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Abstract: In this paper, we propose new results on a beta-Pareto class. This extension evolved
by using newly proposed class of beta distributions as generator distributions (F (x)) within the
generator-parent approach: H (x) = F (G(x)) with G(x) the Pareto distribution as the parent dis-
tribution. Fundamental properties are studied, including moments and Rényi entropy. We illustrate
the added value to the literature with a numerical example using hydrology data, indicating that this
newly proposed class is a valid candidate to consider in modelling within the hydrology arena.

1. Introduction

Univariate distributions make up the vast majority of studied and applied distributions in the sta-
tistical universe. The literature is saturated with different methods on deriving and studying new
univariate distributions. One of these is the generator approach, pioneered by Eugene, Lee and
Famoye (2002) and Jones (2004). In this paper, this technique is used by proposing several new
beta type-generated distributions by coupling these distributions with the Pareto distribution, and
the genesis for this particular paper originates from Akinsete, Famoye and Lee (2008) and Cardeño,
Nagar and Sánchez (2005). The methodology followed to construct the new class is rephrased in
Definition 1.

Definition 1 A distribution is said to be a generated distribution, if its cumulative distribution func-
tion (cdf) F(G(x)) is obtained as follows:
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F(G(x)) =
∫ G(x)

0
h(w) dw, (1)

where h(w) is the probability density function (pdf) of the generator distribution of a non-negative
continuous random variable W defined on [0, ∞) and G(x) is the cdf of the parent distribution. This
generated distribution has corresponding pdf f (x) = d

dx F(G(x)).

In this paper, h(w) will assume different beta type distributions. The pdf corresponding to beta
type-I distribution as the generator distribution with

h(w) =
1

B(α,β )
wα−1 (1−w)β−1 , 0≤ w≤ 1,

is given by

f (x) =
1

B(α, β )
(G(x))α−1 (1− (G(x)))β−1 g(x). (2)

It is pointed out by Jones (2004) that this class of distributions is a generalisation of order statis-
tics for the random variable X with cdf G(x).

The first distribution of the beta generated class was the beta-normal distribution, derived by
Eugene et al. (2002). In this case, the normal distribution’s cdf was taken as the parent distribu-
tion G(x) and the beta type-I distribution was taken as the generator distribution with pdf h(w).
Changing the parent distribution so that it is no longer normal offers more flexibility. Further re-
search sees Nadarajah and Kotz (2004) introducing the beta-Gumbel distribution, Nadarajah and
Gupta (2004) proposing the beta-Fréchet distribution and Nadarajah and Kotz (2006) defining the
beta-exponential distribution. The refreshing contributions made by the authors Balakrishnan and
Ristic (2016), Barreto-Souza, Santos and Cordeiro (2010), Bourguignon, Silva, Zea and Cordeiro
(2012), Cordeiro, Nobre, Pescim and Ortega (2012), Ristic and Balakrishnan (2012) and Zografos
and Balakrishnan (2009) should also be acknowledged. Akinsete et al. (2008) followed the work of
Eugene et al. (2002) with the Pareto distribution as the parent distribution.

Our aim is to introduce a class based on the generator approach as described in (1), which
contains more flexible distributions for modelling data.

First, we propose a new beta type distribution (named the generalised beta type) as the generator
h(w). The pdf of this generator, emanating from (5) and the model proposed by Cardeño et al.
(2005), is given as

h(w) =
(1+K)α d
B(α, β )

wαd−1
(

1−wd
)β−1 (

1+Kwd
)−(α+β )

, 0≤ w≤ 1, (3)

for a random variable W , shape parameters α > 0, β > 0, d > 0, K > 0 and where B(·, ·) is the beta
function. This random variable W is denoted by W ∼ Genbeta(α, β , d, K).

If K = 1 in (3), then a new generalised beta type III model follows with pdf

h(w) =
2α d

B(α, β )
wαd−1

(
1−wd

)β−1 (
1+wd

)−(α+β )
, 0≤ w≤ 1,

with random variable W denoted by W ∼ GenbetaIII(α, β , d).
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If d = 1 in (3), then an extended beta type III model of Cardeño et al. (2005) follows with pdf

h(w) =
(1+K)α

B(α,β )
wα−1 (1−w)β−1 (1+Kw)−(α+β ) , 0≤ w≤ 1, (4)

with random variable W denoted by W ∼ Extended-betaIII(α,β ,K).
If K = 0 in (3), then the generalised beta type-I distribution follows from McDonald (1984) with

pdf:

h(w) =
d

B(α,β )
wαd−1

(
1−wd

)β−1
, 0≤ w≤ 1, (5)

for random variable W and shape parameters α > 0, β > 0 and d > 0. Two well known distribu-
tions, namely the beta type I and Kumaraswamy distributions (Kumaraswamy, 1980), stem from this
generalised beta type-I distribution.

The following figure gives a broader understanding and overview of the relationships between
the different beta generators discussed in this paper. Note that the constant C in Figure 1 differs for
each model (see (4) and (5)).

Figure 1: Relationships of the beta-type generator models in this paper.

It can be seen that different models stem from the generalised beta type distribution. For the first
time in literature, the following beta type-generated models will be formulated in this paper:

• beta type III-Pareto;

• extended beta type III-Pareto;

• generalised beta type III-Pareto; and
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• generalised beta type-Pareto.

The rest of this paper is organized as follows: Section 2 describes properties (cdf, hazard func-
tion, and moments) of the generalised beta type model (see (3)). Section 3 describes the beta
type-generated class (by coupling with the Pareto distribution) as well as some statistical proper-
ties thereof. Section 4 presents an application on a hydrology data set and illustrates the usefulness
of this class.

2. Generalised Beta Type Distribution

In this section, some properties of the newly proposed model with pdf (3) are briefly studied. Figure
2 illustrates the effect of each parameter on the pdf (3). Subsequently, Theorem 1 sees the derivation
of the cdf of the generalised beta type distribution with pdf (3) after which an expression for the
moments of the distribution is derived in Theorem 2.

Figure 2: Effect of K (top left when α = β = d = 2), α (top right when β = d = K = 2), d (bottom
left when α = β = K = 2), β (bottom right when α = d = K = 2) on pdf (3).

Theorem 1 The cdf of the random variable W ∼ Genbeta(α, β , d, K) with pdf (3) is given by

H(w) =
B(w;α, β )

B(α, β )
, 0≤ w≤ 1, (6)
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with shape parameters α,β , d,K > 0 where B(z;β , α) is the incomplete beta function (Gradshteyn
and Ryzhik, 2007, p. 910, eq. 8.391):

B(w;β ,α) =
wβ

β
2F1 (β ,1−α; 1+β ; w) =

wβ

β

∞

∑
i=0

(β )i (1−α)i
(β +1)i i!

wi

= wβ
∞

∑
i=0

(1−α)i
(β + i) i!

wi,

and the Gauss hypergeometric function 2F1 (·) (Mathai, 1993, p. 96) with (α)i =
Γ(α+i)

Γ(α) as the
Pochhammer coefficient.
Proof. Using generator (3), it follows that

H(w) =
(1+K)α d
B(α, β )

∫ w

0
tαd−1

(
1− td

)β−1 (
1+Ktd

)−(α+β )
dt.

Let y = td , then t = y
1
d and dt

dy =
1
d y

1
d−1. Then from Gradshteyn and Ryzhik (2007, p. 25, eq. 1.110),

and Gasper and Rahman (2004, p. 8, eq. 1.3.1), the result follows. �

Note that the parameters K and d simplify out of expression (6).
Using (3), (6), and the definition from Bain and Engelhardt (1992), the hazard function is given

by

q(w) =
h(w)

1−H(w)
=

(1+K)α d
B(α, β ) wαd−1

(
1−wd

)β−1 (1+Kwd
)−(α+β )

1− B(w;α, β )
B(α, β )

.

Next, the moments are derived for W ∼ Genbeta(α, β , d, K) with pdf (3).

Theorem 2 If W ∼ Genbeta(α, β , d, K) with pdf (3), then the sth moment of W is given by

E [W s] =
B
(
α + s

d , β
)

B(α, β )
, (7)

where α, β , d, K > 0, s > 0.
Proof.

E [W s] =
(1+K)α d
B(α, β )

∫ 1

0
wαd+s−1

(
1−wd

)β−1 (
1+Kwd

)−(α+β )
dw.

Let y = wd , then w = y
1
d and dw

dy = 1
d y

1
d−1. Using Gradshteyn and Ryzhik (2007, p. 25, eq. 1.1.10)

and Gasper and Rahman (2004, p. 8, eq. 1.3.1) the result follows. �

Table 1 summarizes the expressions for the first four moments of (3).
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Table 1: A summary of moment expressions of the generalised beta type distribution with pdf (3).
Moments Expression

Mean E(W ) (µ)
B
(
α + 1

d ,β
)

B(α,β )

Variance Var(W ) (σ2)
B
(
α + 2

d ,β
)

B(α,β )
−µ

2

Skewness (α3)

B(α+ 3
d ,β)

B(α,β )
−3µσ2−µ3

σ3

Kurtosis (α4)
B
(
α + 4

d ,β
)

B(α,β )σ4

Note that the parameter K simplifies out of expression (7), with the first few moments being K
invariant.

Figures 3 and 4 illustrate the skewness and kurtosis of W ∼Genbeta(α,β ,d,K) with pdf (3) for
certain combinations of the parameters.

Figure 3: Skewness of W ∼Genbeta(α, β , d, K) with pdf (3). Effect of α (top left when β = k = 2),
β (top right when α = k = 2), and the effect of d (bottom left and right over α and β ).

As the parameter values increase, the skewness decreases significantly, suggesting a negatively
skewed distribution. This is seen in the top left and right graphs.
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Figure 4: Kurtosis of W ∼Genbeta(α, β , d, K) with pdf (3). Effect of α (top left when β = k = 2),
β (top right when α = k = 2), and the effect of d (bottom left and right over α and β ).

It is clear that the model with pdf (3) exhibits high curves as kurtosis is fairly high. This means
that the values tend to have a distinct peak near the mean and decline rather rapidly, indicating the
presence of heavy tails.

3. The Beta Type-Generated Class

3.1. Probability density function

In this section, the pdf and cdf of the beta type-generated distribution are derived (see (1)), with
the generalised beta-type model (3) as the generator (see Figure 1), and the cdf of the Pareto as the
parent distribution G(x). The cdf of the Pareto distribution is given by

G(x) = 1−
( x

θ

)−k
, x≥ θ > 0, (8)

with pdf

g(x) =
kθ k

xk+1 , x≥ θ > 0,

for random variable X , with shape parameter k > 0 and scale parameter θ > 0.
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Therefore, the pdf of the generalised beta type-Pareto follows from (2) as

f (x) =
d (1+K)α

B(α, β )
(G(x))αd−1

(
1− (G(x))d

)β−1(
1+K (G(x))d

)−(α+β )
g(x) (9)

=
d (1+K)α

B(α, β )

(
1−
( x

θ

)−k
)αd−1

(
1−
(

1−
( x

θ

)−k
)d
)β−1

×

(
1+K

(
1−
( x

θ

)−k
)d
)−(α+β )

kθ k

xk+1 (10)

=
(1+K)α dk
θB(α, β )

( x
θ

)−k−1 ∞

∑
i=0

∞

∑
r=0

(−1)r
(

1−β

i

)
(α +β )r

r!

×Kr
(

1−
( x

θ

)−k
)d(α+i+r)−1

, (11)

with x ≥ θ > 0, α , β , k, d, K > 0, and is denoted by X ∼ Genbeta-Pareto(α,β ,θ ,k,d,K). By
expanding the binomial function in (9), with the Pareto distribution as the chosen parent, G(x) (see
(8)), the latter equation (11) can be described as a mixture of exponentiated Pareto distributions.
This generated distribution (11) has cdf

F(x) = 1− (1+K)α d
B(α, β )

∞

∑
i=0

∞

∑
r=0

(−1)r (1−β )i

i!
(α +β )r

r!
Kr B(z;1, d (α + i+ r)) ,

where z =
( x

θ

)−k.
Figure 5 illustrates the generalised beta type-Pareto distribution’s pdf (11) for different arbitrary

parameter values, of K, k, d, when α = β = 2 and θ = 3.
The hazard function for this case is given by

q(x) =

k
θ

z−1 (1− z)αd−1
(

1− (1− z)d
)β−1(

1+K (1− z)d
)−(α+β )

∞

∑
i=0

∞

∑
r=0

(−1)r (1−β )i

i!
(α +β )r

r!
Kr B(z;1,d (α + i+ r))

,

with x≥ θ > 0, α , β , k, d, K > 0 and z =
( x

θ

)−k.
The derivations for the other beta type-generators in Figure 1 is similar and is summarised in

Table 2.
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Figure 5: Effect of d (top left when α = β = k = K = 2), k (top right when α = β = d = K = 2),
and K (bottom/middle when α = β = k = d = 2) and θ = 3 on pdf (11) .

Table 2: Pdfs of beta-type generated models.
Beta type generator Pdf

1. generalised beta type-Pareto (1+K)α dk
θB(α, β )

( x
θ

)−k−1
(

1−
( x

θ

)−k
)αd−1

(
1−
(

1−
( x

θ

)−k
)d
)β−1

×
(

1+K
(

1−
( x

θ

)−k
)d
)−(α+β )

2. generalised beta type III-Pareto 2α dk
θB(α, β )

( x
θ

)−k−1
(

1−
( x

θ

)−k
)αd−1

(
1−
(

1−
( x

θ

)−k
)d
)β−1

×
(

1+
(

1−
( x

θ

)−k
)d
)−(α+β )

3. extended beta type III-Pareto k(1+K)α

θB(α,β )

(
1−
( x

θ

)−k
)α−1 ( x

θ

)−kβ−1
(

1+K
(

1−
( x

θ

)−k
))−(α+β )

4. beta type III-Pareto ∑
∞
i=0

(β )i

2(β+i)i!
k

θB(α,β+i)

(
1−
( x

θ

)−k
)α−1 ( x

θ

)−k(β+i)−1

5. generalised beta type I-Pareto dk
θB(α,β )

( x
θ

)−k−1
(

1−
( x

θ

)−k
)αd−1

(
1−
(

1−
( x

θ

)−k
)d
)β−1

6. beta type I-Pareto k
θB(α,β )

(
1−
( x

θ

)−k
)α−1 ( x

θ

)−kβ−1

7. Kumaraswamy-Pareto dk
θB(1,β )

( x
θ

)−k−1
(

1−
( x

θ

)−k
)d−1

(
1−
(

1−
( x

θ

)−k
)d
)β−1
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3.2. Moments

In this section, an expression for the moments of the generalised beta type-Pareto distribution with
pdf (10) is derived. It is used thereafter for investigating the skewness and kurtosis of the distribution.

Theorem 3 If X ∼ Genbeta-Pareto(α, β , θ , k, d, K) with pdf (11), then the sth moment of X is
given by

E [X s] = θ
s (1+K)−β

B(α,β )

∞

∑
i=0

( s
k )i

i!
B
(

α +
i
d
,β

)
2F1

(
α +β , β ; α +

i
d
+β ;

K
K +1

)
where α, β , d, K, θ , s > 0.

Proof. Consider the following from (10):

E
[(

X
θ

)s]
=

∫
∞

−∞

( x
θ

)s (1+K)α d
B(α, β )

(
1−
( x

θ

)−k
)αd−1

(
1−
(

1−
( x

θ

)−k
)d
)β−1

×

(
1+K

(
1−
( x

θ

)−k
)d
)−(α+β )

kθ
k 1

xk+1 dx.

Let y =
( x

θ

)−k, then x = θy−
1
k and dx

dy =− θ

k y−
1
k−1. Then

E
[(

X
θ

)s]
=
∫ 1

0

(1+K)α d
B(α,β )

y−
s
k (1− y)αd−1

(
1− (1− y)d

)β−1 (
1+K (1− y)d

)−(α+β )
dy.

Let z = (1− y)d , then y = 1− z
1
d and dy

dz = − 1
d z

1
d−1. Then from Gradshteyn and Ryzhik (2007, p.

317, eq. 3.197.3),

E
[(

X
θ

)s]
=

∫ 1

0

(1+K)α d
B(α,β )

(
1− z

1
d

)− s
k zα− 1

d (1− z)β−1 (1+Kz)−(α+β ) 1
d

z
1
d−1 dz

=
(1+K)−β

B(α,β )

∞

∑
i=0

( s
k )i

i!
B
(

α +
i
d
,β

)
2F1

(
α +β , β ; α +

i
d
+β ;

K
K +1

)
.

From Gradshteyn and Ryzhik (2007, p. 8, eq. 1.3.1) the result follows. �
Table 3 gives a summary of some moment expressions for the generalised beta type-Pareto dis-

tribution with pdf (11). This includes, respectively, the mean (E(X)), variance (Var(X)), skewness
coefficient (α3) and kurtosis (α4) . Further simplifications prove that the third and fourth moments
α3, α4 are θ invariant.
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Table 3: A summary of moment expressions of the generalised beta type-Pareto distribution with
pdf (10).

Moments Expression

Mean,
E(X)

(µ) θ
(1+K)−β

B(α,β )

∞

∑
i=0

( 1
k )i

i!
B
(

α +
i
d
,β

)
2F1

(
α +β ,β ;α +

i
d
+β ;

K
K +1

)

Variance,
Var(X)

(σ2) θ
2 (1+K)−β

B(α,β )

∞

∑
i=0

( 2
k )i

i!
B
(

α +
i
d
,β

)
2F1

(
α +β , β ;α +

i
d
+β ;

K
K +1

)
−µ

2

Skewness (α3)

θ 3 (1+K)−β

B(α,β )

∞

∑
i=0

( 3
k )i

i!
B
(

α +
i
d
,β

)
2F1

(
α +β ,β ; α +

i
d
+β ;

K
K +1

)
−3µσ

2−µ
3

σ3

Kurtosis (α4)

θ 4 (1+K)−β

B(α,β )

∞

∑
i=0

( 4
k )i

i!
B
(

α +
i
d
,β

)
2F1

(
α +β ,β ; α +

i
d
+β ;

K
K +1

)
σ4

The visual representation of the skewness and kurtosis for the new beta-type generated model are
given in Figures 6 and 7 for different arbitrary parameter values and specifically when α = β = 2.

Figure 6: Skewness (α3) of the generalised beta type-Pareto distribution. Effect of k (top left when
α = β = 2, K = 1) over d, effect of d (top right when α = β = 2, k = 1) over K, and the effect of K
(bottom/middle when α = β = 2, k = 1) over d, with θ = 1 for all graphs in this figure.
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Figure 7: Kurtosis (α4) of the generalised beta type-Pareto distribution. Effect of K (top left when
α = β = 2, k = 0.2) over d, effect of k (top right when α = β = 2, K = 0.5) over d, effect of
d (bottom left when α = β = 2, k = 0.19) over K, and again the effect of k (bottom right when
α = β = 2, d = 6) over K, with θ = 1 for all graphs in this figure.

The kurtosis of X ∼ Genbeta-Pareto(α, β , θ , k, d, K) is very sensitive to the value of k. The
effect of α and β is not illustrated, since it has the same role as the generator distribution, namely
the beta type I.

3.3. The Rényi entropy

The Rényi entropy is introduced by Rényi (1961), which is a measure to quantify diversity, uncer-
tainty or randomness of a system. Bromiley, Thacker and Bouhord-Thacker (2010) explained that
the entropy formula can be used to measure the “peakedness” of a distribution. Akinsete et al. (2008)
further explained that the entropy of a random variable is a measure of variation of the uncertainty.
It is defined as

IR(ξ ) =
1

1−ξ
log
{∫

∞

−∞

f ξ (x)dx
}
, ξ 6= 0, ξ > 0

where f (x) is the pdf of the random variable X .
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It follows that the Rényi entropy for X ∼ GenBetatypePareto(α, β , d, θ , k, K) is

IR(ξ ) =
ξ

1−ξ
log
(
(1+K)α d

)
− log

(
k
θ

)
+

1
1−ξ

log

{
∞

∑
i=0

∞

∑
r=0

(−1)r (ξ (1−β ))i

i!
(ξ (α +β ))r

r!
Kr

×
B
(
ξ (αd−1)+d (i+ r)+1,ξ

(
1+ 1

k

)
− 1

k

)
Bξ (α,β )

}
. (12)

A visual representation of the Rényi entropy of the generalised beta type-Pareto model is given
in Figure 8.

Figure 8: The Rényi entropy (12) for values of (left) α = β = d = 2, k = 0.6, θ = 4 over ξ and
(right) α = β = 1, d = 0.5, k = 0.1, θ = 1 over d.

For this combination of parameter values, the Rényi entropy decreases as K increases. The above
figure illustrates that as d increases, the Rényi entropy becomes asymptotic to the value of 2. More
speculative research for different combinations of parameter values shows the same behaviour.

4. Application and Conclusion

In this paper we proposed a new class of distributions by coupling the Pareto distribution with a new
beta type class. Here we illustrate the importance of the class in an application to a real dataset. The
data corresponds to the exceedances of flood peaks (in m3/s) of the Wheaton River near Carcross
in Yukon Territory, Canada (Akinsete et al., 2008). Wheaton River is a stream in the region of
Yukon Territory, the country of Canada with an average elevation of 656 metres above sea level. The
location is sparsely populated with 0 people per km2. The nearest town larger than 50,000 inhabitants
takes about 22 hours by local transportation. Wheaton River can have very strong earthquakes (on
average one every 50 years), measuring between 6− 7 on the Richter scale. The damage will be
negligible in buildings of good design and construction, but considerable damage may be inflicted
on poorly built or badly designed structures. It is with this motivation why the fitting of distributions
to the exceedances of these flood peaks are of vital importance. For this application, the parameters
are estimated based on the minimisation of the Kolmogorov-Smirnov (KS) distance between the
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analytical and empirical distribution functions. Weber, Leemis and Kincaid (2006) defined the KS
measure as

KS = max
[
D+

n ,D
−
n
]
,

where
D+

n = max | i
n
− Ĝ(x(i))| i = 1,2, · · · ,n

and

D−n = max |Ĝ(x(i))−
i−1

n
| i = 1,2, · · · ,n.

The KS distance values of the parameter estimates of the Pareto, beta type I-Pareto and gener-
alised beta-type Pareto are given in Table 4 below with θ̂ = xmin = 0.1. In Figure 10, the parameter
estimated values are also used to graphically demonstrate how the Rényi entropy behaves under the
beta type I-Pareto and generalised beta-type Pareto distributions. The authors consider only the gen-
eralised beta type-Pareto and not all other developed models, since this is the flexible model that
contains all the other cases.

Table 4: Parameter estimates for Wheaton River data.
Parameter estimates

Models α β k d K KS measure
Pareto n/a n/a 0.2 n/a n/a 0.29
Beta type I-Pareto 3.35 3.88 0.17 n/a n/a 0.17
Generalised beta type-Pareto 2.31 9.87 0.19 3.1 0.17 0.11

A visual representation of how the above three distributions as well as the empirical distribution
fits to the dataset.

Figure 9: Distribution fits to the Wheaton River data, using the empirical cdf, Pareto cdf, beta type
I-Pareto cdf, generalised beta type-Pareto cdf.
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Figure 10: Rényi entropy of the beta type I-Pareto and generalised beta type-Pareto distributions.

Figure 9 illustrates the model fit for the Pareto, beta type I-Pareto-, and the generalised beta type-
Pareto together with the empirical distribution function of the Wheaton river data. As suggested
by the KS measure, the generalised beta type-Pareto provides an improved fit. This observation
demonstrates the noteworthy contribution of this broader beta type-Pareto class to literature.

Furthermore, Figure 10 illustrates the Rényi entropy for this dataset under the beta type I-Pareto-
and the generalised beta type-Pareto distributions. The observations are favourable for the gener-
alised beta type-Pareto distribution as it indicates lower Rényi entropy for this dataset.
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