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Abstract: In this paper we propose the beta slashed generalised half-normal distribution, which
includes some important distributions such as the half-normal, slashed half-normal and generalised
slashed half-normal distributions. Explicit expressions for the cumulative distribution and charac-
teristic functions are derived. The maximum likelihood estimates of the parameters are obtained via
the EM algorithm and the value of the proposed model is illustrated with an application on fatigue
data.

1. Introduction

The folded normal distribution and its special case, the half normal (HN) distribution, arises in
situations where one is interested in the magnitude of a normally distributed random variable (r.v.).
Cooray and Ananda (2008) defined the generalised half-normal (GHN) distribution by extending
the well-known half-normal distribution to model static fatigue data. They derived the model from
the relationship between static fatigue and the failure time of a certain component. They named the
distribution the GHN, due to the resemblance to the cumulative distribution function (cdf) of the HN
distribution. Their definition of the GHN is given below.

Definition 1 (Cooray and Ananda, 2008). The r.v. X is said to have a GHN distribution with scale
parameter σ ∈ R+ and shape parameter α ∈ R+, written X ∼ GHN(σ ,α), if the density function is
given by

fX (x) =
2α

σα
xα−1

φ

(( x
σ

)α)
, x > 0

with φ the standard normal density function.
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Setting α = 1 in Definition 1, we obtain the density function of the HN distribution.
Olmos, Varela, Gómez and Bolfarine (2012) extended the half-normal distribution by compound-

ing it with a uniform distribution, calling the resulting distribution the slashed half-normal (SHN)
distribution. They also applied this approach to the GHN distribution, resulting in the slashed gen-
eralised half normal (SGHN) distribution as defined below.

Definition 2 (Olmos, Varela, Bolfarine and Gómez, 2014) The r.v. Y is said to have a SGHN distri-
bution with scale parameter σ ∈ R+ and shape parameters α,q ∈ R+, written Y ∼ SGHN(σ ,α,q),
if the density function is given by

fY (y) = cy−(q+1)G
(

y2α ;
q+α

2α
,

1
2α2α

)
, y > 0

with
G(y;a,b) =

ba

Γ(a)

∫ y

0
ua−1e−budu

the cdf of a gamma distribution and

c = q

√
2

q
α

π
σ

q
Γ

(
q+α

2α

)
the normalizing constant.

Taking α = 1 in Definition 2 with q approaching infinity yields the half-normal distribution,
however as q goes to zero the result of Olmos et al. (2012) is obtained. In what follows we extend
the result of the latter reference to a more general case by compounding the GHN distribution with
a beta distribution. It will be shown that the resulting distribution covers all previously proposed
distributions.

This paper is organized as follows: In Section 2, we define the beta slashed generalised half-
normal (BSGHN) distribution and derive the hypergeometric and stochastic representations of the
distribution. Section 3 presents some properties of the newly defined distribution, while the estima-
tion of the parameters of the distribution is considered in Section 4. A simulation study is considered
in Section 5 followed by a real data application in Section 6.

2. Beta Slashed Generalised Half-normal Distribution

In this section we define the beta slashed generalised half normal (BSGHN) distribution in series
form. A stochastic representation is also derived followed by the derivation of the hypergeometric
representation.

Definition 3 The r.v. Z is said to have a BSGHN distribution with scale parameter σ ∈ R+ and
shape parameters α,q,a,b ∈ R+, written Z ∼ BSGHN(σ ,α,q,a,b), if the density function is given
by

fZ(z) =

√
2
π

α

σα B(a,b)

∞

∑
i=0

(
−1

2σ2α

)i B(ci,b)
Γ(i+1)

zα(2i+1)−1, z > 0,

and ci = α(2i+1)+q(a−1)+1.
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Figure 1: Branching family.

The BSGHN distribution is a branching family as depicted in Figure 1.
Figure 2 present graphs of the density function of the BSGHN distribution for selected parameter

values, demonstrating the effect of the parameters moving from a truncated shape to a unimodal
shape.

Figure 2: Density function of the BSGHN distribution for selected parameter values Unimodal case
σ = 70, α = 5, q = 2; Truncated case σ = 1, α = 1, q = 4.

A stochastic representation for the BSGHN is given by the following theorem.
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Theorem 1 Let Z be a positive r.v. and σ ,α,q,a,b ∈ R+.
Then Z ∼ BSGHN(σ ,α,q,a,b) if and only if Z = RX , with X ∼ GHN(σ ,α) and if the density
function of R is given by

fR(r) =
1

qB(a,b)
r

a
q−1
(

1− r
1
q
)b−1

, 0 < r < 1.

Proof. Let Y be a beta distributed random variable with shape parameters a and b, Y ∼ B(a,b).
Firstly we show that the r.v. Z = X

Y
1
q

has a BSGHN distribution.

Consider the transformation w = y
1
q with corresponding Jacobian J (x,y→ z,w) = qwq, then

fZ,W (z,w) = fX ,Y (zw,wq)J = qwq fX (zw) fY (wq)

with X and Y independent.
Using Taylor’s series expansion of the exponential function, we obtain

fZ(z) =
∫ 1

0
fZ,W (z,w)dw

=
2αqzα−1

√
2πσα B(a,b)

∫ 1

0
wα+aq−1(1−wq)b−1 exp

[
− 1

2σ2α
(zw)2α

]
dw (1)

=
2αqzα−1

√
2πσα B(a,b)

∞

∑
i=0

(−1)i

Γ(i+1)

(
z2α

2σ2α

)i ∫ 1

0
w2αi+α+aq−1(1−wq)b−1dw

=
2αqzα−1

√
2πσα B(a,b)

∞

∑
i=0

(−1)i

Γ(i+1)

(
z2α

2σ2α

)i 1
q

B(2αi+α +aq−q+1,b)

which is the density of the BSGHN distribution. In a similar fashion, it can be shown that the r.v.
R = Y−

1
q has the density function

fR(r) =
1

qB(a,b)
r

a
q−1
(

1− r
1
q
)b−1

, 0 < r < 1.

The proof follows by noting that Z = XY−
1
q = XR. �

Let G(·) be a cdf, Eugene, Lee and Famoye (2002) defined a class of generalised distributions
from G(·) as

FX (x) =
1

B(a,b)

∫ G(x)

0
ua−1(1−u)b−1du, 0 < i < 1 (2)

where the shape parameters a,b ∈ R+ control the skewness and tail weight of the distribution. In
other words, X =G−1(Y ) has a cdf as in (2) if Y ∼ B(a,b). Many researchers generalise distributions
by replacing G(·) in (2) by a cdf of a lifetime distribution. The reader is referred to Famoye, Lee
and Olumolade (2005) and Barreto-Souza, Santos and Cordeiro (2010), to mention a few.

All the parameters, except the scale parameter σ , are shape-type parameters. Specifically, with
reference to Theorem 4, the shape parameter q is the reciprocal-shape that gives specific distributions
for limiting cases. The shape parameter α is a tuning parameter which controls the half-normal
component of the density function. The shape parameters a and b are beta-component parameters.
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Remark 1 The distribution of R given in Theorem 1 is the generalised beta distribution proposed
by McDonald (1984) which can be obtained by taking G(·) in (2) to be the cdf of a B( 1

q ,1). Two
important special cases of this generalised beta distribution are the beta distribution if q is equal to
1, and the Kumaraswamy distribution if a is equal to 1. This follows from (2) since

fX (x) =
1

B(a,b)
g(x)[G(x)]a−1[1−G(x)]b−1,

with g(·) = dG(x)
dx . For B( 1

q ,1) we have g(x) = 1
q x

1
q−1 and G(x) = x

1
q .

The following theorem present a hypergeometric representation of the BSGHN distribution for
a restricted case.

Theorem 2 Let Z ∼ BSGHN(σ ,α,q,a,b) and assume that n = 2α

q ≥ 2 is an integer number. The
density function of Z can be expressed by the following hypergeometric form

fZ(z) =

√
2
π

αB(b,ν)
σα B(a,b)

zα−1
nFn

(
λ 1;λ 2;−1

2

( z
σ

)2α
)
,

where ν = a+ n
2 , nFn(· ; · ; ·) the confluent hypergeometric function and

λ 1 =

(
ν

n
,

ν +1
n

, . . . ,
ν +n−1

n

)
, λ 2 =

(
b+ν

n
,

b+ν +1
n

, . . . ,
b+ν +n−1

n

)
.

Proof. Consider equation (1) in Theorem 1 and the transformation y = wq with corresponding

Jacobian J (w→ y) = 1
q y−

1
q (q−1), then

fZ(z) =
2αzα−1

√
2πσα B(a,b)

∫ 1

0
ya+ α

q −1(1− y)b−1 exp
[
−1

2

( z
σ

)2α

u
2α
q

]
dy.

The results follows from equation 3 on page 370 of Gradshteyn and Ryzhik (2007). �
To generate a set of random numbers from the BSGHN distribution we follow the procedure as

in Olmos et al. (2014) , with a minor change based on the result from Theorem 1. The generation
procedure is given by the algorithm below.

Algorithm A Generating random values from the Z ∼ BSGHN (σ ,α,q,a,b) distribution

(1) Generate a random number, N, from a N(0,1).

(2) Compute X = σ |N| 1
α .

(3) Generate a random number, Y , from a B(a,b).

(4) Compute W = Y
1
q .

(5) Obtain the random number Z = X
W .

Note that the algorithm can also be defined in terms of R by generating a random number from
the distribution given by Theorem 1.

Figure 3 represents random numbers generated using Algorithm A. A thousand numbers were
generated from the BSGHN distribution for the unimodal case corresponding with the red unimodal
distribution of Figure 2. A thousand numbers were also generated for the corresponding red trun-
cated distribution from Figure 2.
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Figure 3: Histograms of random numbers from the BSGHN distribution corresponding to the red
distributions from Figure 2.

3. Some Characteristics of the BSGHN

Theorem 3 present the characteristic function (cf) and cdf’s of the BSGHN distribution. The k th moment
about the origin, skewness, kurtosis, mean and median deviation of the BSGHN distribution is given
in Theorem 4.

Theorem 3 Let Z ∼ BSGHN(σ ,α,q,a,b).

1. The cf of Z is given by

ψZ(t) =
2α√

2πσα B(a,b)

∞

∑
j=0

(
1

2σ2α

) j B(α(2 j+1)+q(a−1)+1,b)
Γ( j+1)

· (−1) j(2α+1)+1Γ(α(2 j+1))
(it)α(2 j+1) .

2. The cdf of Z is given by

F(x) = P(Z ≤ x) =

√
2
π

1
σα B(a,b)

∞

∑
i=0

(
−1

2σ2α

)i B(ci,b)
(2i+1)Γ(i+1)

xα(2i+1),

with ci as defined in Definition 3.
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Proof. From Definition 3 we have

ψZ(t) = E
(
eitZ)

=
2α√

2πσα B(a,b)

∞

∑
j=0

(
−1

2σ2α

) j B(α(2 j+1)+q(a−1)+1,b)
Γ( j+1)

·
∫

∞

0
zα(2 j+1)−1eitzdz

=
2α√

2πσα B(a,b)

∞

∑
j=0

(
1

2σ2α

) j B(α(2 j+1)+q(a−1)+1,b)
Γ( j+1)

· (−1) j(2α+1)+1Γ(α(2 j+1))
(it)α(2 j+1) .

2. The cdf follows from integrating fZ as defined by Definition 3. �

Theorem 4 Let Z ∼ BSGHN(σ ,α,q,a,b).
1. The k th moment about the origin of Z is

µk = E
(

Zk
)
= ηkσ

k with ηk =

√
2

k
α

π
Γ

(
k+α

2α

)
B(qk,a)
B(a,b)

.

2. Skewness and kurtosis of Z are given by

γ1 =
η3−3η1η2 +2η3

1

(η2−η2
1 )

3
2

and γ2 =
η4−4η1η3 +6η2

1 η2−3η4
1

(η2−η2
1 )

2 −3

respectively.
3. The mean deviation and median deviation are given by

δ1(Z) = 2µ1F(µ1)−2µ1 +2I(µ1) and δ2(Z) = 2I(M)−µ1

respectively, with

I(c) =

√
2
π

α

σα B(a,b)

∞

∑
i=0

(
−1

2σ2α

)i B(ci,b)
[α(2i+1)+1]Γ(i+1)

cα(2i+1)+1. (3)

Proof.
1. Since R and X are independent, using Theorem 1 and the result from Cooray and Ananda (2008)
the proof follows.
3. The mean deviation and median deviation are respectively defined as

δ1(Z) =
∫

∞

0
|z−µ1| f (z)dz and δ2(Z) =

∫
∞

0
|z−M| f (z)dz
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with M the median of the distribution of Z.
Let I(c) =

∫ c
0 z f (z)dz. The measures δ1(Z) and δ2(Z) can then be written as

δ1(Z) = 2µ1F(µ1)−2µ1 +2I(µ1) and δ2(Z) = 2I(M)−µ1.

Expression (3) follows from Definition 3. �
Graphs of the cdf of the BSGHN distribution are displayed in Figure 3 for different parameter

values. These graphs show the sensitivity of the distribution with respect to the parameters of the
beta component in Theorem 1. As the parameters a and b get larger, the behaviour substantially
changes.

We experienced difficulties drawing the cdf for large values of the shape parameters a and b. To
be more specific, we can determine relevant choices of the parameters a and b, by considering the
behaviour of skewness and kurtosis characteristics.

Figure 4: Cdf’s of the BSGHN distribution for selected parameter values.

Skewness and kurtosis of the BSGHN distribution are tabulated in Table 1 for different parameter
values. It can be seen that the characteristics perform worse when the beta component parameters, as
in Definition 3, increase. However there is no clear monotonic trend based on these parameters. The
trend changes somewhat when we focus on the behaviour of α and q for fixed parameter values a and
b. In this respect, for fixed α , the skewness and kurtosis increase as q increases and for fixed q, the
skewness and kurtosis decrease as α increases. In conclusion, care should be taken in selecting the
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beta component parameters a and b. Since the beta distribution simplifies to the uniform distribution
by taking a = b = 1, we call the selection a = b = 1 the safe mode. The safe mode can be used
for selecting initial values during numerical iteration procedures. Care should be taken when the
safe mode is not used. Cases, not using the safe mode, fits data better as shown later by fitting the
distribution to a real data set.

The mean deviation and median deviation can be used to derive directly the Bonferroni and
Lorenz curves with applications in economics, reliability, demography, insurance and medicine.

Table 1: Skewness, γ1 and Kurtosis, γ2 of the BSGHN distribution.
b = 0.1 b = 1 b = 3 b = 5

α q a γ1 γ2 γ1 γ2 γ1 γ2 γ1 γ2

3 2 0.1 0.5478 -1.2080 0.8955 -4.1522 15.9427 -95.7950 6.3813 -27.7447
3 2 1 4.4216 22.0480 15.0376 -18.4684 2.1599 -6.5906 2.0439 -6.1676
3 2 3 9.0146 111.2584 18.2577 -19.6467 2.0099 -6.0380 2.0007 -6.0029
3 2 5 11.8705 211.9780 6.0084 -9.9020 2.0017 -6.0066 2.0000 -6.0001
3 5 0.1 0.7040 -1.0408 -0.2798 -0.8168 2.2231 -10.0149 56.4728 -558.3012
3 5 1 7.2345 60.6559 1.9199 3.4332 16.2364 -57.9381 2.5626 -7.9853
3 5 3 27.1696 1055.2549 5.5575 44.0277 3.9662 -9.8083 2.0556 -6.1979
3 5 5 54.7457 4987.3845 9.1500 138.5434 2.7891 -7.3918 2.0112 -6.0416
3 10 0.1 0.8152 -0.8807 -0.2690 -0.9829 -0.0830 -1.0948 1.0191 -4.7150
3 10 1 10.3483 125.1485 2.9567 9.3481 1.6616 2.0639 15.0376 -18.4654
3 10 3 68.9504 6928.1077 13.6148 270.2411 4.9850 34.6947 444.6275 3231.3789
3 10 5 223.5355 87769.0328 35.1776 2172.1601 9.0951 138.3562 23.5318 117.9247

5 2 0.1 0.3332 -1.5904 2.2014 -17.1118 5.7505 -26.1421 3.9999 -15.5533
5 2 1 4.1299 18.4879 50.2689 -189.8781 2.1292 -6.4857 2.0362 -6.1397
5 2 3 8.4888 96.2428 11.0643 -20.3584 2.0084 -6.0325 2.0006 -6.0025
5 2 5 11.1920 184.0777 4.9342 -10.3525 2.0014 -6.0057 2.0000 -6.0001
5 5 0.1 0.5023 -1.4752 -0.7964 -0.3787 15.3254 -144.9026 13.7064 -91.1874
5 5 1 6.8027 52.1133 1.7139 2.2980 8.6614 -31.0225 2.4349 -7.5841
5 5 3 25.6440 918.5673 5.2202 37.8166 3.5169 -9.4371 2.0471 -6.1703
5 5 5 51.6836 4344.0643 8.6388 120.6629 2.6493 -7.3324 2.0097 -6.0361
5 10 0.1 0.6196 -1.3526 -0.7040 -0.7568 -0.5447 -1.1626 3.4152 -26.8083
5 10 1 9.7506 108.2889 2.7256 7.4336 1.4690 1.0825 50.2689 -189.8781
5 10 3 65.0934 6034.2112 12.8414 234.8284 4.7056 29.9444 64.0467 121.8831
5 10 5 211.0394 76452.2076 33.2122 1892.2631 8.6374 121.6026 15.9131 48.1847

In the context of reliability, the stress-strength model describes a system whereby a strength Z1

is subjected to a stress Z2. In terms of the lifetime of a component, the component fails in instants
where the stress applied exceeds the strength level, that is Z1 > Z2. Hence, R = P(Z2 < Z1) is a
measure of component life time reliability. The stress-strength model has many applications, for
example in engineering applications such as the deterioration of rocket motors, static fatigue of
ceramic components, fatigue failure of aircraft and the ageing of concrete pressure vessels. In the
context of biometrical studies, the random variable Z1 may represent the lifetime of a patient treated
with a certain drug while Z2 represents the lifetime when treated with a placebo.

The theorem below give the reliability, R, for the case where Z1 and Z2 are independently dis-
tributed BSGHN random variables.
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Theorem 5 Let Z1 and Z2 be independent, with Z1 ∼ BSGHN(σ1,α1,q1,a1,b1)

and Z2 ∼ BSGHN(σ2,α2,q2,a2,b2). The reliability is then

R =

√
2q1

πσ
α2
2 B(a1,b1)B(a2,b2)

·
∞

∑
ι=0

B
(

c(2)i ,b2

)
Γ

(
α1+α2(2i+1)

2α1

)(
−1

2σ
2α2
2

)i(
2σ

2α1
1

) α2(2i+1)
2α1

(2i+1)Γ(i+1)

·
∫ 1

0
wa1q1−1−α2(2i+1) (1−wq1)b1−1 dw

Proof. Let c(s)k = αs (2k+1)+ qs (as−1)+ 1. The proof follows from (1) and the cdf as given in
Theorem 3 since

R =
∫

∞

0
fZ1 (z)FZ2 (z)dz

=
∫ 1

0

2α1q1wα1+a1q1−1 (1−wq1)b1−1

πσ
α1
1 σ

α2
2 B(a1,b1)B(a2,b2)

∞

∑
ι=0

(
−1

2σ
2α2
2

)i B
(

c(2)i ,b2

)
(2i+1)Γ(i+1)

·
∫

∞

0
zα1−1+α2(2i+1) exp

[
− 1

2σ
2α1
1

(zw)2α1

]
dzdw

=
2α1q1

πσ
α1
1 σ

α2
2 B(a1,b1)B(a2,b2)

∫ 1

0

∞

∑
ι=0

(
−1

2σ
2α2
2

)i B
(

c(2)i ,b2

)
(2i+1)Γ(i+1)

·wα1+a1q1−1 (1−wq1)b1−1
Γ

(
α1+α2(2i+1)

2α1

)
2α1

(
w2α1

2σ
2α1
1

) α1+α2(2i+1)
2α1

dw

from which the result follows. �
As a numerical example to the reliability result from Theorem 5 we consider unimodal dis-

tributions as presented in Figure 2. Using numerical integration and selecting the strength Z1

∼ BSGHN(70,5,2,2,2), red distribution in Figure 2, and Z2 ∼ BSGHN(70,5,2,0.5,b) a reliability
of 0.81 is obtained if b = 2.0. Table 3 presents reliability values, changing the value of b from 0.5 to
2.0, reaching the black distribution, in Figure 2, when b = 2.0. As expected, the reliability tends to
1
2 as the distributions become more similar.

The truncated case is also considered, selecting the strength, Z1 ∼ BSGHN(1,1,4,1.1,1). Table
2 considers reliability values for Z2 ∼ BSGHN(1,1,4,a,b), moving from the blue distribution in
Figure 2, to the green distribution and then to the black distribution. Once again, the reliability tend
to 1

2 .

4. Estimation

In this section, we obtain estimates for the parameters through an implementation of the EM algo-
rithm, adopting the procedure in Moradi, Arashi, Arslan and Iranmanesh (2017). Let Θ=(σ ,α,q,a,b)∈
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Table 2: Reliability values for selected distributions from Figure 2.
Unimodal, Z1 ∼ BSGHN(70,5,2,2,2) and Z2 ∼ BSGHN(70,5,2,0.5,b)

b 2.00 1.75 1.50 1.25 1.00 0.75 0.50
R 0.81 0.79 0.76 0.73 0.68 0.62 0.53

Truncated, Z1 ∼ BSGHN(1,1,4,1.1,1) and Z2 ∼ BSGHN(1,1,4,a,b)

a 0.10 0.20 0.30 0.40 0.50 0.05 0.05 0.05 0.05 0.05 0.05
b 2.00 2.00 2.00 2.00 2.00 1.75 1.50 1.25 1.00 0.75 0.50
R 0.83 0.74 0.68 0.65 0.62 0.61 0.60 0.59 0.57 0.55 0.53

R5+ denote the parameter space and Z ∼ BHN(σ ,α,q,a,b). Assume that Z1, . . . ,Zn are indepen-
dently distributed and identical to the distribution of Z. By making use of equation (1), the log-
likelihood function can be written as

l(Θ) = 0.35n+n ln(α)+n ln(q)−nα ln(σ)−n ln[B(a,b)]+(α−1)
n

∑
i=1

ln(zi)

+
n

∑
i=1

ln
{∫ 1

0
wα+aq−1(1−wq)b−1 exp

[
− 1

2σ2α
(ziw)2α

]
dw
}
. (4)

Suppose W1, . . . ,Wn are mixing latent variables and are observable. The complete data set is then
given by (Zi,Wi), i = 1, . . . ,n. The joint density of (Zi,Wi) is

f (zi,wi) =
2αqzα−1

i√
2πσα B(a,b)

wα+aq−1
i (1−wq

i )
b−1 exp

[
− 1

2σ2α
(ziwi)

2α

]
.

Thus accordance with (4), the complete log-likelihood is

lc(Θ) = 0.35n+n ln(α)+n ln(q)−nα ln(σ)−n ln[B(a,b)]+(α−1)
n

∑
i=1

ln(zi)

+(α +aq−1)
n

∑
i=1

ln(wi)+(b−1)
n

∑
i=1

ln(1−wq
i )−

n

∑
i=1

1
2σ2α

(ziwi)
2α .

In reality, the latent variables Wi, i = 1, . . . ,n are not observable. As a remedy, we consider the
conditional expectation of lc(Θ) given the observations zi and the estimated parameters (Θ̂). For this
we have

Q(Θ) = E
(
lc(Θ)|zi,Θ̂

)
= 0.35n+n ln(α)+n ln(q)−nα ln(σ)−n ln[B(a,b)]+(α−1)

n

∑
i=1

ln(zi)

+(α +aq−1)
n

∑
i=1

E
(
ln(Wi)|zi,Θ̂

)
+(b−1)

n

∑
i=1

E
(
ln(1−W q

i )|zi,Θ̂
)

−
n

∑
i=1

1
2σ2α

z2α
i E

(
W 2α

i |zi,Θ̂
)
. (5)
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Using the conditional distribution of W given Z, we obtain

E(1)
i = E

(
ln(W )|zi,Θ̂

)
=
∫ 1

0

ln(w)wα̂+âq̂−1(1−wq̂)b̂−1 exp
[
− 1

2σ̂2α̂
(ziw)2α̂

]
∫ 1

0 wα̂+âq̂−1(1−wq̂)b̂−1 exp
[
− 1

2σ̂2α̂
(ziw)2α̂

]
dw

dw,

E(2)
i = E

(
ln(1−W q)|zi,Θ̂

)
=
∫ 1

0

ln(1−wq̂)wα̂+âq̂−1(1−wq̂)b̂−1 exp
[
− 1

2σ̂2α̂
(ziw)2α̂

]
∫ 1

0 wα̂+âq̂−1(1−wq̂)b̂−1 exp
[
− 1

2σ̂2α̂
(ziw)2α̂

]
dw

dw

and

E(3)
i = E

(
W 2α

i |zi,Θ̂
)

=
∫ 1

0

w3α̂+âq̂−1(1−wq̂)b̂−1 exp
[
− 1

2σ̂2α̂
(ziw)2α̂

]
∫ 1

0 wα̂+âq̂−1(1−wq̂)b̂−1 exp
[
− 1

2σ̂2α̂
(ziw)2α̂

]
dw

dw.

Substituting E(i)
i , i = 1,2,3 in to (5) we obtain

Q(Θ) = 0.35n+n ln(α)+n ln(q)−nα ln(σ)−n ln[B(a,b)]+(α−1)
n

∑
i=1

ln(zi)

+(α +aq−1)
n

∑
i=1

E(1)
i +(b−1)

n

∑
i=1

E(2)
i −

n

∑
i=1

1
2σ2α

z2α
i E(3)

i . (6)

Taking derivatives w.r.t the parameter q, a and b and setting the expressions equal to zero to obtain
the system of equations 

∂Q(Θ)
∂q = 1

q +aĒ(1) = 0
∂Q(Θ)

∂a = −ψ(a)+ψ(a+b)+qĒ(1) = 0
∂Q(Θ)

∂b = −ψ(b)+ψ(a+b)+ Ē(2) = 0

where ψ(x) = Γ′(x)
Γ(x) and Ē( j) = 1

n ∑
n
i=1 E( j)

i , j = 1, 2.
To solve the system of equations, we fix the value of the parameter a and then find the solution

of b numerically. It is also possible to fix the value of the parameter b and then find a numerically.
Using these estimated values, â and b̂ a solution for q can be obtained. Substituting the estimates of
a, b and q into (6) , Q(Θ) can be maximize w.r.t the parameters α and σ .
Maximizing Q(Θ) for σ and α , the equations

σ̂ = 2α̂

√
1
n

n

∑
i=1

z2α̂
i E(3)

i (7)

and
1
α̂

= ln(σ̂)− 1
n

n

∑
i=1

ln(zi)− Ē(1)+
1

2n

n

∑
i=1

(
z2

i
σ̂2

)α̂

ln
(

z2
i

σ̂2

)
E(3)

i
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are obtained. Substituting the expression for σ̂ into the equation above, yields after some algebra

1
2

ln(ζα̂)

(
1− 1

nζα̂

n

∑
i=1

z2
i E(3)

i

)
− α̂

n

n

∑
i=1

ln(zi)− α̂Ē(1)−1 = 0 (8)

where ζα̂ = 1
n ∑

n
i=1 z2α̂

i E(3)
i . Using (8) a solution for α̂ can numerically be obtained where after a

solution for σ̂ can be calculated form (7).
The procedure above was coded using the PROC IML procedure of the SAS system. The numer-

ical integration subroutine QUAD was used to evaluate E(i)
i , i = 1,2,3 numerically after determining

the normalization constant also using the QUAD subroutine. Estimates were firstly obtained for a, b
and q. Solutions were then obtained for σ and α using the values of E(i)

i , i = 1,2,3 as determined
during the last iteration in obtaining a, b and q.

5. Simulation Study

Table 3 presents the absolute bias results obtained from a simulation study following the estimation
procedure as in paragraph 4. Random numbers are generated from a truncated BSGHN(1,1,4,1,1)
distribution and a unimodal BSGHN(1600,3,12,3,1) distribution respectively for sample sizes rang-
ing between 30 and 150. Five hundred simulation repetitions were performed. (The unimodal dis-
tribution parameters correspond to the parameter estimates as in (6).) The results show that, as the
sample size increases, the bias tend to decrease with the largest effect for the parameters q and σ

when compared to other parameters. It shows that the estimation bias is sensitive to sample size.

Table 3: Absolute bias for a truncated and unimodal BSGHN.
Truncated Unimodal

n b q α σ n b q α σ

30 0.0017 0.8569 0.1706 0.1294 30 0.0030 1.6104 0.3003 58.1551
50 0.0018 0.7024 0.1703 0.1025 50 0.0025 1.2968 0.2504 43.1193
80 0.0018 0.5373 0.1660 0.0815 80 0.0020 0.9790 0.2125 35.0508
100 0.0019 0.4931 0.1758 0.0776 100 0.0017 0.8110 0.2210 31.2119
120 0.0019 0.4598 0.1693 0.0672 120 0.0015 0.7254 0.2091 30.1841
150 0.0020 0.4434 0.1703 0.0624 150 0.0013 0.6148 0.2019 26.8372

6. Application

In this section, we fit the proposed model to the same data set as been considered by Olmos et al.
(2014) and compare the fitted models by calculating the likelihood and model selection criteria:
Akaike information criterion (AIC), second order Akaike information criterion (AICc) and Bayesian
information criterion (BIC). The three criteria are defined, for sample size n and k free parameters
in the model, as

AIC = 2k−2ln(likelihood), AICc = AIC+ 2k(k+1)
n−k−1 ,
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and

BIC = k ln(n)−2ln(likelihood).

The preferred model is the model with the smallest values for the AIC, BIC and AICc. In the case
of a small sample size or large number of parameters, the AICc measure is preferred over the AIC
measure.

The data set considered by Olmos et al. (2014) consists of 101 observed lifetimes in cycles 10−3

of aluminium 6061-T6 pieces cut in parallel with the rolling direction, oscillating at 18 Hz at a
maximum pressure of 21000 psi. The results of fitting different models to the data are reported in
Table 4. The BSGHN model is fitted following the estimation procedure as in paragraph 4 keeping a
constant at 3.2. It is apparent that the BSGHN model gives a better fit since the values of the fitting
criteria are smaller.

Table 4: Fitting statistics for the data from Olmos et al. (2014).
Parameter GHN SGHN BSGHN

σ
1629.278
(42.251)

1452.068
(76.575)

1589.053
(38.636)

α
2.996

(0.235)
3.480

(0.409)
2.960

(0.199)

q -
10.220
(4.183)

11.540
(1.068)

b - -
1.010

(0.002)

Log-likelihood -748.529 -747.016 -690.288
AIC 1501.058 1500.032 1390.578
BIC 1506.288 1507.877 1394.423
AICc 1501.180 1500.279 1391.209

Standard deviations are given within brackets

7. Conclusions

In this paper a new distribution, the BSGHN distribution, is introduced by extending the work of
Olmos et al. (2014). This new distribution is obtained by replacing the uniform distribution in the
GHN distribution with the beta distribution. The proposed distribution has more flexibility than the
latter due to the additional shape parameters which is a result of the structure of the beta component.
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