{Ti≤t,Ti+Di≤s}.

In the setting of Shen (2010), FỸ is also non-parametrically estimated, say by F̆Ỹ . Technically seen,
the proof in Shen (2010) only covers the uniform consistency of F̆Ỹ for fixed [aFỸ , t] ⊂ [0,∞], t ∈
(aFỸ ,bFỸ ) under the following additional assumptions:

(B1) [aFỸ , t] is such that FỸ (v)−FỸ (u−)> δ > 0 for [u,v]⊂ [aFỸ , t].

(B2)
∫ t

a
FỸ

dFỸ (y)

F T̃ ,T̃+D̃(y,∞)−F T̃ ,T̃+D̃(y,y)
< ∞.

(B3) dF T̃ ,T̃+D̃(y,∞)−dF T̃ ,T̃+D̃(y,y)
dFỸ (y)

is uniformly bounded on [aFỸ , t].
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However, the uniform consistency of F̆Ỹ implies the uniform consistency of F̂ T̃ ,T̃+D̃. For further
details, see Appendix. Considering the assumptions, (B1) ensures that FỸ (v)−FỸ (u−) is uniformly
bounded away from zero. Condition (B2) holds if aF T̃ < aFỸ and aFỸ ≤ aF T̃+D̃ . Therefore (A6) and
aF T̃ 6= aFỸ imply (B2). The last assumption (B3) holds if the density of (T̃ , T̃ + D̃) is bounded from
above and the density of Ỹ is positive on [aFỸ , t]. Considering real data sets, assumptions (B1) and
(B3) are not critical. In many applications, for (B1) and (B3) it only has to be assumed that the
distribution of Ỹ has no inner intervals where the density is zero.

In the following, bracketed indices stand for an ascending order of the related vector. Using the
established estimator for the truncation distribution, the observation probability α is estimated by

α̂ =

(∫
∞

0

1∫
∞

0 F̂ T̃ (y)− F̂ T̃ (y−u) dF̂ D̃(u)
dF̂Y,Z(y)

)−1

= N

 N

∑
r=1

1

∑
N
s=1

[
F̂ T̃ (Yr)− F̂ T̃ (Yr−D(s))

]
· f̂ D̃

s

−1

,

where f̂ D̃
s := F̂ D̃(D(s))− F̂ D̃(D(s−1)), F̂ D̃(D(0)) := 0. Plugging α̂ , F̂Y,Z, F̂ T̃ and F̂ D̃ into (2) yields

Ê
(

Z̃i,l Z̃i,m

)
:= α̂

∫
∞

0

zlzm∫
∞

0 F̂ T̃ (y)− F̂ T̃ (y−u) dF̂ D̃(u)
dF̂Y,Z(y,z)

=
α̂

N

N

∑
r=1

Zr,lZr,m

∑
N
s=1

[
F̂ T̃ (Yr)− F̂ T̃ (Yr−D(s))

]
· f̂ D̃

s

.

The estimated expectation Ê
(

ỸiZ̃i,m

)
is defined analogously via (3). For 1≤ l,m≤ k, let

Ê
(

Z̃t
iZ̃i

)
l,m

:= Ê
(

Z̃i,l Z̃i,m

)
and

Ê
(

Z̃t
iỸi

)
m

:= Ê
(

ỸiZ̃i,m

)
,

which is well-defined due to (A2). Finally, the estimator for β is given by

β̂ := Ê
(

Z̃t
iZ̃i

)−1
Ê
(

Z̃t
iỸi

)
, (4)

if the inverse of Ê
(

Z̃t
iZ̃i

)
exists. Note that for the calculation of β̂ , the factor α̂/N can be omitted

because it gets cancelled out in (4). Regarding the variance of ε̃i, the estimator is defined by

V̂ar(ε̃i) := Ê(Ỹ 2
i )−

[
Ê
(

Z̃t
iỸi

)]t
β̂ ,

where Ê(Ỹ 2
i ), or any other estimated moment, is defined analogously to Ê

(
Z̃t

iZ̃i

)
and Ê

(
Z̃t

iỸi

)
by

interchanging zm with y in (3). In addition, the distribution of ε̃ can be estimated by

F̂ ε̃(x) :=
α̂

N

N

∑
r=1

I{Yr−Zr β̂≤x}(Yr,Zr)

∑
N
s=1

[
F̂ T̃ (Yr)− F̂ T̃ (Yr−D(s))

]
· f̂ D̃

s

,
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as well as the coefficient of determination by

R̂2 := 1− V̂ar(ε̃i)

Ê(Ỹ 2
i )− Ê(Ỹi)2

.

3. Asymptotic Properties

In order to prove the consistency and asymptotic normality of β̂ under the assumptions (A1)-(A6)
and (B1)-(B3), it will be shown first that Ê

(
Z̃t

iZ̃i

)
and Ê

(
Z̃t

iỸi

)
are consistent and asymptotically

normal. This is carried out with a mapping theorem for weak convergence and the central limit
theorem. Afterwards, the multivariate delta method is applied to complete the proof. The consistency
of the other estimators follows analogously.

For the sake of clarity, the generalised mapping theorem is stated first (Billingsley, 1968, p. 34).

Mapping Theorem Let hn and h be measurable mappings from Ω to Ω′, Pn,P probability measures
on Ω and E be the set of x such that hn(xn)→ h(x) fails to hold for some sequence {xn} approaching
x. If Pn→ P and P(E) = 0, then Pnh−1

n → Ph−1.

To remove ambiguities, let f be a real function on Ω′. Then f is integrable w.r.t. Ph−1 if and
only if f h is integrable w.r.t. P and, by definition, it holds that (Billingsley, 1968, p. 223)∫

f (h(x))dP(x) =
∫

f (x′)dPh−1(x′).

Theorem 1 Under the model assumptions made in Section 2, it holds that

Ê
(

Z̃t
iZ̃i

)
D−→ E

(
Z̃t

iZ̃i

)
and

Ê
(

Z̃t
iỸi

)
D−→ E

(
Z̃t

iỸi

)
,

where D−→ denotes convergence in distribution.

Proof. The proof consists of two steps, each using the above-mentioned mapping theorem. In both
steps, Ω′ := R+ whereas hn, h, Ω, E, Pn and P change. Let y ∈ [aFỸ ,bFỸ ] be fixed, then∫

∞

0
F̂ T̃ (y)− F̂ T̃ (y− x)dF̂ D̃(x) =

∫
∞

0
h(1)n (x)dP(1)

n (x)

n→∞−−−→
∫

∞

0
h(1)(x)dP(1)(x)

=
∫

∞

0
F T̃ (y)−F T̃ (y− x)dF D̃(x),

where Ω(1) := R+, h(1)(x) := F T̃ (y)−F T̃ (y− x), h(1)n (x) := F̂ T̃ (y)− F̂ T̃ (y− x), P(1) := F D̃ and
P(1)

n := F̂ D̃. Because of the uniform consistency of F T̃ , it holds that E(1) = /0. For l,m ∈ {1, . . . ,k},
let

h(2)n (y,z) :=
zlzm∫

∞

0 F̂ T̃ (y)− F̂ T̃ (y− x)dF̂ D̃(x)
and

h(2)(y,z) :=
zlzm∫

∞

0 F T̃ (y)−F T̃ (y− x)dF D̃(x)
,
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where Ω(2) :=R1×Rk. Assumption (A5) is necessary to ensure that
∫

∞

0 F T̃ (y)−F T̃ (y−x)dF D̃(x)>
0. The same inequality is true for the related estimator if there is at least one observation. Therefore,
the continuous mapping theorem with the function x 7→ 1/x implies h(2)n (y,z) n→∞−−−→ h(2)(y,z). In
addition, E(2) = (−∞,aF T̃ )× /0 which is a null set as long as assumption (A6) holds. Choosing

P(2)
n := F̂Y,Z and P(2) := FY,Z allows for the second use of the mapping theorem. To complete the

proof, the estimator α̂ needs to be consistent. However, just consider the special case of h(2)n (y,z)
where zlzm = 1 to show that 1/α̂ → 1/α . Then, the application of the continuous mapping theorem
implies the consistency of α̂ . Again, α̂ can not be zero if there is at least one observation. Finally,
Slutsky’s theorem completes the proof, i.e.

Ê
(

Z̃t
iZ̃i

)
l,m

= α̂ ·
∫

∞

0

zlzm∫
∞

0 F̂ T̃ (y)− F̂ T̃ (y− x)dF̂ D̃(x)
dF̂Y,Z(y,z)

n→∞−−−→ α ·
∫

∞

0

zlzm∫
∞

0 F T̃ (y)−F T̃ (y− x)dF D̃(x)
dFY,Z(y,z)

= E
(

Z̃t
iZ̃i

)
l,m

.

The proof of

Ê
(

Z̃t
iỸi

)
D−→ E

(
Z̃t

iỸi

)
follows analogously by interchanging zm and y. �

Corollary 1 It holds that

(i) V̂ar(ε̃i)
D−→ Var(ε̃i),

(ii) F̂ ε̃ D−→ F ε̃ ,

(iii) R̂2 D−→ R2.

Proof.

(i) Consider first that

Var(ε̃i) = E(Ỹi− Z̃iβ )
2 = E

(
Ỹ 2

i −2ỸiZ̃iβ +β
t Z̃t

iZ̃iβ

)
= E(Ỹ 2

i )−E(ỸiZ̃i)β .

Interchanging y2 with zlzm in the proof of Theorem 1 yields Ê(Ỹ 2
i )

n→∞−−−→ E(Ỹ 2
i ). Furthermore,

the continuous mapping theorem applied to the continuous function (r,s, t)→ r− st for r ∈
R,s ∈ R1×k, t ∈ Rk×1 ensures the consistency.

(ii) It holds that

P(ε̃ ≤ t) = E
(

I{ε̃≤t}

)
=
∫

∞

0
I{y−zβ≤t} dFỸ ,Z̃(y,z).

In addition, consider the interchange of I{ε̃≤t} with zlzm for a fixed t ∈ [aF ε̃ ,bF ε̃ ] in the proof
of Theorem 1. Then the proof is completely analogous.
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(iii) Since

R̂2 = 1− V̂ar(ε̃i)

Ê(Ỹ 2
i )− Ê(Ỹi)2

and V̂ar(ε̃i), Ê(Ỹ 2
i ) and Ê(Ỹi)

2 are consistent, the continuous mapping theorem applied to
(r,s, t)→ 1− r

s−t for r,s, t ∈ R,s 6= t yields the consistency for R̂2.

�

Theorem 2 The estimators Ê
(

Z̃t
iZ̃i

)
l,m

and Ê
(

Z̃t
iỸi

)
m

are asymptotically normal for 1≤ l,m≤ k.

Proof. Let

ĉ(Yr) :=
∫

∞

0
F̂ T̃ (Yr)− F̂ T̃ (Yr−u) dF̂ D̃(u) and

c(Yr) :=
∫

∞

0
F T̃ (Yr)−F T̃ (Yr−u) dF D̃(u).

Note that assumption (A5) ensures that c(Yr) and ĉ(Yr) are always positive. Additionally, since T̃
and D̃ are continuous it follows that

sup
Y
|ĉ(Y )− c(Y )| → 0 =⇒ sup

Y

∣∣∣∣ 1
ĉ(Y )

− 1
c(Y )

∣∣∣∣→ 0.

Then, for l,m ∈ {1, . . . ,k}, it holds that∣∣∣∣∣ 1
N

N

∑
r=1

Zr,lZr,m

ĉ(Yr)
− 1

N

N

∑
r=1

Zr,lZr,m

c(Yr)

∣∣∣∣∣
=

∣∣∣∣∣ 1
N

N

∑
r=1

Zr,lZr,m

(
1

ĉ(Yr)
− 1

c(Yr)

)∣∣∣∣∣
≤ 1

N

N

∑
r=1
|Zr,lZr,m|

∣∣∣∣ 1
ĉ(Yr)

− 1
c(Yr)

∣∣∣∣
≤ sup

Y

∣∣∣∣ 1
ĉ(Y )

− 1
c(Y )

∣∣∣∣︸ ︷︷ ︸
→0

·

(
1
N

N

∑
r=1
|Zr,lZr,m|

)
︸ ︷︷ ︸

→E(|ZlZm|)

→ 0.

The last step follows from Slutsky’s theorem. This shows that both sums have the same asymptotic
distribution. Since the latter sum, i.e.

1
N

N

∑
r=1

Zr,lZr,m

c(Yr)
,

is a mean of i.i.d. random variables, the central limit theorem implies the normal distribution. Anal-
ogous argumentation for Ê

(
Z̃t

iỸi

)
m

proves the theorem. �
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Corollary 2 Assume that det
(

Ê
(

Z̃t
iZ̃i

))
6= 0. Then the estimator β̂ is asymptotically normal and

consistent.

Proof. Let Z̆ be a k(k−1)
2 + k-dimensional vector, containing all elements of the upper triangular

matrix of Ê
(

Z̃t
iZ̃i

)
and all elements of Ê

(
Z̃t

iỸi

)
. Theorem 1 and Theorem 2 ensure that every

component of Z̆ is consistent and asymptotically normal. Moreover, let W be the function such that

W (Z̆) := Ê
(

Z̃t
iZ̃i

)−1
Ê
(

Z̃t
iỸi

)
.

The function W is differentiable with respect to its arguments and its gradient is never zero as long
as det

(
Ê
(

Z̃t
iZ̃i

))
6= 0. This follows from the fact that for any matrix A with full rank, its inverse

is given by A−1 = 1
det(A)adj(A), where adj(A) is the adjugate of matrix A. Applying the multivariate

delta method proves the corollary (van der Vaart, 1998, p. 26).

�

Remark. In the previous corollary it was assumed that the determinant of the estimated expectation
of Z̃t

iZ̃i does not vanish. In order to weaken this assumption, it is interesting to know whether

Var(Z̃i, j)> 0 for all j already implies det
(

Ê
(

Z̃t
iZ̃i

))
6= 0. However, this implication does not even

hold for the limiting determinant det
(

E
(

Z̃t
iZ̃i

))
and is therefore not true in general. In particular,

det
(

E
(

Z̃t
iZ̃i

))
=

k−2

∑
v=0

(−1)k+1+v(k−1− v)

· ∑
S⊆{1,...,k}
|S|=v

∏
m∈{1,...,k}\S

(EZ̃i,m)
2
∏
l∈S

EZ̃2
i,l

+
k

∏
h=1

EZ̃2
i,h

which can be derived by elementary calculations. Further consideration shows that this determinant
is zero if

EZ̃2
i, j

(EZ̃i, j)2
=

κ1, j

κ2, j +(−1)k
∏

h∈{1,...,k}\{ j}
EZ̃2

i,h
,

for some j, where

κr, j =
k−r−1

∑
v=0

(−1)v(k− r− v) ∑
S⊆{1,...,k}\{ j}

|S|=v

∏
m∈{1,...,k}
m 6∈(S∪{ j})

(EZ̃i,m)
2
∏
l∈S

EZ̃2
i,l .
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For instance, for k = 3 and j = 1, this expression simplifies to

EZ̃2
i,1

(EZ̃i,1)2
=

(EZ̃i,2)
2Var(Z̃i,3)+(EZ̃i,3)

2Var(Z̃i,2)

Var(Z̃i,2Z̃i,3)

=
(EZ̃i,2)

2Var(Z̃i,3)+(EZ̃i,3)
2Var(Z̃i,2)

(EZ̃i,2)2Var(Z̃i,3)+(EZ̃i,3)2Var(Z̃i,2)+Var(Z̃i,2)Var(Z̃i,3)

< 1

which does not contradict Var(Z̃1)> 0. It is therefore possible in some cases that det
(

E
(

Z̃t
iZ̃i

))
=

0.

4. Finite Sample Properties

To analyse the finite sample properties of the estimators, two simulation studies are considered.
In the first study, Ỹi has three covariates; Z̃i,1≡ 1, Z̃i,2 following a (0.5)-Bernoulli distribution and

Z̃i,3 is beta distributed with parameter vector (1.5,1.5). The corresponding regression coefficients
are β1 = 0.4,β2 =−0.2 and β3 = 0.2. The error variable follows a shifted (0.3,0.6)-beta distribution
with zero mean which is scaled to [0,0.2]. This results in Var(ε̃i)≈ 0.0047. The true R2 is about 73%.
Regarding the truncation variables, T̃i is also beta distributed with 1 as the second shape parameter
and scaled to [0,0.6], whereas D̃i follows an exponential distribution. The first shape parameter of
T̃i and the parameter of D̃i are adjusted to yield different values of α (see Table 1). Moreover, the
sample size n was fitted to result in 200, 300 and 400 observations on average, namely EN. Every
setting was repeated 10000 times. Table 2 displays the results.

Table 1: Configurations of parameters p and θ for truncation distributions F T̃ and F D̃ with associ-
ated observation probability α .

α p for T̃ ∼ Beta(p,1) θ for D̃∼ Exp(θ)

30% 2.5 2.6
40% 1.7 1.65
50% 1.15 1.13
60% 0.77 0.77
70% 0.5 0.5
80% 0.29 0.29

Due to consistency, the mean squared error (MSE) for every estimator decreases with increasing
n. Clearly, the smaller α the higher the MSE, which was also observed in literature (see e.g. Shen,
2010; Moreira and Uña-Álvarez, 2010). This effect can not be seen for α̂ because the change of α

directly influences the calculation of the MSE of α̂ .
The second simulation study analyses the finite sample properties of the estimated standard er-

ror of β̂ . Here, simple bootstrap is used, i.e. for a sample (Yi,Ti,Di,Zi), i = 1, . . . ,N, there are
B ∈ {200,400,1000} resamples (Yib,Tib,Dib,Zib), b = 1, . . . ,B, where each observation of the orig-
inal sample has the same probability to get resampled. Then, the estimator is applied to all B re-
samples and the standard deviation of the B estimations is the estimate for the standard error. The
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Table 2: Mean squared error for different observation probability α and mean number of observa-
tions EN.

Mean squared error
α EN β̂1 × 104 β̂2 × 104 β̂3 × 104 V̂ar(ε̃) × 107 α̂ × 103 R̂2 × 103

30%
200 2.71 2.40 7.64 1.85 3.34 3.14
300 1.83 1.74 5.17 1.21 2.45 2.24
400 1.41 1.33 3.39 0.87 1.93 1.75

40%
200 1.81 1.48 5.00 1.35 3.89 1.42
300 1.21 1.01 3.31 0.90 2.82 1.01
400 0.93 0.75 2.58 0.67 2.16 0.79

50%
200 1.51 1.13 4.12 1.22 4.49 0.96
300 1.10 0.76 2.76 0.77 3.01 0.65
400 0.77 0.58 2.08 0.58 2.64 0.49

60%
200 1.44 1.02 4.00 1.14 4.30 0.78
300 0.96 0.67 2.57 0.73 3.56 0.52
400 0.72 0.51 1.95 0.56 2.58 0.39

70%
200 1.41 0.97 3.85 1.11 4.38 0.71
300 0.93 0.64 2.51 0.73 3.27 0.47
400 0.70 0.49 1.87 0.53 2.52 0.35

80%
200 1.37 0.93 3.77 1.10 3.83 0.65
300 0.93 0.64 2.50 0.73 2.92 0.45
400 0.69 0.46 1.85 0.54 2.36 0.33

simulation study considers three different observation probabilities, i.e. α ∈ {0.25,0.5,0.75}. The
lower truncation variable T̃i follows a uniform distribution in contrast to D̃i which is exponentially
distributed. Table 3 displays the parameter settings for both distributions. The parameter of interest
is β ′ = (2,0.5,1) where Z̃i,1 ≡ 1, Z̃i,2 again following a Bernoulli distribution with parameter 0.5 and
Z̃i,3 is beta-distributed with parameter (1.5,1.5). The expected number of observations is 200 and
every setting was repeated 1000 times. The error variable is uniformly distributed on [−0.3,0.3].
Table 4 shows the simulation results. In this setting, the decrease of α has a similar effect on the
MSE as in the first simulation study. Regarding the number of resamples B, even for B = 200 the
estimates are quite good. The further increase in B reduces the MSE only slightly.

Table 3: Configurations of parameters r and θ for truncation distributions F T̃ and F D̃ with associated
observation probability α .

α r for T̃ ∼Uni([0,r]) θ for D̃∼ Exp(θ)
25% 4 0.91
50% 3 0.46
75% 2 0.165

The estimators were implemented in R. In order to achieve acceptable computational durations,
it is strongly recommended to use C code in R which is possible by the use of the package Rcpp.

5. Application

For a data set of companies which were founded in the German federal state Hesse, the interest lies
in the age-at-insolvency in days. The sample contains N = 400 companies which became insolvent
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Table 4: Mean squared error of bootstrapped standard errors for β for different observation proba-
bilities.

Number of Mean squared error
α resamples ŝ.e.(β̂1) × 105 ŝ.e.(β̂2) × 105 ŝ.e.(β̂3) × 105

25% 200 2.226 0.668 3.369
400 1.960 0.497 2.856

1000 1.468 0.456 2.317

50% 200 1.206 0.319 2.061
400 1.058 0.255 1.794

1000 1.011 0.195 1.459

75% 200 0.684 0.277 1.571
400 0.573 0.189 1.249

1000 0.489 0.146 1.040

during Aug-29 2013 to Mar-31 2014. This results in an observation period of D̃≡ 214 days. There
were no observations with a foundation date after Aug-29 2013. Define Ỹi as the age-at-insolvency
of the ith company and T̃i as the age at Aug-29 2013. Therefore, the ith company is observed if and
only if T̃i ≤ Ỹi ≤ T̃i + D̃. Figure 1 illustrates the truncation mechanism.

-

time

Aug-29 2013 Mar-31 2014

s cs cs c︸ ︷︷ ︸
T̃i︸ ︷︷ ︸

Ỹi

︸ ︷︷ ︸
D̃

Figure 1: Three examples for foundation (black bullet) and insolvency (white bullet) of observed
(solid) and truncated (dashed) companies.

The data set yields a special case for the established truncation model where D̃ has only proba-
bility mass in 214. Shen (2010) did not explicitly cover this case, however, it was proven by Moreira
and Uña-Álvarez (2010) that the asymptotic properties still hold. In this case, the calculation of the
weights is slightly easier because

∫
∞

0
F̂ T̃ (y)− F̂ T̃ (y−u) dF̂ D̃(u) = F̂ T̃ (y)− F̂ T̃ (y− D̃)

and hence the proofs are completely analogous. Due to the sampling mechanism, assumption (A3)
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is reasonable. The distribution assumption (A6) is fulfilled, because of

aF T̃ = 0 < aFỸ = 1 < aF T̃+D = 214 and

bF T̃ = ∞≤ bFỸ = ∞≤ bF T̃+D = ∞.

Note that aFỸ = 1, because a company is assumed to survive at least for one day. This also implies
the validity of assumption (B2). Every observation has the following 8 covariates:

Zi,1 Always one for all observations.

Zi,2 One if the company is a limited liability company, a limited partnership or a mixture. Other-
wise zero.

Zi,3 One if the observation is an entrepreneurial company with limited liability, otherwise zero.

Zi,4 One if the company is part of the manufacturing sector, otherwise zero.

Zi,5 One if the observation is a company of the building sector, otherwise zero.

Zi,6 One if the observation is a company of the commerce sector, otherwise zero.

Zi,7 One if the observation is a company of the maintenance sector, otherwise zero.

Zi,8 One if the observation is a company of the car repair sector, otherwise zero.

Applying the proposed estimators and bootstrapping standard errors for confidence intervals
yields Table 5. Note that the standard errors are bootstrapped in the same way as in the simulation
study with 1000 resamples.

Table 5: Estimates with confidence intervals and standard errors.
90 % Confidence Intervals

Value Lower Boundary Upper Boundary

β̂1 3923 2494 5351
β̂2 96.1 -1273 1465
β̂3 -3073 -4457 -1689
β̂4 -717 -1667 232
β̂5 1536 275 2796
β̂6 218 -702 1140
β̂7 -25.8 -968 944
β̂8 636 -513 1785

Estimated Standard Error
α̂ 0.0101 0.0012
n̂ 39598 4192

V̂ar(ε̃) 12381425 1476544
R̂2 0.054 0.040

Even though the model cannot explain much of the variance (R̂2 ≈ 5.54%), β̂1, β̂3 and β̂5 are sig-
nificantly (90%) different from zero. Therefore, entrepreneurial companies have a higher insolvency
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risk compared to other company forms. This is not surprising because an entrepreneurial company
has insufficient share capital and may become a limited liability company after it has accumulated
enough share capital. Regarding the different sectors, the building sector (β̂5) has a lower insolvency
risk compared to other sectors. The remaining sectors are clearly insignificant, and hence have no
effect on the age-at-insolvency in this model.

As the simulation study indicates, one reason for the large confidence intervals lies in the low
probability of observation (α̂ ≈ 1%). Looking at the estimated distribution function F̂ ε̃ , Figure 2
reveals the shape of a shifted exponential distribution. The confidence intervals were obtained by
simple bootstrap. Denote F̂ ε̃

b as the estimated error distribution for the bth resample, b = 1, . . . ,1000.
Consequently, for every residual εi, i = 1, . . . ,400 the 2.5% and 97.5% quantiles of all F̂ ε̃

b (εi) deter-
mine the confidence intervals.

−4,000 −2,000 0 2,000 4,000 6,000

0

0.2

0.4

0.6

0.8

1

εi

F̂ ε̃(εi)

Figure 2: Estimated distribution function of ε̃ with 95% bootstrap confidence intervals.

6. Discussion

Based on the idea of Stute (1993b) for censored data, consistent and asymptotically normal estima-
tors under random double-truncation were derived. In order to obtain variance estimators, bootstrap
estimators are recommended. He and Yang (2003) pursued the same idea of Stute (1993b) for ran-
domly left-truncated data and established a closed-form variance estimator. They used the fact that
the NPMLE for randomly left-truncated data (see e.g. Woodroofe, 1985), also known as Lynden-
Bell or product-limit estimator, is a functional of empirical distribution functions for which useful
approximations exist. In particular, Stute (1993a) developed error bounds which were employed by
He and Yang (2003). This is only one reason why a product-limit estimator for randomly double-
truncated data would be desirable. However, some technical aspects related to the cumulative hazard
function reveal that the methods of Woodroofe (1985) can not be generalised to the case of random
double-truncation. Nevertheless, Shen (2010) developed an NPMLE for randomly double-truncated
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data but there is no closed-form variance estimator for F̂ T̃ ,T̃+D̃. Therefore, bootstrapping the vari-
ance of β̂ seems to be a reasonable alternative.

Concerning the choice of covariates, forward selection and backward elimination or a combina-
tion of both are most commonly used in practice (see Hocking, 1976). Since the proposed method
directly offers estimators of the underlying distributions, extending the standard selection methods to
the investigated truncation setting seems natural. In particular, we suggest to use the derived estima-
tors for R2 and its standard error to perform forward selection. In this procedure, the default model
contains no covariates, and in each successive step the covariate which contributes the largest signif-
icant improvement of R2 is included, until no covariate carries a significant improvement. However,
further research is needed to assess the exact performance of this selection method.

The simulation study and the application to German companies show that under a low probability
of observation, reliable estimates are hard to obtain - even for a simple model like linear regression.
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Appendix
The consistency of F̂ T̃+D̃,T̃

For the sake of clarity, the setting in Shen (2010) will be introduced first. Note that Shen (2010)
assumes a deterministic number of observations in contrast to this paper. However, it does not
influence the asymptotic results. This follows from the monotonicity of N with respect to n (Chung,
2001, p. 143). As previously mentioned, the distribution of Ỹ and the joint distribution of (T̃ , T̃ + D̃)

are estimated non-parametrically. Consider Assumptions (A1), (A3), (A5), (A6) and (B1)-(B3). The
full likelihood can be written as

LN( f ,k) =
N

∏
i=1

fiki

∑
N
j=1 Fjk j

,

where f = ( f1, . . . , fN) and k = (k1, . . . ,kN) are discrete densities and Fj := ∑
N
l=1 flI{Tj≤Yl≤Tj+D j}.

The density f has only probability mass at the observations (Y1, . . . ,YN). The same is true for k with
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respect to ((T1,T1 +D1), . . . ,(TN ,TN +DN)). In order to achieve the inverse-probability-weighted
estimator, the full likelihood can be written as

LN( f ,k) =
N

∏
i=1

fi

Fi

N

∏
i=1

Fiki

∑
N
j=1 Fjk j

= L1( f ) ·L2( f ,k).

The NPMLE corresponding to L1( f ) can be obtained by solving

1

f̂i
=

N

∑
j=1

I{Tj≤Yi≤Tj+D j}

F̂j
, i = 1, . . . ,N,

where F̂j = ∑
N
l=1 f̂lI{Tj≤Yl≤Tj+D j}. The estimation of k follows analogously, i.e. the full likelihood

can also be written as

LN( f ,k) =
N

∏
i=1

ki

Ki

N

∏
i=1

Ki fi

∑
N
j=1 K j f j

= L1(k) ·L2(k, f ),

where K j := ∑
N
l=1 klI{Tl≤Y j≤Tl+Dl}. Similarly, solving the equation

1

k̂i
=

N

∑
j=1

I{Ti≤Y j≤Ti+Di}

K̂ j
, i = 1, . . . ,N

leads to the NPMLE corresponding to L1(k). In addition, it was shown that the estimates of f̂ and k̂
can also be obtained by solving

f̂i =

(
N

∑
j=1

1

K̂ j

)−1
1

K̂i
and

k̂i =

(
N

∑
j=1

1

F̂j

)−1
1

F̂i

simultaneously for i = 1, . . . ,N. This iterative procedure results in the same estimates but saves
computational efforts. Furthermore, it was proven that f̂ and k̂ are also the NPMLE of the full
likelihood. Let

F̂Ỹ (y) :=
N

∑
i=1

f̂iI{Yi≤y},

F̂ T̃ ,T̃+D̃(t,s) :=
N

∑
i=1

k̂iI{Ti≤t,Ti+Di≤s},

and note that

F T̃ ,T̃+D̃(t,s) =

[∫
∞

a
FT̃+D̃

∫ v

a
FT̃

dFT,T+D(u,v)

FỸ (v)−FỸ (u−)

]−1 ∫ s

a
FT̃+D̃

∫ min(t,v)

a
FT̃

dFT,T+D(u,v)

FỸ (v)−FỸ (u−)
(5)

and that plugging F̂Ỹ into (5) results in F̂ T̃ ,T̃+D̃. Since FT,T+D can be estimated with the empirical
distribution function and F̂Ỹ is consistent, the mapping theorem (Billingsley, 1968, p. 34) implies
the consistency of F̂ T̃ ,T̃+D̃. Note that (A1) ensures that the consistency is uniform.
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