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Abstract: Transformation of a response variable can greatly expand the class of problems for
which the linear regression model or linear mixed-model is appropriate. Beginning with the fun-
damental work of Box and Cox, maximum-likelihood-like estimation has been applied to select a
transformation from among a family of transformations, with the possible goals of achieving approx-
imate normality, removing nonlinearity in a mean function, or stabilizing variance. The Box-Cox
power family (BC) of transformations is by far the most common with the Box-Cox methodology,
and it requires a strictly positive response. In this article we introduce a new family of transforma-
tions that we call the Box-Cox power with nonpositives (BCN) family that allows inclusion of a few
nonpositive values. The BCN family is a modification of the basic power family that is inspired by
the generalised log, or glog transformation, proposed for use with the more limited goals of stabiliz-
ing variance or achieving approximate normality. The glog transformation is itself a special case of
the Johnson SU transformation, and we show that the BCN family derived from it is in turn a simple
modification of the BC family. Computer code for implementing this family is included in the car
package in R (Fox and Weisberg, 2011). The methodology is illustrated using a problem in clinical
chemistry.

1. Introduction

Based on the fundamental work of Box and Cox (1964), allowing transformation of a response
variable or variables greatly expands the problems for which the linear model can be an appropriate
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method of analysis. Suppose we have a response or dependent variable Y which we assume for
now is univariate, and a set of k predictors. From the k predictors we can compute p regressors
that can include a constant for an intercept, indicator variables for factors and interactions, powers
or a spline basis of continuous predictors, nonlinear transformations of the predictors, and possibly
others (Weisberg, 2014, Sec. 3.3). Let xi be the vector of p regressors for the ith observation in the
data, i = 1, . . . ,n. Using the methodology proposed by Box and Cox (1964), we seek a parametric
transformation zt(Y,θ) of the realizations of Y such that there is a possibly vector-valued parameter
θ such that the conditional distribution

zt(y,θ)|xi ∼ N(βββ ′xi,σ
2), (1)

where σ2 is an unknown constant variance and βββ is an unknown coefficient vector. The transfor-
mation could be used to achieve three possible goals of achieving linearity in the mean function,
also called removable non-additivity (Tukey, 1949), constant variance, and normality. Of course
these three goals may be in conflict, and we cannot expect all three to be obtainable with the same
transformation in every problem.

Given data (yi,xi), i = 1, . . . ,n and following Box and Cox (1964), the transformation parameter
can be estimated by maximising a pseudo-likelihood function,

L(θ ,σ ,βββ ;y1, . . . ,yn) = J
n

∏
i=1

1
σ

φ

[
zt(yi,θ)−βββ

′xi

σ

]
, (2)

where φ(z) is the standard normal density, and J = ∏ |(dzt(y,θ)/dy)| is the Jacobian of the transfor-
mation. This procedure is not exactly the same as maximum likelihood estimation because normality
can hold in (1) for at most one value of θ , but Box and Cox (1964) show that the properties of the
estimator of (θ ,σ ,βββ ) that maximises (2) are similar to the properties of maximum likelihood esti-
mates.

When the response is strictly positive, the most commonly used family of transformations is the
power family, zp(y,λ ) = yλ . The more elaborate unnormalised Box-Cox power family (BC),

zbc,u(y,λ ) =
{ 1

λ

(
yλ −1

)
λ 6= 0

log(y) λ = 0

is continuous as a function of λ , and includes logarithms when λ = 0. The normalised transfor-
mation is zbc,n(y,λ ) = zbc,u(y,λ )/J1/n, where J1/n = ġ(y)λ−1 and ġ(y) = exp[(∑ log(yi))/n] is the
geometric mean of y. Using the normalised family, the Jacobian term vanishes from (2), simplify-
ing computations, as the log of the profile log-likelihood for θ evaluated at any fixed value θ0 is
simply −0.5 times the log of the residual sum of squares from the ordinary least squares regres-
sion of zbc,n(y,θ0) on x. If θ is one-dimensional, the estimate θ̂ of θ is easily computed using a
one-dimensional maximisation method (Brent, 2013).

The behaviour of the estimates obtained in this way was explored by Hernandez and Johnson
(1980). They showed that the estimates (λ̂ , σ̂ ,β̂ββ ) are, under regularity conditions, Fisher consistent
for (λ ,σ ,βββ ) and asymptotically normal. They also show in their Theorem 2 that the conditional
distribution of zbc,n(y, λ̂ |x) is as close to normally distributed as possible, in the sense of minimising
the Kullback-Liebler divergence.
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Once an estimator λ̂ is obtained the response is taken to be zp(y,λ ) or log(y) if λ̂ is close enough
to zero, as would be motivated by an analyst’s preference for relatively simple, explainable, results.

In some problems a response that is mostly positive may have some zero or negative realised
values. Zero values of the dependent are common, but strictly negative values also arise sometimes.
For example, in a bioassay problem the concentration of a substance may be adjusted by subtracting
a background reading, sometimes giving a negative response. In an econometric study, a response
may be quarterly profit for dealers of a certain product. Some dealers may have incurred losses
rather than profits, leading again to a few negative values for the response. We would like to be able
to interpret a fitted model as if no nonpositive responses were observed.

Box and Cox recognised the possibility of nonpositive values by introducing a shifted power
family, adding a location parameter δ to get the shifted power family (BCS),

zbcs,n(y,λ ,δ ) = zbc,n(y+δ ,λ ),

where δ > −min(y) is called a start by Mosteller and Tukey (1977). The Jacobian for BCS is
J1/n = ġ(y + δ )λ−1. Simultaneous estimation of (λ ,δ ) is commonly avoided because the log-
likelihood profile for δ is often nearly flat, providing little information in the data about δ . The
usual procedure is to select δ to be slightly larger than −min(y), and then estimate λ as if δ were
known. For fixed δ the asymptotic results of Henandez and Johnson continue to apply, with the
conditional distribution of zbc,n(y+ δ , λ̂ |x) as close to normal as possible, and parameter estimates
are asymptotically normal.

Figure 1 shows the effect of changing δ in the important logarithmic case of λ = 0 for the start
δ ∈ −min(y)+ (.01, .05, .10, .25, .50), with y ∈ (−0.1,1). For values of the start close to −min(y)
the transformations of the nonpositive y’s change quickly as y decreases, making these potential
outliers and/or influential. For relatively large and positive values of y, the shifted Box-Cox transfor-
mation increases at a rate that depends on the value of the start. This will introduce bias in estimates
of coefficients relative to the estimates that would be obtained using the usual Box-Cox family ap-
plied to the positive response data only. Thus interpretation of results will depend on the arbitrary
value of the start. This complicates routine use of the shifted power family.

In practice, once λ and δ are determined the power transformation zp(y+γ,δ ) would be used in
place of y. For any y0 > 0, let k = δ/y0. It is instructive to examine the ratio zp(y0 +δ ,λ )/zp(y0,λ )

in Taylor series up to terms of order k3,

zp(y0 +δ ,λ )

zp(y0,λ )
= (1+ k)λ

≈ 1+λk+(λ −1)λk2/2+(λ −2)(λ −1)λk3/6. (3)

Even for y0 large enough that k < 1 the shifted power can differ from the unshifted power by a sub-
stantial amount due to the linear term λk, and thus interpretation of models using the shifted power
transformations cannot rely on intuition about usual power transformations. This disagreement can
be exacerbated if −min(y) is large, requiring using a large value of δ .

In Section 2 we introduce a new two-parameter family of transformations that we call the Box-
Cox allowing nonpositive values family combining the generalised log or glog family used in chemo-
metrics with the power transform. An example with both a univariate and multivariate responses is



320 HAWKINS & WEISBERG

0.0 0.2 0.4 0.6 0.8 1.0

−
5

−
4

−
3

−
2

−
1

0

y

sh
ift

ed
 B

ox
−

C
ox

 P
ow

er

Box−Cox
0.11
0.15
0.2
0.35
0.6

Figure 1: Plot of the unnormalised shifted Box-Cox power transform for λ = 0 and various values
of the start δ . The solid black line corresponds to the usual Box-Cox transformation applied to the
positive data only.

given in Section 3. Transformation families can also be used in linear mixed-models, and this exten-
sion is briefly presented in Section 4, along with a brief example illustrating the use of both Box-Cox
and and the power transformations allowing for nonpositive values. A discussion concludes the pa-
per in Section 5.

2. Box-Cox Power Family Allowing for Nonpositive Values

We have seen that a linear shift from y to y+δ can cause drastic changes in transformed values when
the power is fixed. We seek a shift that is adequate to remove nonpositive values, but has a smaller
effect on larger values of y. Let s(y,γ) =

√
y2 + γ2, and define a new family of transformations

zbcn,u(y,λ ,γ) = zbc,u {.5[y+ s(y,γ)],λ} .

We call this the Box-Cox family with nonpositives allowed (BCN), as it is the BC family applied to
0.5[y+ s(y,γ)] rather than to y.

Analogously to the BC methodology, the normalised BCN family is defined as zbcn,n(y,λ ,γ) =
zbcn,u(y,λ ,γ)/J1/n

bcn where the Jacobian of the unnormalised transformation is

J1/n
bcn = (0.5)λ ġ

{
[y+ s(y,γ)]λ−1[1+ y/s(y,γ)]

}
.

Many of the properties of the BCN follow directly from the fact that BCN arises conceptually
from a two-stage operation:

• Transform y to w = 0.5(y+
√

y2 + γ2)
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• Apply the conventional BC transformation to w.

Thus the geometric properties of the BC transformation sketched in Lemma 1 of Hernandez and
Johnson (1980), for example, carry over unchanged, applied to w instead of y.

The transformation from y to w is convex – its second derivative is γ2/s3 > 0 – but rapidly
approaches the line of identity as y increases.

Some more specific properties of the transformation are:

• When γ = 0 and y is always positive, the transformation family reduces to BC.

• If min(y) = 0 and γ is small, then the BCN comes down to replacing the zero values by γ

and moving the nonzero values up by a value smaller than γ and decreasing with y. This is
akin, but not identical, to the BCS method with a small start. The situation with min(y)< 0 is
qualitatively similar.

• When λ = 0, zbcn,u(y,λ = 0,γ) reduces to log(1/2)+ log(y+
√

y2 + γ2). The second term in
this expression is a simple reparameterisation of the generalised log, or glog, transformation
of y (Rocke and Durbin, 2001; Durbin, Hardin, Hawkins and Rocke, 2002; Hawkins, 2013;
Hawkins, 2014). The glog transformation is also a variant of the Johnson SU transformation
(Johnson, 1949) which has been proposed as a transformation to normality.

Any γ > 0 can accommodate non-positive y, so this family may be applied to general y, although
we anticipate that it will be most useful in problems with mostly positive response and a few zero or
negative values.
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Figure 2: Plot of the unnormalised glog transform for various values of γ .

In Figure 2 we display the unnormalised BCN transform λ = 0, corresponding to the glog trans-
formation, and for γ ∈ (.01, .05, .10, .25, .50); unlike the shifted Box-Cox transformation, the per-
missible range of γ does not depend on the minimum value of y. When γ = 0.01 or 0.05, glog closely
matches the Box-Cox power applied to the positive values only, shown by a solid black line on the
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graph. For all γ , the transformation flattens out for larger negative values of the response. For y
greater than about 0.4, the transformed values are nearly independent of γ . Compared to the shifted
Box-Cox transformation in Figure 1, the glog transformation behaves closer to the usual Box-Cox
power applied to positive data only, and is less likely to make cases with nonpositive responses
outliers or influential in the estimation. Thus analysis after transformation with the BCN power fam-
ily can be interpreted similarly to transformations with the Box-Cox family, with only minor bias
added. In particular, should λ be close to zero, estimation with the response in the glog scale can be
interpreted similarly to regression with strictly positive y using a log transformation.

In practice, the simple power transformation zp(0.5(y+ s(y,γ)),λ ) would be used once the pa-
rameters of the transformation are determined. For a fixed y0 > 0, define k = γ/y0, and expanding
in Taylor series up to terms in k3,

zp(0.5(y0 + s(y,γ)),λ )
zp(y0,λ )

=
{

0.5(1+
√

1+ k2)
}λ

≈ 1+λk2/4,

as the terms in k and k3 both have zero coefficients. When compared to (3) we see that the power
transformation based on BCN is much closer to the standard power transformation as the leading
term is k2 rather than k, and usual intuition about power transformations can be applied.

The asymptotics of λ are quite straightforward. For fixed γ , BCN is simply the conventional
BC applied to the dependent 0.5[y+ s(y,γ)]. Thus the estimates are asymptotically normal, and the
conditional distribution of the transformed response given the predictors is as close to normal as
possible in the sense of Kullback-Liebler divergence. When γ is estimated, in large samples the
estimate of γ will converge to a limit, and the same results will then hold in the limit as if γ were
fixed.

The situation with γ is less straightforward. Often, the minimizing γ will lie well above zero
and conventional confidence intervals based on the Hessian of the pseudo-likelihood will provide
good information. If all y are strictly positive, then γ may be unnecessary, as indicated either by
the maximum occurring at γ = 0 or by a likelihood ratio test indicating that a nonzero γ is not
significantly better, in which case parsimony is likely to lead one to setting it to zero and using
conventional BC.

If the y include any nonpositive values, then a strictly positive γ is required. This may lead
to a regular situation with the maximising value lying well above zero. On occasion a degenerate
situation arises in which the pseudo-likelihood increases without limit as γ → 0. In this situation, a
non-trivial γ can not be estimated, and instead a small standard value such as 0.01 may be used. This
approach is used in the software.

While the parameter γ has a physical interpretation as the ratio of two variances in the chemo-
metric glog setting, in most other applications it is not of particular interest in its own right, but is
more like a nuisance parameter that must be estimated but not interpreted.
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3. Examples

3.1. Univariate

Important characteristics of a clinical chemistry assay are its limit of blank (LoB), and its limit of
detection (LoD) (CLSI, 2012). The LoB, conceptually the highest reading likely to be obtained from
a zero-concentration sample, is defined operationally by the upper 95% point of readings obtained
from samples that do not contain the analyte. The LoD, conceptually the lowest level of analyte that
can be reliably determined not to be blank, is defined operationally as the true value at which there
is a 95% chance of the reading being above the LoB.

The ideal situation is one in which the assay of an analyte with true concentration ξ follows a
normal distribution with mean µ(ξ ) and standard deviation σ(ξ ). In this idealised situation, let ai

be the level of analyte added, and define µ(ai) and σ(ai) to be, respectively, the mean and standard
deviation when the analyte concentration is ai. For a zero-concentration sample, ai = 0, the LoB is
defined in CLSI (2012) by

LoB= µ(0)+1.645σ(0) (4)

and the LoD is defined by
LoD= LoB+1.645σ(LoD) (5)

In the constant variance case, σ is the same for all µ(ai), and the defining equations simplify to

LoB= µ(0)+1.645σ

LoD= LoB+1.645σ

The LoB and LoD are explored using a series of pools going from blank with ai = 0, no analyte
present, to a few successively larger values of ai. Replicate assays are made on each pool. If the
normal distribution model holds, the spread of the replicate readings is used to study σ , and the
blank samples are used to estimate µ(0). This can typically be done with moderately-sized samples,
particularly if σ is constant.

If the normal model does not hold however, a considerably more complex non-parametric ap-
proach is required, leading to sample sizes numbering in the hundreds. This creates a substantial
incentive to find a good way to transform non-normal or heteroscedastic assays to equivalents fol-
lowing normal distributions with constant variance.

The illustrative data set we discuss is a portion of a LoB/D study of an assay for a drug used to
treat certain cancers. Twelve pools were used, four of them blanks of different types, and eight with
successively increasing drug levels. The data are given in the data file LoBD in the car package in
R (Fox and Weisberg, 2011). For this example the variable labelled I1L1 is taken as the response;
it is in the units of pmol/L. We will fit one-way analysis of variance models, replacing the generally
unknown concentrations a by p indicator variables x indicating the p panels used in the study. The
residuals from the one-way analysis of variance are shown in Figure 3, plotted against the panel
mean. The plot casts doubt on a constant variance assumption, and this heteroscedasticity makes
checking for normality difficult. Some of the lower-number groups include nonpositive values, so the
standard Box-Cox transformation cannot be used, making the BCN family an attractive possibility.

The estimates for the BCN family are computed with the bcnPower family argument to the
powerTransform function in the car package to be (λ̂ , γ̂) = (0.54,16.24). The standard errors of
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Figure 3: Plot of the data for the LoBD example

the estimates are computed from the inverse of the Hessian to be (0.14,11.97), respectively. Wald-
type confidence intervals can be based on asymptotic normality of the estimates, except that the
lower bound for γ is never less than 0.

If we regard γ as a nuisance parameter and simply maximise over it, likelihood ratio tests for
specific values λ of the transformation parameters can be based on the profile log-likelihood for λ

only. The test with null hypothesis λ = 0 versus a general alternative has p-value close to zero, while
the test for λ = 1 also has p-value close to zero. These tests are implemented automatically in the
powerTransform function; the manual page for the function give more information.

Figure 4a provides a contour plot for the profile log-likelihood for (λ ,γ), while Figure 4b pro-
vides the profile log-likelihood for λ only. This latter plot is a modest generalisation of the boxcox
method in the MASS package (Venables and Ripley, 2002).

In this example both the Wald interval for λ with γ fixed at its estimate and the tests based on
profile log-likelihood argue against using either untransformed (λ = 1) or log-transformed (λ = 0)
data. Since the contour log-likelihood shown in Figure 4a is so clearly non-elliptical, inference based
based on the profile log-likelihood for λ are likely to be more accurate in this problem.

Using the estimates (λ̂ , γ̂)= (0.54,16.24), the transformation appears to be successful in achiev-
ing both normality and constant variance of the transforms, as both the Levene and Shapiro-Wilk
tests return large P values. This allows us to estimate the LoB and LoD. On the zbcn,u scale, the four
blank pools give a mean of 3.85 and the pooled estimate of σ is 0.36. From this the LoB and LoD in
zbcn,u-scale are estimated using (4) and (5) to be 4.44 and 5.03, respectively. Converting these back
to the original measurement scale using (6) in the Appendix then gives the LoB as 2.76 pmol/L and
the LoD as 5.54 pmol/L.
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Figure 4: (a) Contour plot of the profile log-likelihood for (λ ,γ) in the univariate example. The
displayed contours are for 50%, 95% and 99% likelihood based confidence regions. (b) Profile
log-likelihood for λ alone maximising over γ .

3.2. Multivariate extension

Velilla (1993) provided the framework for a multivariate linear model extension of the Box-Cox
methodology in which separate λ and γ are estimated for each response. Suppose we have r re-
sponses, λλλ and γγγ are r-vectors of parameters, and Z(λλλ ,γγγ) is an n× r matrix whose jth column is the
normalised BCN transformation with parameters (λ j,γ j) of the jth response variable. Then (λλλ ,γγγ)

are estimated by minimising the log-determinant of the matrix of residuals from the multivariate
regression of Z(λλλ ,γγγ) on the regressors. Details of the “likelihood" function, and an outline of the
computational algorithm, are described in Weisberg (2014, Appendix A.12).

The LoBD data provides a multivariate application. The data set used in the univariate setting
was part of a larger exercise involving four instruments and two reagent lots. For simplicity here
we will consider r = 2 responses obtained using two reagent lots with the same instrument. In the
multivariate fit, we get (λ̂1, γ̂1)= (0.56,13.43) for the estimates for the response I1L2 obtained using
the second reagent lot, and (λ̂2, γ̂2) = (0.52,17.27) for the response I1L1 for the data set discussed
earlier. The estimates for I1L1 with bivariate fitting are a little different from the estimates with
univariate fitting because the multivariate computation includes estimating the covariance between
the responses.

We can formally test for equality by stacking the two responses into one column, and fitting
a two-way analysis of variance, with one factor for the pool of values and a second factor for the
response number, The value of the test statistic is 0.93, and it can be compared to χ2

2 to get a
significance level, and clearly suggests no evidence of a need for different transformations for the
two responses, and allows us to move forward using the same transformation for both reagent lots.
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4. Transformations with Linear Mixed-Effects Models

The Box-Cox approach to transformations has generally been applied in the context of a linear
model. Generalisation to mixed models is straightforward. Similar to the notation in Section 3.2, let
Z(θ) be a n× 1 vector of normalised transformed values of a response y, with θ the parameter or
parameters of the transformation. If X is an n× p design matrix of fixed effects and W is an n× q
design matrix of q random effects b, then the linear mixed-model can be written as (Pinheiro and
Bates, 2006, Sec. 2.1)

Z(θ)|b∼ N
(
Xβββ +Wb,σ2I

)
b∼ N(0,ΨΨΨ) ,

where typically ΨΨΨ depends on a small number of parameters. The log-likelihood for (θ ,βββ ,σ2,ΨΨΨ)

is equal to the log-density of the assumed multivariate normal distribution obtained by integrating
the joint distribution of (Z(θ),b) over the distribution of b. The value of the profile log-likelihood
for fixed θ but maximising over all other parameters is returned by software for fitting linear mixed
models, such as the lmer function in the lme4 package (Bates, Mächler, Bolker and Walker, 2015).
When θ is one-dimensional as for the Box-Cox power family, we use the optimise function in
the stats package in R to maximise over θ . When θ is two-dimensional, we use an alternating
algorithm, first optimising over λ for fixed γ , and then γ for fixed λ .

As a simple example, we revisit the LoBD data, this time considering only the four blank pools,
treating pool as a random, rather than a fixed, effect. The BCN transformation can be estimated by
reformatting the data to stack all the responses in the same column, and adding a variable for the
pool names. This result is very similar to the fixed-effects analysis presented earlier, with (λ̂ , γ̂) =

(0.45,6.25), again suggesting a square root transformation.

5. Discussion

The use of the BCN power family is recommended for problems where selecting a transformation
of one or more responses is at issue, but the response includes a few zero or negative values. The
BCN transformed responses can be interpreted similarly to transformed values using the BC family
with no nonpositive responses. The shifted Box-Cox BCS family that adds a constant to all values
to make them positive produce results that can depend heavily on the essentially arbitrary start.
Another alternative family proposed by Yeo and Johnson (2000) uses different powers depending on
the sign of the value to be transformed, leading to difficulty in interpretation. While not avoiding
these problems entirely, the BCN transformations produce results that are less dependent on the
added parameter γ , akin to the start for the BCS family, and also allow for interpretation of results
in the same way they would be interpreted for a strictly positive response. In particular, if a log
transform is supported by the data, the usual interpretation of exp(β̂ ) as an approximate percent
change in a response for a unit change in a corresponding regression (Weisberg, 2014, Sec. 4.1.7)
can be used, provided as usual that β̂ is not too large, and adding the restriction of applying the
results to observations with fitted mean not too close to zero.

Computations are greatly simplified if the parameters are restricted to a range that would be of
practical use, and we consider only λ ∈ [−3,3] and γ ∈ (0,max(y)). When fitting in one dimension,
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this allows the use of line searches in an alternating algorithm, maximising first λ given γ , and then
maximizing γ given λ . In the multivariate case, we obtain starting values for each of the r responses
as if we had r univariate problems. We then use a similar alternating algorithm, maximising λλλ given
γγγ and then maximising over γγγ given λλλ . The manual pages for the powerTransformation and
bcnPower functions in the car package for R provide further information, including the R code for
most of the fitting in this paper.

Appendix

The BCN transformations are just a special case of power transformations. They are strictly mono-
tonic; the inverse for the unnormalised BCN transformation is

y = (q2− γ
2)/(2q), (6)

where, writing z = zbcn,u(y,λ ,γ),

q =

{
2(λ z+1)1/λ λ 6= 0
2exp(z) λ = 0.

The inverse BCN transformation is useful for converting estimates and confidence intervals made on
the z-scale to y-scale counterparts.
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