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Abstract: Rota and Laitila (2015) suggest an alternative two-step calibration estimation resulting
from combining two calibration estimation approaches, i.e., linear calibration (Särndal and Lund-
ström, 2005) and propensity score calibration (Chang and Kott, 2008), when the functional form of
the response probability is assumed to be known. The first step focuses on estimating this function
and the second step on estimating the total of a survey variable. This paper extends these previous
findings by deriving an approximate variance expression and suggesting a variance estimator for the
two-step estimator. The paper also justifies the use of sample-level auxiliary information in the first
step of estimation, deferring the use of population-level auxiliary information to the second step of
estimation.

1. Introduction

Efficient estimation in surveys affected by nonresponse requires the appropriate use of auxiliary
information. This theme is emphasized by, for example, Rizzo, Kalton and Brick (1996), Särndal
and Lundström (2007), and Brick (2013). Various approaches to accounting for the negative effects
of nonresponse are proposed in the literature, with weighting the units in the response being one
alternative. Auxiliary information can be available at different levels, such as the sample-level,
population-level, or both. When both these levels of auxiliary information are available, they offer
alternative ways of constructing the auxiliary vectors (see Estevão and Särndal, 2002). Moreover, the
combined use of population and sample level auxiliary information gives further alternatives when
estimating population characteristics. One such alternative is the estimation in two steps.

A two-step estimation by calibration approach is suggested by, for example, Särndal and Lund-
ström (2005), with linear calibration acting in both steps. Kott and Liao (2015) also suggest a
two-step calibration estimation approach assuming a known functional form of the response mecha-
nism.
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In two-step estimation, sample-level auxiliary information can be used in the initial adjustment
to correct for nonresponse bias and population-level auxiliary information in the final adjustment
intended to reduce the sampling variance. One reason for employing sample auxiliary data for
preliminary adjustment is that these data may well capture important respondent characteristics.
For example, if the sample auxiliary data are process data, they will generally embody information
about the nonresponse pattern, which may be important in correcting for nonresponse bias (e.g.
Brick, 2013).

Calibration adjustment, initially conceived for correcting sampling errors (Deville and Särndal,
1992; Deville, Särndal and Sautory, 1993) is currently one of the most appealing techniques for
nonresponse adjustment. The rationale of calibration is to construct adjustment weights that replicate
known quantities. Several calibration schemes have been proposed in the literature, including:

1. Linear calibration (LC) (e.g. Lundström and Särndal, 1999) is derived from a Chi-square type
function that minimizes the distance between the sampling weights and the calibrated weights.
In the absence of nonresponse, this calibration estimator takes the form of a generalised re-
gression (GREG) estimator (Särndal, Swensson and Wretman, 1992). An important feature
of this version of calibration is that it simply relies on the strength of the auxiliary variables in
explaining either variables of interest, the response pattern, or both, without an explicit need
for modelling.

2. Propensity calibration (PC) (e.g. Chang and Kott, 2008; Kim and Park, 2010; Kott and Day,
2014; Kott and Liao, 2015) relies on explicit modelling of the response pattern, that is, the
functional form of the response model is assumed to be known and its parameters are estimated
by means of the calibration principle.

3. Model calibration (MC) (e.g. Wu and Sitter, 2001; Lehtonen, Särndal and Veijanen, 2008;
Rueda, Sánchez-Borrego, Arcos and Martnez, 2010). Here, the data is assumed to be gener-
ated by an underlying process described by specific model that links the survey variable of
interest to some covariates, and calibration is used in construction of weights that are consis-
tent with population totals of the predicted targets obtained using that model.

4. Hybrid calibration (HC)(Lehtonen and Veijanen, 2015). This calibration scheme combines
MC and model-free calibration estimator, attempting thus to exploit their favourable proper-
ties. The auxiliary vector encompasses both the auxiliary data and predictions of the study
variable values.

The last two calibration schemes illustrate the recent advances in the calibration approach. They
have been used for domain or small area estimation, (e.g. Lehtonen and Veijanen, 2012; Lehtonen
and Veijanen, 2015). The last two calibration schemes illustrate the recent advances in the calibration
approach. They have been used for domain or small area estimation, (e.g. Lehtonen and Veijanen,
2012; Lehtonen and Veijanen, 2015).

Rota and Laitila (2015) combine LC and PC schemes and construct an alternative estimator
of the total Y of a survey variable y by means of two-step estimation in the presence of sample-
and population-level auxiliary information under the assumption of a known functional form of
the response mechanism. In line with this setup, this paper contributes by deriving an approxi-
mate variance expression and suggesting a variance estimator for this alternative two-step estimator.
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Moreover, we demonstrate that the use of sample-level auxiliary information generally yields more
efficient two-step estimator than does the use of population-level auxiliary information. Simulation
studies are carried out to illustrate the properties of the two-step estimator and its variance.

The rest of the paper is organized as follows: Section 2 introduces calibration theory; the two-
step estimator is presented in Section 3 and the variance and variance estimator in Section 4; in
Section 5, we provide arguments justifying the use of sample auxiliary information in the first step
of estimation; the simulation study is presented in Section 6 and the results are discussed in the final
section.

2. Introduction of calibration estimation

2.1. Notations

Sample s of n elements is drawn from population U = {1,2, ...,k, ...,N} of size N using a probability
sampling design, p(s), that yields the first- and second-order inclusion probabilities πk = Pr(k ∈
s) > 0 and πkl = Pr(k, l ∈ s) > 0, respectively, and πkk = πk for all k, l ∈U . Let r ⊂ s denote the
response set. Units in the sample respond independently of each other with probability qk = Pr(k ∈
r |k ∈ s)> 0 . Assume y to be the survey variable of which we are interested in estimating its total
Y = ∑k∈U yk using auxiliary information defined as:

(a) xk = (x1k,x2k, ...,xJk)
t , a J-dimensional vector of known values for all elements k in the

response set r; for each j = 1, ...,J, Tx j = ∑k∈U x jk is known. This implies that Tx =

(Tx1,Tx2, ...,TxJ)
t is also known.

(b) zk = (z1k,z2k, ...,zLk)
t , an L-dimensional vector of known values for all elements k in the sam-

ple set, s. For each l = 1, ...,L, we can estimate t̂zl = ∑k∈s dkzlk and compose the vector
t̂z = (t̂z1, t̂z2, ..., t̂zL)

t .

Unless otherwise stated, the expected value EpEq(A), is written simply as E(A).

2.2. Calibration estimators

Calibration estimators are a class of weighted estimators of the form Ŷcal = ∑k∈r wkyk, with weights
wk satisfying the calibration constraint ∑k∈r wkx̌k = X̌, where x̌k stands for xk, zk, or x̌k =

(
xt

k,z
t
k

)t

and X̌ corresponds to their respective totals, i.e., Tx, t̂z, or
(
T t

x , t̂
t
z
)t . Papers by Deville and Särn-

dal (1992) and Deville et al. (1993), benchmarks in calibration estimation theory, approach cali-
bration in the context of full-sample responses and their main purpose was the reduction of sam-
pling errors. The approach was then extended to cases of samples with nonresponse in order to
reduce nonresponse bias (e.g. Singh, Wu and Boyer, 1995; Niyonsenga, 1997; Lundström and Särn-
dal, 1999; Kreuter and Olson, 2011).

The minimum-distance approach to deriving calibration weights aims to determine calibrated
weights as close as possible to the design weights by means of a distance function, D(w,d). Deville
and Särndal (1992) required the distance D to be positive and a convex function of its arguments,
with D(0) = dD(0) = 1, where d stands for the first derivative. Minimizing D, subject to the above
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calibration constraint and using a Lagrange function, leads to calibrated weights of the form wk =

dkF(·), where F−1(a) = dD(a) and dk = 1/πk. When D is chosen to be

D(w,d) = ∑
k∈r

[
d−2

k (wk−dk)
]2
/2,

the calibrated weights are given by wk = dk + dkgt x̌k, which are linear in the coefficient vector
gt =

(
X̌−∑k∈r dkx̌k

)t (
∑k∈r dkx̌kx̌t

k

)−1. The resulting estimator of Y , commonly termed a linear
calibration estimator, is given by

ŶLC = ∑
k∈r

dkyk +gt
∑
k∈r

dkx̌kyk. (1)

Other distance functions will generally produce calibrated weights that are nonlinear in their
coefficients and deriving these weights may require some iterative procedures. Deville et al. (1993)
provide a set of common distance functions that can be used in generating calibrated weights.

A direct approach when adjusting for nonresponse is to assume that F(·) is the nonresponse
adjustment weight and to choose it suitably. The principle is known as response propensity, in
which F−1(·) is a probability function. The calibration equation ∑k∈r dkF(·)x̌k = X̌ is employed in
estimating the function F(·). Chang and Kott (2008) use this principle in constructing the estimator
Ŷcal , with F(·) = F(zt

kg), where zk with dimension less or equal to that of xk, is known only for k ∈ r.
They also suggest an iterative algorithm for estimating g.

3. Calibrating in two steps

Särndal and Lundström (2005) suggest a two-step calibration estimator, here denoted by Ŷ2LC. The
first- and second-step weights are constructed according to the principle of combining population-
and sample-level auxiliary information. In the first step, sample-level information is used to construct
intermediate weights, w1k, such that ∑k∈r w1kzk = ∑k∈s dkzk. In the second step, weights w1k replace
the design weights in the optimization problem that led to calibration estimator (1), and the final
weights, w2k, satisfy ∑k∈r w2kx̌k = X̌, where x̌k = xk with X̌ = Tx or x̌k =

(
xt

k,z
t
k

)t with X̌ =
(
T t

x , t̂
t
z
)t .

The two-step estimator suggested by Rota and Laitila (2015) assumes that the functional form of
the response probability is known and is given by qk = q(zt

kg).
In the rest of the paper we use F̂k = F

(
zt

kĝ
)
, Fk = F

(
zt

kg
)
, and F◦k = F

(
zt

kg◦
)
, where g is a

generic parameter vector, g◦ is the true value of g, ĝ is a consistent estimator of g◦, and Fk = 1/qk.
Rota and Laitila (2015) define intermediate weights as w1k = dkF̂k, after calculating ĝ in the first

step from the calibration equation ∑k∈r dkFkzk = t̂z. The second-step weights, w2k, are derived from

the problem min
{w2k}

∑k∈r
(w2k−w1k)

2

2w1k
subject to Tx = ∑k∈r w2kxk and given by w2k = w1kv2k with v2k =

1+ gt
2xk and gt

2 = (Tx−∑k∈r w1kxk)
t (

∑k∈r w1kxkxt
k

)−1, assuming that ∑k∈r w1kxkxt
k is invertible.

Then, the two-step estimator for the total Y is given by Ŷ2step = ∑k∈r w2kyk. This estimator can be
equivalently written as:

Ŷ2step = ∑
k∈r

dkF̂kyk +

(
Tx−∑

k∈r
dkF̂kxk

)t

B̂2Fr, (2)



VARIANCE ESTIMATION IN CALIBRATION ADJUSTMENT 365

where B̂2Fr =
(
∑k∈r dkF̂kxkxt

k

)−1
∑k∈r dkF̂kxkyk.

4. The variance and variance estimator

The following assumptions are used in deriving the variance of the two-step estimator:

(i) The sequence of populations and samples increases to infinity, as in Isaki and Fuller (1982).

(ii) Function F(·g) is monotonic and continuous for all g in G, with finite first derivatives.

(iii) vk = (xk,zk,yk) is nonrandom and ‖vk‖< ∞.

(iv)
(
B̂2Fr−B2

)
, N−1

(
Tx−∑k∈r dkF◦k xk

)
, and N−1

(
t̂z−∑k∈r dkF◦k zk

)
are all Op(n−

1
2 ), where

B2 =
(
∑k∈U xkxt

k

)−1
∑k∈U xkyk is the population analogous to B̂2Fr.

(v) N−1
∑k∈r dkxkF◦1k , N−1

∑k∈r dkF◦1kyk , and N−1
∑k∈r dkF◦k xk (xk)

t are Op(1), where, F1 =

dF/dg.

Given that ĝ is a solution to ∑k∈r dkFkzk = t̂z, we proceed as follows:

∑
k∈r

dkF◦k zk− t̂z = ∑
k∈r

dkF̂kzk− t̂z +∑
k∈r

dkzkF̃1k (ĝ−g◦) = Op

(
Nn−

1
2

)
.

This leads to (3) below:

(ĝ−g◦) =ΓΓΓ
−1N−1

(
∑
k∈r

dkF◦k zk− t̂z

)
+op

(
n−

1
2

)
= Op

(
n−

1
2

)
, (3)

where ΓΓΓ is the probability limit of N−1
∑k∈r dkzkF̃1k, assumed invertible and F̃1k = F1k

(
zt

kg̃
)
, with g̃

being a convex combination of ĝ and g◦.
A first-order Taylor approximation of Ŷ2step at g◦ gives:

Ŷ2step ≈∑
k∈r

dkF◦k yk +

(
Tx−∑

k∈r
dkF◦k xk

)t

B̂◦2Fr

+∑
k∈r

dkF◦1k (ĝ−g◦)
(
yk−xt

kB̂◦2Fr
)
+λλλ

t
◦∑

k∈r
dkxkF◦1k (ĝ−g◦)

(
yk−xt

kB̂◦2Fr
)
, (4)

where λλλ t
◦ = N−1

(
Tx−∑k∈r dkF◦k xk

)t (N−1
∑k∈r dkF◦k xkxt

k

)−1 is Op(n−
1
2 ).

Now, as in Estevão and Särndal (2006), we can replace B̂◦2Fr in (4) with
(
B2 + B̂◦2Fr−B2

)
and

obtain:

Ŷ ◦2step =∑
k∈r

dkF◦k Ek +T t
x B2 +∑

k∈r
dkF◦1k (ĝ−g◦)Ek +R, (5)

where

R =∑
k∈r

dkF◦1k (ĝ−g◦)λλλ
t
◦xkEk +

[(
Tx−∑

k∈r
dkF◦k xk

)t

−∑
k∈r

dkv◦kF◦1k (ĝ−g◦)xk

]t (
B̂◦2Fr−B2

)
,
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v◦k = 1+λλλ t
◦xk, and Ek = yk−xt

kB2.

In (5), ∑k∈r dkF◦k Ek and ∑k∈r dkF◦1k (ĝ−g◦)Ek are Op(Nn−
1
2 ), whereas R is Op(Nn−1), thus of

lower order. This lower-order term is then dropped to obtain the approximate expression for the
two-step estimator of Y :

Ŷ •2step = ∑
k∈r

dkF◦k Ek +∑
k∈r

dkF◦1k (ĝ−g◦)Ek +T t
x B2. (6)

If we replace (ĝ−g◦) in (6) with the corresponding expression in (3), we get

Ŷ •2step = ∑
k∈r

dkF◦k Ek +∑
k∈r

dkF◦1kΓ̃ΓΓ
−1

(
∑
k∈r

dkF◦k zk− t̂z

)
Ek +T t

x B2 +op(Nn−
1
2 ), (7)

where Γ̃ΓΓ
−1

=ΓΓΓ−1N−1. Let ∑k,l∈A = ∑k∈A ∑l∈A and write (7) as:

Ŷ •2step = ∑
k∈s

RkdkF◦k Ek + ∑
k,l∈s

Rk(RlF◦l −1)Akl +T t
x B2, (8)

where Akl = dkdlzt
l

(
F◦1kΓ̃ΓΓ

−1
)t

Ek, and Rk = 1 if k is a respondent; Rk = 0, otherwise.
The variance of (2) is approximated by the variance of (8) given by:

Var
(
Ŷ •2step

)
=Var(T̂ ◦a )+Var(T̂ ◦b )+2Cov

(
T̂ ◦b , T̂

◦
a
)
, (9)

where T̂ ◦a = ∑k∈s RkdkF◦k Ek and T̂ ◦b = ∑k,l∈s Rk(RlF◦l −1)Akl .
The variances on the r.h.s. of (9) are obtained using result 9.3.1 in (Särndal et al., 1992, p. 348)

and given by:

Var(T̂ ◦a ) = ∑
k 6=l∈U

(πkldkdl−1)EkEl + ∑
k∈U

(dkF◦k −1)E2
k ,

Var(T̂ ◦b ) = ∑
k 6=l 6=i∈U

πkli(F◦l −1)
F◦k F◦i

AklAil + ∑
k 6=l∈U

πkl−πkπl

F◦k F◦l
(F◦l −1)(F◦k −1)AkkAll

+ ∑
k 6=l∈U

πkl(F◦l −1)
F◦k

A2
kl + ∑

k 6=l∈U

πkl

F◦k F◦l
(1−F◦k )(1−F◦l )AklAlk

+ ∑
k 6=l∈U

2πkl

F◦k F◦l
(1−F◦l )

2AklAll + ∑
k∈U

πk(F◦k −πk)(F◦k −1)2

(F◦k )
2 A2

kk,

and

Cov
(
T̂ ◦a , T̂

◦
b
)
= ∑

k 6=l∈U

dlπkl

F◦k
((F◦l −1)Akl +(F◦k −1)Akk)El+ ∑

k∈U
(F◦k −1)AkkEk− ∑

k,l∈U

πk
(
F◦k −1

)
F◦k

AkkEl .

The corresponding variance estimator is given by:

V̂ ar
(
Ŷ •2step

)
= V̂ ar(T̂a)+V̂ ar(T̂b)+2Ĉov

(
T̂b, T̂a

)
, (10)
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where

V̂ ar(T̂a) = ∑
k 6=l∈r

(dkdl−dkl)ěkěl +∑
k∈r

dkF̂k(dkF̂k−1)e2
k ,

V̂ ar(T̂b) = ∑
k 6=l 6=i∈r

F̂l(F̂l−1)ÂklÂil + ∑
k 6=l∈r

(1−dklπkπl)(F̂k−1)(F̂l−1)ÂkkÂll ∑
k 6=l∈r

F̂l(F̂l−1)Â2
kl

+ ∑
k 6=l∈r

(1− F̂k)(1− F̂l)ÂklÂlk + ∑
k 6=l∈r

2(1− F̂l)
2ÂklÂll +∑

k∈r

(F̂k−1)2(F̂k−πk)

F̂k
Â2

kk,

and

Ĉov
(
T̂b, T̂a

)
= ∑

k 6=l∈r
dl
(
(F̂l−1)Âkl +(F̂k−1)Âkk

)
ěl +∑

k∈r
dk(F̂k−1)Âkkěk− ∑

k,l∈r
dl(F̂k−1)Âkkěl ,

with T̂a = ∑k∈s RkdkF̂kek, T̂b = ∑k,l∈s Rk(RlF̂l−1)Âkl , Âkl = dkdlzt
l

(
F̂1k

ˆ̃
ΓΓΓ−1

)t
ek, ˆ̃

ΓΓΓ = ∑k∈r dkzkF̂1k,

dkl = 1/πkl , ěk = F̂kek, and ek = yk−xt
kB̂2Fr.

Note: As the third-order inclusion probability in variance estimator (10) vanishes, the triple sum
involved is easily factorized into a product of double and single sums, making the computation
easier. Below we provide the factorization of this sum:

∑
k 6=l 6=i∈r

F̂l(F̂l−1)ÂklÂil = ∑
k 6=l∈r

dlF̂l(F̂l−1)Âkl(
ˆ̃
ΓΓΓ
−1xs

l )
t
∑
i∈r

di(F̂1i)
tei− ∑

k 6=l∈r
F̂l(F̂l−1)

(
Â2

kl + ÂklÂll
)
.

Remark: The last two terms on the r.h.s. of equation (9) represent the contribution of the variance of
the model parameter estimates to the variance of the two-step estimator. A question may therefore be
raised: Is it worthwhile correcting for the uncertainty in model parameter estimates when estimating
the variance of the two-step estimator?

5. Efficiency gain with calibration at sample level

5.1. Efficiency in estimating the model parameters

The principal goal of the first step is the appropriate estimation of the response model. This is of
particular importance in protecting the target estimates against nonresponse bias. We can formally
illustrate this in the following:

Let
Ĥ(g) = ∑

k∈r
dkFkzk− t̂z (11)

with E
(
Ĥ(g◦)

)
= 0.

From Särndal et al. (1992, result 9.3.1), the covariance of Ĥ(g◦) is given by

E
(
Ĥ(g◦)Ĥt(g◦)

)
= ∑

k∈U
dk(F◦k −1)zkzt

k.
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We assume that the vector of estimating equations, Ĥ(g) = 0, is uniquely solved for g = ĝ and
consider assumptions (i) and (ii) in Section 4. From (3) we observe that the asymptotic variance of
the response model coefficients is given by:

Avar
(√

n(ĝ−g◦)
)
=
[
(M(g◦))−1

]
ΨΨΨ

[
(M(g◦))−1

]
, (12)

where M(g◦) = plimn→∞
1
n

dĤ(g◦)
dg and ΨΨΨ = plimn→∞n−1E

(
Ĥ(g◦)Ĥt(g◦)

)
. Now, suppose that

tz = ∑U zk is known. Then (11) is defined as:

ˆ̃H(g) = ∑
k∈r

dkFkzk− tz (13)

with the same properties as before except that

E
(

ˆ̃H(g◦) ˆ̃H
t
(g◦)

)
= ∑

k,l∈U
dkdl(πkl−πkπl)zkzt

k + ∑
k∈U

dk(F◦k −1)zkzt
k.

Using similar arguments as those that led to (12), we have that

Avar
(√

n(ĝ−g◦)
)
=
[
(M(g◦))−1

]
ΦΦΦ

[
(M(g◦))−1

]
+
[
(M(g◦))−1

]
ΨΨΨ

[
(M(g◦))−1

]
, (14)

where ΦΦΦ andΨΨΨ are the first and second components of plimn→∞n−1E
(

ˆ̃H(g◦) ˆ̃H
t
(g◦)

)
, respectively.

The difference between (14) and (12) is M̃(g◦)=
[
(M(g◦))−1

]
ΦΦΦ

[
(M(g◦))−1

]
, which is a pos-

itive definite matrix, unless it is a case of census. This illustrates that (11) is more appropriate than
(13) in the first step of estimation.

5.2. Efficiency in estimating the total Y

Let ˜̂g be the solution to ˆ̃H(g) = 0 and ˜̂Y •2step = T̂ ◦a + T̂ ◦c ( ˜̂g−g◦)+T t
x B2 is the corresponding equation

(6) when ĝ is replaced with ˜̂g. Furthermore, if ĝa is uncorrelated with either T̂ ◦a = ∑k∈r dkF◦k Ek or
T̂ ◦c =∑k∈r dkF◦1kEk, where ĝa stands for ĝ or ˜̂g, T̂ ◦c is a non-zero vector, and given that E(ĝa−g◦)→ 0
(see (3)), we have that

Var
(

˜̂Y •2step

)
−Var

(
Ŷ •2step

)
=Var

(
T̂ ◦c ( ˜̂g−g◦)

)
−Var

(
T̂ ◦c (ĝ−g◦)

)
+2Cov

(
T̂ ◦a , T̂

◦
c
)(

E( ˜̂g−g◦)−E(ĝ−g◦)
)

=E
(
T̂ ◦c ( ˜̂g−g◦)( ˜̂g−g◦)t T̂ ◦tc

)
−E

(
T̂ ◦c (ĝ−g◦)(ĝ−g◦)t T̂ ◦tc

)
=E
(

T̂ ◦c M̃(g◦) T̂ ◦tc

)
> 0.

Thus, the efficiency loss of ˜̂g resulting from calibrating with population-level auxiliary informa-
tion is indicated to yield an efficiency loss of the two-step estimator (2).
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6. Simulations

Two simulation studies were performed to illustrate the properties of the two-step estimator and its
variance. In the following, we describe the setup of each simulation study.

6.1. The setup

6.1.1. Study 1

We used data from a real estate survey with 4228 sampled elements of which 1783 were nonrespon-
dents. We selected five variables from the study. A categorical variable that was a stratum indicator
in the original six-strata study is denoted by γγγk = (γ1k,γ2k,γ3k,γ4k,γ5k,γ6k), where γik = 1(k ∈ Si)

and Si is the ith stratum. Three numerical variables denoted x1, x2, and z were transformed into log-
arithmic scales to reduce the variability, with the first two being used as benchmarks and the last as
a model variable. Another numerical variable, y, was left untransformed and is the study variable.
Here, the estimation concerned estimating the population total, Y .

We performed a logistic regression fit of R to a constant and z, and the resulting model was used
as the true response probability function. Here, R is a dichotomous variable of 1/0, i.e., respon-
dent/nonrespondent. The true response probabilities obtained using the model were then attached to
the respective elements and used for Bernoulli trials to generate the response sets.

The population consists of the 2445 respondents to the survey and samples of sizes 200, 400, and
600 were selected using simple random sampling without replacement. We assume that the chosen
response model is correct, that is, the response probabilities are estimated according to the equation
q̂k = 1/

(
1+ exp(−zt

kĝ)
)
, where zk = (1,zk)

t and ĝ is obtained from the first step of estimation. The
benchmark vector was a combination of γγγ and x given by xk = (γγγ t

k,xkγγγ
t
k)

t , while x stands for x1 or
x2. The choices of x1,x2, z, and y were based on their relationships in satisfying the following two
cases:

In the first case, the estimator’s performance is analysed when the correlation between bench-
mark and model variable is cor(x1,z) = 0.16, while the correlations between the benchmark and the
study variable and the model variable and the study variable are cor(x1,y) = 0.59 and cor(z,y) =
0.65, respectively. This may be the case when the model and benchmark variables are obtained
from different sources, for example, when model variables are process data while the benchmark
variables are obtained from administrative registers. The benchmark variables are selected based on
their relationship with the survey variable, and the model variables are selected with the intention of
capturing the response behaviour. This means that, in general, we do not expect a good relationship
between the model and benchmark variables, although such a relationship is possible. In the second
case, we consider the possibility of having model variables at least moderately correlated with the
benchmark variable and want to observe the impact of this possibility on the variance of the two-
step estimator in relation to the first case. The correlations between the variables are the following:
cor(x2,z) = 0.56, cor(x2,y) = 0.53, and cor(z,y) = 0.65. Each simulation result was based on 1000
replications. The expected response rate was approximately 55%. The estimators are evaluated in
terms of relative bias (Rel.bias) and root mean squared error (RMSE).
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6.1.2. Study 2

The previous study was based on real survey data, which are important in empirical studies because
theoretical findings need to be evaluated in real environments. Although use of real data is impor-
tant, sometimes freedom to control the environment is desired, for which simulated data are usually
appropriate. Accordingly, this study is based on simulated population data of size 2445. The estima-
tion setup is as in the former study except that the variables are generated as follows: x ∼U (0,1),
z = ρx+ξ , where ρ is the required correlation between x and z, ξ ∼U (0,a), and a =

√
1−ρ2. The

study variable is given by y = c1U (0,x)+ c2U (0,z), where c1 = c2 = 1 and U is the uniform distri-
bution. The coefficients c1 and c2 can be varied to change the mean of y and/or balance or unbalance
the correlations ρxy and ρzy between x and y and between z and y, respectively. The response model
is the same as in study 1 except that the coefficient vector is given by g◦ = (−1.5,2.0)t . We also
created a categorical variable, γγγk = (γ1k,γ2k,γ3k,γ4k), where γik = 1(k ∈ Si) and Si is the ith quartile
of x, so that the benchmark vector is given by xk = (γ1k,γ2k,γ3k,γ4k,xkγ1k,xkγ2k,xkγ3k,xkγ4k)

t . In the
first case, we have a correlation between x and z of 0.2, between x and y of 0.49, and between z and
y of 0.53, while in the second case these correlations are 0.7, 0.62, and 0.65, respectively.

6.2. Simulation results

Below we present the simulation results of each of the above studies. The simulations illustrate the
ability of the suggested two-step variance estimator to estimate the variance of the two-step calibra-
tion estimator. The variance estimator of the two-step estimator (Särndal and Lundström, 2005) is
used as a benchmark in assessing the performance of our suggested method. The results also enable
us to respond to the question raised in Remark, that is, whether it is important to correct for the
variance in model parameter estimation when estimating the variance of the two-step estimator. In
Tables 1–4 below, Ŷ stands for Ŷ2LC or Ŷ2step. In each table, Ŷ2step is followed by two results in the
column “Rel.bias of V̂ ar(Ŷ )”, the first of which is the relative bias of the corrected variance estima-
tor, V̂cor = V̂ ar

(
Ŷ2step

)
, and the second, within parentheses, is the relative bias of the uncorrected

variance estimator, V̂uncor = V̂ ar
(
T̂a
)
.

6.2.1. Results of study 1

Table 1 presents the results of the first simulation study when the correlation between model and
benchmark variables is 0.16, while in Table 2 their correlation is 0.56. In all tables CICR stands for
confidence interval coverage rate.

Tables 1–2 present the results of the first simulation study, which is based on real survey data. The
results suggest that the two-step estimator Ŷ2step is almost unbiased, having generally slightly larger
Rel.bias and RMSE than the benchmark. With regard to variance estimators, the results indicate that
the Rel.bias of the corrected V̂cor and uncorrected V̂uncor variance estimators are low compared with
the benchmark. In Table 1, the biases of these variance estimators are positive while those of the
benchmark variance estimator are negative. In Table 2, all variance estimators have negative biases.
In Table 1, the RMSE of V̂cor is larger than that of the benchmark, except when the sample size (n)
is 400, while in Table 2, V̂cor has smaller RMSE values for all sample sizes. The tables also show
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Table 1: Simulation results of study 1, first case.
Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI

size of Y of Ŷ of Ŷ V̂ ar
(
Ŷ
)

V̂ ar
(
Ŷ
)
) CR

200
Ŷ2LC –0.23% 194 –25% 10627 86
Ŷ2step –0.35% 203 03(01)% 29915 94

400
Ŷ2LC –0.16% 130 –35 % 5999 68
Ŷ2step –0.17 % 131 09 (19) % 4950 82

600
Ŷ2LC –0.09% 103 –17 % 2082 85
Ŷ2step –0.11% 106 06 (15)% 4325 84

Table 2: Simulation results of study 1, second case.
Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI

size of Y of Ŷ of Ŷ V̂ ar
(
Ŷ
)

V̂ ar
(
Ŷ
)

CR

200
Ŷ2LC –0.09% 188 –32 15184 61
Ŷ2step –0.19% 188 –17(–21)% 13978 64

400
Ŷ2LC –0.14 % 123 –36% 6011 84
Ŷ2step –0.14 % 124 –06(–07) % 4469 90

600
Ŷ2LC –0.12% 99 –19% 2550 84
Ŷ2step –0.14% 99 –03(–03)% 2487 90

that V̂cor has a smaller absolute relative bias than does V̂uncor, except in Table 1 for n = 200 and in
Table 2 for n = 600. In Table 2, the Rel.bias values of V̂cor and V̂uncor are decreasing in absolute
values and converging to the same level. These properties are not observed in Table 1, however.
The estimated confidence interval coverage rates (CICR) are generally larger for Ŷ2step than the
benchmark, increasing for both estimators with increasing sample size, but are less than 95%.

6.2.2. Results of study 2

The results of the second simulation study are shown in Tables 3–4.

Table 3: Simulation results of study 2, first case.
Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI

size of Y of Ŷ of Ŷ V̂ ar
(
Ŷ
)

V̂ ar
(
Ŷ
)

CR

200
Ŷ2LC –0.22% 70 –17 % 1090 52
Ŷ2step –0.67% 71 –09(–04)% 1307 67

400
Ŷ2LC –0.15% 50 –18% 529 87
Ŷ2step –0.30% 50 –14 (–01)% 474 85

600
Ŷ2LC –0.08% 39 –15% 261 88
Ŷ2step –0.15% 40 –19 (–24)% 342 88

Tables 3–4 present the results of the second simulation study based on simulated data. As in the
former study, the two-step estimator Ŷ2step is almost unbiased, but presenting slightly larger Rel.bias
(except in Table 4 when n = 400) than the benchmark estimator. Regarding the variance estimators,
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Table 4: Simulation results of study 2, second case.
Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI

size of Y of Ŷ of Ŷ V̂ ar
(
Ŷ
)

V̂ ar
(
Ŷ
)

CR

200
Ŷ2LC –0.04% 83 –25% 2045 80
Ŷ2step –0.33% 84 –09 (–17)% 5317 81

400
Ŷ2LC –0.13% 63 –33% 1338 82
Ŷ2step –0.27% 59 –07 (–14)% 909 88

600
Ŷ2LC 0.13% 46 –19% 442 91
Ŷ2step 0.07% 47 –06(–09)% 450 91

Table 4 also shows that the Rel.bias of the corrected V̂cor and uncorrected V̂uncor variance estimators
are low compared with the benchmark and tend to decrease in absolute value with increasing sample
size. Furthermore, the relative biases of these variance estimators tend to converge to the same level.
Table 4 also shows that the RMSE is larger for V̂cor than for V̂ ar(Ŷ2LC), except when n = 400, which
is the same behaviour in Table 3. The estimated coverage rates for Ŷ2step are generally not less than
the benchmark and, for both estimators, tend to increase with increasing sample size, but remain less
than 95%.

7. Discussion

Above we present the illustrative results of the two-step calibration estimator Ŷ2step. The results
are based on two simulation setups, one based on data from a real estate survey, the other based
on simulated data. The results given in Tables 1–4 indicate that Ŷ2step have very low bias levels,
however, tends to have a slightly larger bias than Ŷ2LC, except when n = 600 in Table 4, in which
case the sign of the bias is positive. The slightly larger bias for Ŷ2step than Ŷ2LC may be because
zk is reused in the second step of the Ŷ2LC estimator, while the estimator Ŷ2step, uses it only in the
first step. One alternative is to reuse zk in the second step of estimation, which we expect to further
reduce the bias of Ŷ2step. The RMSE values for Ŷ2LC and Ŷ2step are generally comparable. To assess
the role of the auxiliary information used here, we have also calculated the expansion estimator,
ŶExp (Särndal and Lundström, 2005, p.68), obtaining relative biases of –7% and –8% for the first
and second studies, respectively. These relative biases are much larger than those obtained with the
two-step estimators under consideration.

In virtually all tables, the Rel.bias of V̂cor is smaller in absolute value than the benchmark, except
in Table 3 when n = 600. The Rel.bias of V̂cor is positive in Table 1 and negative in others, this
inconsistency is associated with some very small probability estimates producing very large weights
that influence the estimated entities. When the benchmark is at least moderately correlated with the
model variable, the Rel.bias of V̂cor tends to decrease in absolute value with increasing sample size.
The properties mentioned above are no longer observed when the correlation between benchmark
and model variables is low. Another indicator of the performance of the suggested variance is the
estimated confidence interval coverage rate, which suggests that our proposed variance estimator
works well, as it generally leads to a coverage rate that is no less than that of the benchmark estimator.
In Tables 2 and 4, the coverage rates increase with decreasing Rel.bias of V̂cor.
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Regarding the question in the Remark, the results indicate that, with correlated model and bench-
mark variables, it is worth correcting for the uncertainty in model parameter estimation for small
sample sizes in which V̂cor tends to have a smaller bias than does V̂uncor. In large samples, the dif-
ferences between V̂uncor and V̂cor are small. With low correlation between model and benchmark
variables, it is not clear whether or not this correction is important, as we can see in Tables 1 and 3
that some situations favour V̂cor while others favour V̂uncor.

The overall conclusion is that inferences will be reasonably valid when good benchmarks are
available and not too small samples are considered.
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